JPH0196602A - Manufacture of hollow optical waveguide - Google Patents

Manufacture of hollow optical waveguide

Info

Publication number
JPH0196602A
JPH0196602A JP62254404A JP25440487A JPH0196602A JP H0196602 A JPH0196602 A JP H0196602A JP 62254404 A JP62254404 A JP 62254404A JP 25440487 A JP25440487 A JP 25440487A JP H0196602 A JPH0196602 A JP H0196602A
Authority
JP
Japan
Prior art keywords
base material
thin film
metallic layer
dielectric thin
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62254404A
Other languages
Japanese (ja)
Inventor
Tsuneo Shioda
塩田 恒夫
Akishi Hongo
晃史 本郷
Kenichi Morosawa
諸沢 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP62254404A priority Critical patent/JPH0196602A/en
Publication of JPH0196602A publication Critical patent/JPH0196602A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the loss and increase the transmission power capacity by forming a specific dielectric thin film and an external metallic layer, and then drawing a base material and forming a hollow pipe. CONSTITUTION:An internal metallic layer 4 is formed on the base material 1 to form a specular surface with high smoothness as the surface of the base material, and the dielectric thin film 2 is formed thereupon while having larger adhesive strength than that between the base material 1 and internal metallic layer. Then, the external metallic layer 5 which is thick enough to have mechanical strength and flexibility is formed outside the dielectric thin film 2 and then the base material 1 is drawn having the internal metallic layer 4 stuck to form the hollow pipe. Namely, the surface of the base material with high smoothness is formed as the base material surface not by providing the dielectric thin film 2 directly on the base material 1, but by interposing the internal metallic layer 4. Consequently, the transmission loss is reduced and the power transmission capacity is increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は中空光導波路、特に誘電体を内装した可撓性の
ある金属中空光導波路の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a hollow optical waveguide, particularly a flexible metal hollow optical waveguide having a dielectric inside.

[従来の技術] 高い効率で大出力を得ることのできるCO2レーザは加
工用、医療用に主として利用され始め、また同位体分離
や気体*a計測等にも応用節回が広がろうとしている。
[Conventional technology] CO2 lasers, which can obtain high output with high efficiency, have begun to be used mainly for processing and medical purposes, and their applications are also expanding to isotope separation, gas*a measurement, etc. .

しかし低損失で可撓性をもった石英系光ファイバを利用
できるYAGレーザに比べ、波長10.6JalのCO
2レーザの場合、低損失可撓性導波路が入手できないた
め、応用上の大きな障害となっており゛、その実現が持
たれて久しい。
However, compared to YAG lasers that can use low-loss and flexible silica-based optical fibers, CO2 lasers with a wavelength of 10.6 Jal
In the case of two lasers, the unavailability of low-loss flexible waveguides has been a major obstacle in its application, and it has been a long time since its realization.

現在その候補として最も有望視されているのが金属パイ
プ内面に、1G、6Jllの波長帯で低損失なGe。
Currently, the most promising candidate is Ge, which has low loss in the 1G and 6Jll wavelength range, for the inner surface of metal pipes.

znse等の誘電体材料をコーティングすることで金属
パイプ内面の反射率を高め、中空パイ!内部にレーザエ
ネルギを閉じ込めて伝送する誘電体内装金属中空導波路
である。
By coating with a dielectric material such as znse, the reflectance of the inner surface of the metal pipe is increased, creating a hollow pipe! This is a hollow metal waveguide with a dielectric interior that confines and transmits laser energy.

以下この導波路のyJ造方法を第2図を参照して説明す
る。
The yJ manufacturing method of this waveguide will be explained below with reference to FIG.

母材パイプ1の材料はMまたはポリイミドが使用される
。Mの場合その外表面を例えばダイヤモンドペースト等
を用いて鏡面化する必要がある(第2図(a))。この
母材パイプ1の外表面に約0.5μsの厚さのGeある
いは約0.8Ia厚さのZn5eを高周波マグネトロン
スパッタ法により形成する(第2図(b))。この誘電
体薄膜2の外表面にA(1゜Cu、へり等の金属薄膜3
を形成する。その厚さは波長10.6岬におけるスキン
デプス以上であり、約300Å以上であれば十分である
(第2図(C))。次にこの金属薄膜3表面に例えばワ
ット浴またはスルファミン酸浴の光沢めっきによってN
1層4を形成する。その厚さは機械的強度から定められ
るが約100JJIRから200−程度である(第2図
(d))。最後に母材パイプ1をエツチング除去して誘
電体内装金属中空導波路が製造される(第2図(e))
。エツチング液にはMの場合的10%程度のNaOH溶
液を、またポリイミドの場合にはヒドラジンとエチレン
ジアミンの混合液を使用する。
The material of the base pipe 1 is M or polyimide. In the case of M, the outer surface must be mirror-finished using, for example, diamond paste (FIG. 2(a)). On the outer surface of the base material pipe 1, a layer of Ge with a thickness of about 0.5 μs or Zn5e with a thickness of about 0.8 Ia is formed by high frequency magnetron sputtering (FIG. 2(b)). On the outer surface of this dielectric thin film 2, there is a metal thin film 3 such as A (1° Cu, edges, etc.).
form. The thickness is equal to or greater than the skin depth at a wavelength of 10.6, and is sufficient if it is approximately 300 Å or greater (FIG. 2(C)). Next, the surface of this metal thin film 3 is coated with N by bright plating in a Watt bath or a sulfamic acid bath, for example.
One layer 4 is formed. Its thickness is determined from mechanical strength, and is approximately 100 to 200 JJIR (Fig. 2(d)). Finally, the base material pipe 1 is removed by etching to produce a dielectric-internal metal hollow waveguide (Fig. 2(e)).
. As the etching solution, a NaOH solution with a concentration of about 10% is used in the case of M, and a mixed solution of hydrazine and ethylenediamine is used in the case of polyimide.

[発明が解決しようとする問題点] 前記した従来技術では十分に平滑度の高い鏡面の母材表
面を得ることが困難であり、母材表面の凹凸が中空導波
路内壁面にそのままの形で反映してしまうため、導波路
内で損失の大きい高次モードへのモード変換が発生し、
結果として導波路の伝送損失を大ぎなものとしている。
[Problems to be Solved by the Invention] With the prior art described above, it is difficult to obtain a mirror-like surface of the base material with a sufficiently high degree of smoothness, and the unevenness of the base material surface remains as it is on the inner wall surface of the hollow waveguide. As a result, mode conversion to higher-order modes with large losses occurs within the waveguide.
As a result, the transmission loss of the waveguide becomes large.

例えば、引き扱き法で作られたMバイブの場合、引ぎ1
&さ油中に混入した小さな埃によっても簡単に深い傷が
軸方向にできる。またMは軟かいため研磨により表面を
鏡面化することは困難である。
For example, in the case of an M vibe made using the pulling method, pulling 1
& Even small dust particles mixed in the oil can easily cause deep scratches in the axial direction. Furthermore, since M is soft, it is difficult to polish the surface to a mirror finish.

一方ポリイミドを母材とした場合はMバイブに比べ、表
面の平滑度は優れているが、それでも表面にビット、ボ
イドが存在するため損失増加の原因となる。また最終工
程で母材をエツチング除去してしまうため、その再利用
が出来ずざらにエツチング廃液処理を必要とするため続
流性の点でも難点がある。さらに内径的1.5#III
I程度の導波路内壁から母材を完全に除去することは極
めて困難であって導波路内壁に僅かに存在する残滓も損
失増加の原因である。
On the other hand, when polyimide is used as the base material, the surface smoothness is superior to that of the M vibe, but the presence of bits and voids on the surface still causes an increase in loss. Furthermore, since the base material is removed by etching in the final step, it cannot be reused and treatment of etching waste liquid is required, which is problematic in terms of follow-on flow. Further inner diameter 1.5#III
It is extremely difficult to completely remove the base material from the inner wall of the waveguide, and the slight amount of residue present on the inner wall of the waveguide also causes an increase in loss.

本発明の目的は前記した従来技術の欠点を解消し、母材
パイプの表面を高度に鏡面化して、低損失で且つ伝送電
力容量が大きく、しかも母材を再利用することの可能な
中空光導波路の製造方法を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art mentioned above, and to provide a hollow light guide which has a highly mirror-finished surface of the base material pipe, has low loss, has a large transmission power capacity, and can reuse the base material. An object of the present invention is to provide a method for manufacturing a wave path.

[問題点を解決するための手段] 本発明の中空光導波路の製造方法は、母材上に内部金属
層を設けて母材表面を平′/n痕の高い鏡面に形成し、
その上に上記母材と内部金1層間よりも付着力が弱くな
るように誘電体薄膜を設ける。
[Means for Solving the Problems] The method for manufacturing a hollow optical waveguide of the present invention includes providing an internal metal layer on a base material to form a mirror surface with high flat'/n marks on the surface of the base material,
A dielectric thin film is provided thereon so that the adhesion force is weaker than that between the base material and the inner gold layer.

この誘電体簿膜の外方に、さらに機械的強度と可撓性を
備えた厚さの外部金属層を形成した侵、内部金属層を付
着させたまま母材を引き抜いて中空管を形成するように
したものである。
A thick outer metal layer with mechanical strength and flexibility is formed on the outside of this dielectric film, and the base material is pulled out with the inner metal layer still attached to form a hollow tube. It was designed to do so.

[作 用] 母材上に直接誘電体749膜を設けるのではなく、内部
金属層を介在させると、母材表面を平滑への高い鏡面に
形成できるため、導波路の損失低減が図れる。
[Function] By interposing the internal metal layer instead of directly providing the dielectric 749 film on the base material, the surface of the base material can be formed into a smooth and highly mirrored surface, thereby reducing waveguide loss.

また、母材と内部金属層間よりも、誘電体薄膜と内部金
属層間の付着力が弱いと、母材を引き抜くとき、内部金
属層は取り残されることなく、母材に付着して出て来る
Furthermore, if the adhesion between the dielectric thin film and the internal metal layer is weaker than that between the base material and the internal metal layer, when the base material is pulled out, the internal metal layer will not be left behind but will come out adhering to the base material.

そして、母材を化学エツチングで除去する代わりに、母
材を引き抜くようにすると、母材の再利用が可能となる
If the base material is pulled out instead of being removed by chemical etching, it becomes possible to reuse the base material.

[実施例] 以下、本発明の実施例を第1図を参照しながら説明する
[Example] Hereinafter, an example of the present invention will be described with reference to FIG.

断面円形の母材1は例えばMである。その表面を市販の
金属研磨剤等で簡単に粗研磨する(第1図(a))。次
にこのM母材1を陰極として光沢NiめつきによりNi
めつき層5を形成する(第1図(b))。
The base material 1 having a circular cross section is, for example, M. The surface is simply roughly polished using a commercially available metal abrasive or the like (FIG. 1(a)). Next, using this M base material 1 as a cathode, Ni is coated with bright Ni plating.
A plating layer 5 is formed (FIG. 1(b)).

その厚さは2〜!zmPi!度であり、ワット浴を使用
してPH4,0、浴槽温度43°、Ti流重密度4 O
A/d麓の条件で5〜12分間めっきすることで得られ
る。
Its thickness is 2~! zmPi! Using a Watts bath, the pH was 4.0, the bath temperature was 43°, and the Ti flow density was 4 O.
It is obtained by plating for 5 to 12 minutes under A/d conditions.

光沢剤のレベリング作用により母材の平滑性は大きく改
善される。更に表面を鏡面化するためダイヤ[ンドペー
ストを使用して研磨する。MlはMに比べ硬いため鏡面
が得られやすくサブミクロンの表面粗さを実現できる。
The leveling effect of the brightener greatly improves the smoothness of the base material. Furthermore, the surface is polished using diamond paste to make it mirror-like. Since Ml is harder than M, it is easier to obtain a mirror surface and submicron surface roughness can be achieved.

この旧めっき層5の外表面に波長10.6mで損失の小
さい誘電体薄膜2をその材料の屈折率により定まる厚さ
に高周波マグネネトロンスパッタリングで形成する(第
1図(C))。
A dielectric thin film 2 having a low loss at a wavelength of 10.6 m is formed on the outer surface of the old plating layer 5 by high frequency magnetron sputtering to a thickness determined by the refractive index of the material (FIG. 1(C)).

この誘電体薄膜2の厚さはGOの場合、約0.5p。The thickness of this dielectric thin film 2 is approximately 0.5p in the case of GO.

2nSeの場合には約0.8−であり、その設計論は宮
城等(”Design Theory or Diel
ectric−CoatedCircular Met
allic Waveguides for In−f
raredTransmission、 ” I[EE
、 J、of Lightwave Tech。
In the case of 2nSe, it is about 0.8-, and its design theory is described by Miyagi et al.
etric-Coated Circular Met
allic Waveguides for In-f
raredTransmission, ”I[EE
, J. of Lightwave Tech.

vol、LT−2AI)ril 1984)により確立
されている。こノ誘電体′a!I!J2の外表面にAo
、CO,Au等の波長10.6−で複素屈折率の虚部の
値が大きい金属薄膜3を高周波マグネトロンスパッタリ
ングにより形成する。(第1図(d))。その厚さは波
長10.6I11におけるスキンデプス以上であれば良
く約100A〜5000^程度である。この金属薄膜3
の外表面にワット浴あるいはスルファミン酸浴を使用し
て旧めっき層4を形成する(第1図(e))。このXi
めつきH4は可撓性が要求されるので母材1上に形成し
た前記Niめつき層5に比べ光沢剤のωを少なくするこ
とが望ましい。次にNiめりき!rI5を母材1に付け
たままの状態で母材1を引き抜く(第1図(f))。ス
パッタリングにより付けた誘電体薄膜2とN1めつき!
II5の間の付着力は、めっき法で付けた母材1とNi
めっきl!45間の付着力に比較して弱いためこの方法
が可能となる。また引き抜きにあたっては周囲温度を下
げることも有効な方法である。このようにして引い抜い
た母材1は再び上述しためつき、研磨を行なうことで再
利用が可能となる。
vol, LT-2AI) ril 1984). Kono dielectric 'a! I! Ao on the outer surface of J2
, CO, Au, etc., having a wavelength of 10.6- and a large value of the imaginary part of the complex refractive index, a metal thin film 3 is formed by high-frequency magnetron sputtering. (Figure 1(d)). The thickness may be approximately 100A to 5000A as long as it is equal to or greater than the skin depth at a wavelength of 10.6I11. This metal thin film 3
An old plating layer 4 is formed on the outer surface of the substrate using a Watt bath or a sulfamic acid bath (FIG. 1(e)). This Xi
Since the plating H4 requires flexibility, it is desirable to reduce the ω of the brightener compared to the Ni plating layer 5 formed on the base material 1. Next is Ni Meriki! The base material 1 is pulled out with the rI5 still attached to the base material 1 (FIG. 1(f)). Dielectric thin film 2 and N1 plating applied by sputtering!
The adhesion force between II5 is the base material 1 attached by plating and the Ni
Plating! This method is possible because the adhesion force is weaker than that between 45 and 45. Furthermore, lowering the ambient temperature is also an effective method when drawing out the material. The base material 1 pulled out in this manner can be reused by being packed and polished again as described above.

上述したように、本実施例によれば、光沢めっきとダイ
ヤモンドペースト1ffiにより母材表面の平滑度を大
きく改善したので、導波路の損失低減が図れ、さらに母
材の化学エツチングに代る方法として引き抜き法を使用
することで、母材の再利用を可能にし、経抗性を向上さ
せると共に、エッヂング残滓による損失増加を無くすこ
とができる。
As mentioned above, according to this example, the smoothness of the base material surface was greatly improved by bright plating and diamond paste 1ffi, so it was possible to reduce the loss of the waveguide, and furthermore, it could be used as an alternative method to chemical etching of the base material. By using the drawing method, it is possible to reuse the base material, improve durability, and eliminate increased loss due to edging residue.

なお、前記実施例では、Niめっき層5の形成に電解X
iめつき法を使用したが無電解Xiめつきによっても可
能である。また、構造的には金属薄膜3を省いても″十
分低損失な導波路を実現できる。
In the above embodiment, electrolytic X was used to form the Ni plating layer 5.
Although the i-plating method was used, electroless Xi-plating is also possible. Further, structurally, even if the metal thin film 3 is omitted, a waveguide with sufficiently low loss can be realized.

[発明の効果] 本発明によれば次の効果がある。[Effect of the invention] According to the present invention, there are the following effects.

中 中空光導波路の内壁の表面粗さを大きく改善したの
で、伝送損失を大幅に低減すると共に電力伝送容岳を大
きくすることができる。
Since the surface roughness of the inner wall of the hollow optical waveguide has been greatly improved, transmission loss can be significantly reduced and power transmission capacity can be increased.

(2)  また、母材の再利用が可能となること及びエ
ツチングによる廃液の処理が不要となることで、プロセ
スの簡略化が図れ、頗る経済的である。
(2) Furthermore, since the base material can be reused and there is no need to treat waste liquid from etching, the process can be simplified and is extremely economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る中空光導波路の製造プロセスの一
実施例を示す説明図、第2図は従来の中空光導波路の製
造プロセス例を示す説明図である。 図中、1は母材、2は誘電体WJll、 4はNiめっ
き層(内部金属層)、5はNiめつき層(外部金属層)
である。
FIG. 1 is an explanatory diagram showing an example of the manufacturing process for a hollow optical waveguide according to the present invention, and FIG. 2 is an explanatory diagram showing an example of the manufacturing process for a conventional hollow optical waveguide. In the figure, 1 is the base material, 2 is the dielectric WJll, 4 is the Ni plating layer (inner metal layer), and 5 is the Ni plating layer (outer metal layer).
It is.

Claims (2)

【特許請求の範囲】[Claims] (1)母材上に内部金属層を設けて母材表面を平滑度の
高い鏡面に形成し、その上に上記母材と内部金属層間よ
りも付着力が弱くなるように誘電体薄膜を設け、さらに
その外方に機械的強度と可撓性を備えた厚さの外部金属
層を形成した後、上記内部金属層を付着させたまま母材
を引き抜いて中空管を形成することを特徴とする中空光
導波路の製造方法。
(1) An internal metal layer is provided on the base material to form a mirror surface with high smoothness, and a dielectric thin film is provided on top of it so that the adhesion force is weaker than between the base material and the internal metal layer. , furthermore, after forming a thick outer metal layer with mechanical strength and flexibility on the outside thereof, the base material is pulled out with the inner metal layer still attached to form a hollow tube. A method for manufacturing a hollow optical waveguide.
(2)上記母材表面の内部金属層が光沢めつき法で形成
されたことを特徴とする特許請求の範囲第1項記載の中
空光導波路の製造方法。
(2) The method for manufacturing a hollow optical waveguide according to claim 1, wherein the internal metal layer on the surface of the base material is formed by a bright plating method.
JP62254404A 1987-10-08 1987-10-08 Manufacture of hollow optical waveguide Pending JPH0196602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62254404A JPH0196602A (en) 1987-10-08 1987-10-08 Manufacture of hollow optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62254404A JPH0196602A (en) 1987-10-08 1987-10-08 Manufacture of hollow optical waveguide

Publications (1)

Publication Number Publication Date
JPH0196602A true JPH0196602A (en) 1989-04-14

Family

ID=17264504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254404A Pending JPH0196602A (en) 1987-10-08 1987-10-08 Manufacture of hollow optical waveguide

Country Status (1)

Country Link
JP (1) JPH0196602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029456A1 (en) * 2006-09-06 2008-03-13 Homs Engineering Inc. Method for producing dental laser tip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029456A1 (en) * 2006-09-06 2008-03-13 Homs Engineering Inc. Method for producing dental laser tip

Similar Documents

Publication Publication Date Title
US8720040B2 (en) Method of manufacturing a hollow waveguide
US5729646A (en) Optical hollow waveguide, method for fabricating the same, and laser transmission apparatus using the same
US5966485A (en) Method of producing core protrusion relative to cladding in an optical fiber of a fiber optic connector
KR920002659B1 (en) Method and apparatus for drawing low loss fiber optic coupler
US6950591B2 (en) Laser-written cladding for waveguide formations in glass
JP3299477B2 (en) Manufacturing method of hollow waveguide
US5325458A (en) Monolithic hollow waveguide and method and apparatus for making the same
US4824195A (en) Monomode optical transmission fibre having a tapered end portion provided with a lens and method of manufacturing such a fibre
MXPA01000819A (en) Method for fabricating an optical waveguide.
US6684011B2 (en) Spot size converter and method of manufacturing the same
US5077087A (en) Method of cladding single crystal optical fiber
Harrington et al. Review of hollow waveguide technology
JPS60173512A (en) Prism coupler
JPH0196602A (en) Manufacture of hollow optical waveguide
JPH08179140A (en) Production of coated optical fiber varying projection angle of light
JPH04281406A (en) Flexible light waveguide substrate and its production
Packham The adhesion of polymers to metals: the role of surface topography
JP4229084B2 (en) Method for manufacturing hollow waveguide
Bhardwaj et al. Performance of a dielectric-coated monolithic hollow metallic waveguide
CN115679087A (en) Laser shock peening rapid coating method
JPH032803A (en) Production of hollow optical waveguide
JP2633866B2 (en) Hollow optical waveguide
Yoshida et al. Highly damage resistant, broadband, hard antireflection coating for high power lasers in the ultraviolet to near‐infrared wavelength regions
SE9401373D0 (en) Fiberreflektor
JP3718127B2 (en) Medical laser transmission equipment