JPH04281406A - Flexible light waveguide substrate and its production - Google Patents

Flexible light waveguide substrate and its production

Info

Publication number
JPH04281406A
JPH04281406A JP4505191A JP4505191A JPH04281406A JP H04281406 A JPH04281406 A JP H04281406A JP 4505191 A JP4505191 A JP 4505191A JP 4505191 A JP4505191 A JP 4505191A JP H04281406 A JPH04281406 A JP H04281406A
Authority
JP
Japan
Prior art keywords
cladding
base substrate
optical waveguide
substrate
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4505191A
Other languages
Japanese (ja)
Other versions
JP3031385B2 (en
Inventor
Hideichiro Inagaki
秀一郎 稲垣
Fusao Shimokawa
房男 下川
Toru Matsuura
徹 松浦
Yoriko Hanaoka
花岡 頼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4505191A priority Critical patent/JP3031385B2/en
Publication of JPH04281406A publication Critical patent/JPH04281406A/en
Application granted granted Critical
Publication of JP3031385B2 publication Critical patent/JP3031385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To manufacture a flexible light waveguide substrate which can connect all of optical parts disposed with desired intervals and has excellent workability and economy. CONSTITUTION:After an adhesion improving agent 131, 132 is applied on a part of a base substrate 110, a clad 121 comprising a soft polymer material is formed on the base substrate 110. Further a core 122 comprising a soft polymer material having higher refractive index than that of the clad 121 is formed, and then part of the base substrate 110 is removed except for reinforcing parts 141, 142.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光通信装置等の内部に
おいて任意の光配線が可能なフレキシブル光導波路基板
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible optical waveguide substrate that allows arbitrary optical wiring inside an optical communication device, etc., and a method for manufacturing the same.

【0002】0002

【従来の技術】従来より、光通信装置等の内部の光配線
を任意に行い得るものとして、柔軟な高分子材料でコア
及びクラッドを形成したフレキシブル光導波路基板が知
られている。
2. Description of the Related Art Flexible optical waveguide substrates in which a core and cladding are formed of a flexible polymeric material have been known as a substrate that allows optical wiring inside an optical communication device or the like to be arbitrarily formed.

【0003】ここで、従来のリッジ形フレキシブル光導
波路基板の一例を、その大まかな製造手順を示す図4を
参照しながら説明する。図4に示すように、シリコン(
Si)又はガラスからなり、リジッドで平坦なベース基
板410上に、まず、柔軟な高分子材料からなるクラッ
ド421をスピンコーティングなどの方法を用いて付着
する(図4(a) 〜(b) )。次に、クラッド42
1上に、該クラッド421より僅かに屈折率が高く柔軟
な高分子材料からなるコア422を形成する。このコア
422は光配線のパターンを有するものであり、このパ
ターニングは、反応性イオン・エッチング(RIE)な
どの方法で行う(図4(c) )。そして最後に、機械
的な剥離、エッチングなどの方法でクラッド421から
ベース基板410を除去し、柔軟なクラッド421及び
コア420からなるフレキシブル光導波回路400を得
る。
[0003] An example of a conventional ridge-type flexible optical waveguide substrate will now be described with reference to FIG. 4, which shows a rough manufacturing procedure thereof. As shown in Figure 4, silicon (
First, a cladding 421 made of a flexible polymeric material is deposited on a rigid and flat base substrate 410 made of Si) or glass using a method such as spin coating (FIGS. 4(a) to 4(b)). . Next, the cladding 42
A core 422 made of a flexible polymeric material having a slightly higher refractive index than the cladding 421 is formed on the cladding 421 . This core 422 has an optical wiring pattern, and this patterning is performed by a method such as reactive ion etching (RIE) (FIG. 4(c)). Finally, the base substrate 410 is removed from the cladding 421 by a method such as mechanical peeling or etching to obtain the flexible optical waveguide circuit 400 consisting of the flexible cladding 421 and the core 420.

【0004】また、図5には埋込み形フレキシブル光導
波路基板の一例を示す。同図に示すように、この埋込み
形フレキシブル光導波路基板500は、上述したリッジ
形フレキシブル光導波路基板400と同様に、図示しな
いベース基板上にクラッド521、コア522を設け、
さらに、このコア522より屈折率が低く柔軟な高分子
材料を該コア522を覆うように設けて第二クラッド5
23を形成した後、図示しないベース基板を除去したも
のである。
FIG. 5 shows an example of an embedded flexible optical waveguide substrate. As shown in the figure, this embedded type flexible optical waveguide substrate 500 has a cladding 521 and a core 522 provided on a base substrate (not shown), similarly to the ridge type flexible optical waveguide substrate 400 described above.
Furthermore, a flexible polymeric material having a lower refractive index than this core 522 is provided to cover the core 522 to form a second cladding 5.
After forming 23, the base substrate (not shown) is removed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述し
たような従来のフレキシブル光導波路基板には次のよう
な問題がある。
However, the conventional flexible optical waveguide substrate as described above has the following problems.

【0006】一般に、フレキシブル光導波路基板では柔
軟性を得るためにベース基板をクラッドから除去する工
程が必要となるので、クラッドとベース基板との接着力
が低い方が望ましいと考えられていたが、コアのパター
ン形成等の加工工程において、ベース基板、クラッド及
びコアに熱、機械、化学的なストレスが加わるため、ベ
ース基板との接着力が低いクラッドを用いると、コア形
成時にクラッドが剥離したり、コア形状の加工精度が劣
化したりするという問題が発生する。
[0006] In general, flexible optical waveguide substrates require a step of removing the base substrate from the cladding in order to obtain flexibility, so it was considered desirable that the adhesive strength between the cladding and the base substrate be low. During processing steps such as core pattern formation, thermal, mechanical, and chemical stresses are applied to the base substrate, cladding, and core, so if a cladding with low adhesion to the base substrate is used, the cladding may peel off during core formation. , a problem arises in that the machining accuracy of the core shape deteriorates.

【0007】また、従来のフレキシブル光導波路を任意
の入出力部と接続する場合には、保持部材を後付けして
用いる必要があり、フレキシブル光導波路基板を成端処
理しなければならず、経済性、取扱性が悪く、実装密度
も低くなるという問題がある。
Furthermore, when connecting a conventional flexible optical waveguide to an arbitrary input/output section, it is necessary to use a holding member afterward, and the flexible optical waveguide substrate must be terminated, making it difficult to achieve economic efficiency. However, there are problems such as poor handling and low packaging density.

【0008】本発明はこのような事情に鑑み、任意の間
隔で並ぶ光部品を一括接続可能で、加工性、経済性に優
れたフレキシブル光導波路基板を提供することを目的と
する。
In view of the above circumstances, it is an object of the present invention to provide a flexible optical waveguide substrate which is capable of collectively connecting optical components lined up at arbitrary intervals and is excellent in processability and economical efficiency.

【0009】[0009]

【課題を解決するための手段】前記目的を達成する本発
明に係るフレキシブル光導波路基板は、リジッドで平坦
なベース基板上に、柔軟な高分子材料からなるクラッド
及び該クラッド上に設けられて屈折率が該クラッドより
大きく柔軟な高分子材料からなるコア、並びに必要に応
じて該コアを覆うよう設けられ屈折率が該コアより小さ
い柔軟な高分子材料からなる第二のクラッドを順次形成
した後上記ベース基板を除去してなるフレキシブル光導
波路基板であって、その一部には上記ベース基板の一部
が残留して補強部として固着されていることを特徴とし
、また、その製造方法は、リジッドで平坦なベース基板
上に柔軟な高分子材料からなるクラッドを形成すると共
にこのクラッド上に屈折率が該クラッドより大きく柔軟
な高分子材料からなるコアを形成し、さらに必要に応じ
て屈折率が該コアより小さく柔軟な高分子材料を該コア
を覆う状態に設けた第二のクラッドを形成した後、上記
ベース基板を除去するフレキシブル光導波路基板の製造
方法において、上記ベース基板の一部に上記クラッドと
の接着力を高める接着力改良剤を付着するか、上記ベー
ス基板の他部に上記クラッドとの接着力を低下させる剥
離剤を付着するか、又は上記ベース基板の一部に上記ク
ラッドとの接着力を高める接着力改良剤を付着すると共
に他部に上記クラッドとの接着力を底下させる剥離剤を
付着するかした後上記クラッドを設けてベース基板の一
部とクラッドとの接着力を他部とクラッドとの接着力よ
り相対的に高め、その後、最後にベース基板の一部を残
して他部を除去することを特徴とする。
[Means for Solving the Problems] A flexible optical waveguide substrate according to the present invention that achieves the above object includes a rigid and flat base substrate, a cladding made of a flexible polymer material, and a refractive optical waveguide substrate provided on the cladding. After sequentially forming a core made of a flexible polymeric material having a refractive index higher than that of the cladding, and optionally a second cladding made of a flexible polymeric material provided to cover the core and having a refractive index smaller than the core. A flexible optical waveguide substrate obtained by removing the base substrate, characterized in that a part of the base substrate remains and is fixed as a reinforcing portion, and a method for manufacturing the same includes: A cladding made of a flexible polymeric material is formed on a rigid and flat base substrate, and a core made of a flexible polymeric material with a refractive index larger than that of the cladding is formed on this cladding, and if necessary, a core made of a flexible polymeric material is formed. In the method for manufacturing a flexible optical waveguide substrate, the method for manufacturing a flexible optical waveguide substrate includes forming a second cladding in which a flexible polymer material smaller than the core is provided to cover the core, and then removing the base substrate. Either an adhesive strength improver that increases the adhesive strength with the cladding is attached, a release agent that reduces the adhesive strength with the cladding is attached to other parts of the base substrate, or the cladding strength is attached to a part of the base substrate. After applying an adhesion improver to increase the adhesive strength with the cladding and attaching a release agent to other parts to lower the adhesive strength with the cladding, the cladding is provided and the adhesive strength between a part of the base substrate and the cladding is applied. The adhesive strength between the other parts and the cladding is relatively increased, and then, finally, part of the base substrate is left and the other part is removed.

【0010】0010

【作用】リジッドなベース基板上に柔軟な高分子材料か
らなるクラッド、コア及び必要に応じての第二のクラッ
ドを形成した後ベース基板を取り去る際に、ベース基板
に接着力改良材及び/又は剥離剤を付着しておくことに
よりベース基板の一部とクラッドとの接着力を他部とク
ラッドとの接着力より相対的に高めておき、ベース基板
の他部のみを除去するようにする。かくて、製造性が改
善され、コアの加工精度劣化等の問題も生じない。また
、例えばこのように製造されたフレキシブル光導波路基
板では、残留したベース基板の一部が保持部材、補強部
材となり、取扱い性に優れたものである。
[Operation] After forming a cladding, a core, and optionally a second cladding made of a flexible polymer material on a rigid base substrate, when removing the base substrate, the adhesion improving material and/or By applying a release agent, the adhesive strength between a part of the base substrate and the cladding is made relatively higher than the adhesive strength between other parts and the cladding, so that only the other part of the base substrate is removed. Thus, manufacturability is improved and problems such as deterioration of core processing accuracy do not occur. Further, for example, in the flexible optical waveguide substrate manufactured in this manner, a portion of the remaining base substrate serves as a holding member and a reinforcing member, and is excellent in handling.

【0011】[0011]

【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be explained below based on examples.

【0012】図1には一実施例に係るリッジ形フレキシ
ブル光導波路基板及びその製造方法を示す。同図に示す
ように、リジッドで平坦な例えばシリコン製のベース基
板110上に柔軟なポリイミド等の透光性高分子材料で
クラッド121を形成する際、ベース基板110の両端
部に予め接着力改良剤131,132を塗布しておく(
図1(a) )。ここで、接着力改良剤131,132
は、ベース基板110及びクラッド121の双方に対し
高い接着力を有する接着剤であり、これを付着した両端
部においてはベース基板110とクラッド121との接
着力が向上する。
FIG. 1 shows a ridge-type flexible optical waveguide substrate and a method for manufacturing the same according to one embodiment. As shown in the figure, when a cladding 121 is formed of a flexible light-transmitting polymer material such as polyimide on a rigid and flat base substrate 110 made of silicon, for example, adhesive strength is improved at both ends of the base substrate 110. Apply agent 131, 132 (
Figure 1(a)). Here, adhesive force improvers 131, 132
is an adhesive that has high adhesive strength to both the base substrate 110 and the cladding 121, and the adhesive strength between the base substrate 110 and the cladding 121 is improved at both ends where it is attached.

【0013】次に、ベース基板110上にスピンコーテ
ィング等の方法でクラッド121を形成した(図1(b
) )後、該クラッド121より僅かに屈折率が高く柔
軟なポリイミド等の透光性高分子材料をRIE等の光配
線パターン形成法により設けて、コア122を形成する
(図1(c) )。そして、その後、ベース基板110
の接着力改良剤131,132が付着された部分以外に
対応する部分を除去することにより、フレキシブル光導
波路基板100を得る(図1(d) )。ここで、クラ
ッド121が接着力改良剤131,132を介してベー
ス基板110と高い接着力で固定されているので、図1
(c) ,(d) の工程においてクラッド121が剥
離することがなく、コア122の形状等の加工精度、製
造性を改善することができる。
Next, a cladding 121 was formed on the base substrate 110 by a method such as spin coating (see FIG. 1(b)).
) After that, a light-transmitting polymer material such as polyimide, which is flexible and has a slightly higher refractive index than the cladding 121, is provided by an optical wiring pattern forming method such as RIE to form the core 122 (FIG. 1(c)). . Then, after that, the base substrate 110
The flexible optical waveguide substrate 100 is obtained by removing the portions other than the portions to which the adhesive force improvers 131 and 132 are attached (FIG. 1(d)). Here, since the cladding 121 is fixed to the base substrate 110 with high adhesive strength via the adhesive strength improvers 131 and 132, as shown in FIG.
The cladding 121 does not peel off in the steps (c) and (d), and the processing accuracy and manufacturability of the shape of the core 122 can be improved.

【0014】このように形成されたフレキシブル光導波
路基板100は、光の入出力端に、残留したベース基板
からなる補強部141,142が固着されてたものであ
る。これら補強部141,142は、フレキシブル光導
波路基板100を補強するだけでなく、他の光部品等と
の接続時の保持機構等として使用できるため、従来のよ
うに、保持機構を後付けする必要がない。すなわち、従
来のフレキシブル光導波路基板と比較して、経済性、取
扱い性、実装密度を向上することができるものである。
The flexible optical waveguide substrate 100 thus formed has reinforcing portions 141 and 142 made of the remaining base substrate fixed to the light input and output ends. These reinforcing parts 141 and 142 not only reinforce the flexible optical waveguide substrate 100, but also can be used as a holding mechanism when connecting to other optical components, etc., so there is no need to add a holding mechanism afterwards as in the conventional case. do not have. That is, compared to conventional flexible optical waveguide substrates, economical efficiency, ease of handling, and packaging density can be improved.

【0015】以上説明したように、接着力改良剤を用い
るのは、ベース基板とクラッドとの接着力が低い場合に
有効であり、接着力改良剤としては、上述したような接
着剤の他、ベース基板の表面を改質して接着力を高める
もの等を用いることができる。
As explained above, the use of an adhesive strength improver is effective when the adhesive strength between the base substrate and the cladding is low, and as the adhesive strength improver, in addition to the above-mentioned adhesives, It is possible to use a material that improves adhesive strength by modifying the surface of the base substrate.

【0016】図2には他の実施例に係るリッジ形フレキ
シブル光導波路基板及びその製造方法を示す。同図に示
すように、本実施例の場合、ベース基板210が予め三
分割されており、表面に何も付着されてないベース基板
210Aを、表面に接着力改良剤231,232が付着
されているベース基板210B,210Cで両側から挾
み込んだ状態で保持されている(図2(a) )。ここ
で、接着力改良剤231,232は上述した実施例と同
様な性質を有するものである。そして、このようなベー
ス基板210上にクラッド221を形成し(図2(b)
)、また、クラッド221より僅かに屈折率が高く柔軟
な高分子材料からなるコア222を形成し(図2(c)
 )、さらに、接着力改良剤231,232が付着した
ベース基板210B,210Cを補強部241,242
として残してベース基板210Aを除去してフレキシブ
ル光導波路基板200とする各工程は上述した実施例と
同様である。ここで、ベース基板210Aを除去工程で
は、予めベース基板210B,210Cと分離されてい
るので、作業が非常に容易である。
FIG. 2 shows a ridge-type flexible optical waveguide substrate and a method for manufacturing the same according to another embodiment. As shown in the figure, in the case of this embodiment, the base substrate 210 is divided into three parts in advance, and a base substrate 210A with nothing attached to the surface is divided into three parts, and a base substrate 210A with nothing attached to the surface is divided into three parts. The base substrates 210B and 210C are held in a sandwiched state from both sides (FIG. 2(a)). Here, the adhesive force improvers 231 and 232 have properties similar to those in the above-mentioned embodiments. Then, a cladding 221 is formed on such a base substrate 210 (FIG. 2(b)).
), and a core 222 made of a flexible polymeric material with a slightly higher refractive index than the cladding 221 (see FIG. 2(c)).
), further, the base substrates 210B, 210C to which the adhesive force improvers 231, 232 have been attached are attached to the reinforcing parts 241, 242.
The steps of leaving the base substrate 210A and removing the base substrate 210A to form the flexible optical waveguide substrate 200 are the same as in the embodiment described above. Here, in the step of removing the base substrate 210A, since the base substrates 210B and 210C are separated in advance, the work is very easy.

【0017】このようにして製造されたフレキシブル光
導波路基板200は、図1のフレキシブル光導波路基板
100と同様なものであり、コア222の形状等の加工
精度、製造性が改善される点も同様である。
The flexible optical waveguide substrate 200 manufactured in this manner is similar to the flexible optical waveguide substrate 100 shown in FIG. It is.

【0018】図3には他の実施例に係るリッジ形フレキ
シブル光導波路基板及びその製造方法を示す。同図に示
すように、本実施例ではベース基板310の両端部を除
いた中央部分に剥離剤331を塗布する(図3(a) 
)。 ここで、剥離剤331は、少なくとも後で形成するクラ
ッド321との接着力が低いもの、つまり、クラッド3
21との接着力が低いがベース基板310との接着力は
低くないもの、又はクラッド321及びベース基板31
0の両者に対しての接着力が低いものを用いる。また、
剥離剤331は、上述した性質を有する高分子材料の他
、ベース基板310の表面を改質して接着力を低下させ
るものなどを用いることができる。
FIG. 3 shows a ridge-type flexible optical waveguide substrate and a method for manufacturing the same according to another embodiment. As shown in the figure, in this embodiment, a release agent 331 is applied to the center part of the base substrate 310 excluding both ends (see FIG. 3(a)).
). Here, the release agent 331 is one that has low adhesion to at least the clad 321 that will be formed later, that is, the release agent 331 is
21 but not low adhesive strength with the base substrate 310, or the cladding 321 and the base substrate 31
Use a material that has low adhesion to both 0 and 0. Also,
As the release agent 331, in addition to a polymeric material having the above-mentioned properties, a material that modifies the surface of the base substrate 310 to reduce adhesive strength can be used.

【0019】そして、このようなベース基板310の上
に、クラッド321を形成し(図3(b) )、また、
クラッド321より僅かに屈折率が高く柔軟な高分子材
料からなるコア312を形成し(図3(c) )、その
後、剥離剤331が付着していない部分を補強部341
,342として残して剥離剤331が付着している部分
のベース基板310を除去して、フレキシブル光導波路
基板300とする(図3(d) )のは上述した実施例
と同様である。
Then, a cladding 321 is formed on such a base substrate 310 (FIG. 3(b)), and
A core 312 made of a flexible polymer material with a refractive index slightly higher than that of the cladding 321 is formed (FIG. 3(c)), and then a reinforcing portion 341 is formed on the portion to which the release agent 331 is not attached.
, 342 and the portions of the base substrate 310 to which the release agent 331 is attached are removed to form the flexible optical waveguide substrate 300 (FIG. 3(d)), as in the above embodiment.

【0020】本実施例では、クラッド321がベース基
板310の両端部で良好に接着されているので、コア3
22形成時に加工精度等が低下することがなく、また、
剥離剤331が塗布されているのでベース基板310の
中央部分の除去も作業性よく行うことができる。また、
本実施例の製造方法は、ベース基板とクラッドとの接着
力が高い場合に有効である。さらに、剥離剤を用いる場
合、残りの部分に併せて接着力改良剤を用いることもで
きる。なお、この場合、図2に示すように、ベース基板
を予め三分割しておき、剥離剤331を塗布したベース
基板を塗布していないベース基板で挾持しておくことに
より、製造性をさらに改善することができる。
In this embodiment, since the cladding 321 is well bonded to both ends of the base substrate 310, the core 3
There is no reduction in processing accuracy etc. when forming 22, and
Since the release agent 331 is applied, the central portion of the base substrate 310 can be removed with good workability. Also,
The manufacturing method of this embodiment is effective when the adhesive strength between the base substrate and the cladding is high. Furthermore, when a release agent is used, an adhesion improver can also be used in conjunction with the remaining portion. In this case, as shown in FIG. 2, the base substrate is divided into three parts in advance, and the base substrate coated with the release agent 331 is held between the base substrates that are not coated, thereby further improving the manufacturability. can do.

【0021】以上説明した各実施例ではリッジ形フレキ
シブル光導波路基板を例としたが、必要に応じて埋込み
型光導波路構造にしても良いことはいうまでもない。ま
た、コアの本数、ピッチを変えたり、光導波路構造の最
適化(例えば、曲がり光導波路の採用)することにより
、任意の光配線パターンを有するフレキシブル光導波路
基板を実現することができる。さらに、本発明のフレキ
シブル光導波路基板では基板の端面を切り出す時に、全
ての導波路の成端処理を一括して行えることは言うまで
もない。また、上述した第1および第3の実施例におい
て、補強部241,242,341,342を全て除去
するようにすると、従来のフレキシブル光導波路の製造
において、加工精度、製造性を改善できるのは言うまで
もない。さらに、上述した実施例では、補強部として残
すベース基板の一部を入出力側両端部としたが、勿論こ
れに限定されるものではなく、用途に応じ、例えば中央
部に補強部としてベース基板を残してもよい。
In each of the embodiments described above, a ridge-type flexible optical waveguide substrate is used as an example, but it goes without saying that a buried optical waveguide structure may be used as required. Furthermore, by changing the number and pitch of cores or optimizing the optical waveguide structure (for example, adopting a curved optical waveguide), a flexible optical waveguide substrate having an arbitrary optical wiring pattern can be realized. Furthermore, it goes without saying that in the flexible optical waveguide substrate of the present invention, when cutting out the end face of the substrate, the termination treatment of all the waveguides can be performed at once. Furthermore, in the first and third embodiments described above, if all the reinforcing parts 241, 242, 341, and 342 are removed, processing accuracy and manufacturability can be improved in the conventional manufacturing of flexible optical waveguides. Needless to say. Furthermore, in the above-described embodiment, the part of the base board that is left as a reinforcing part is at both ends of the input/output side, but the invention is of course not limited to this, and depending on the application, for example, the part of the base board that is left as a reinforcing part is set at the center part of the base board. You may leave the .

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
クラッドとベース基板の付着力を改善することにより、
コア形状等の加工精度を向上することができ、かつ、製
造性も改善できる。また、ベース基板を除去する際に、
その一部をクラッドと一体化して残すことができるため
、フレキシブル光導波路を補強することができる。さら
に、補強部は接続時の保持機構等としても使用できるた
め、フレキシブル光導波路の操作性、実装密度を向上す
ることができる。
[Effects of the Invention] As explained above, according to the present invention,
By improving the adhesion between the cladding and the base substrate,
It is possible to improve the processing accuracy of the core shape, etc., and also improve the manufacturability. Also, when removing the base substrate,
Since a part of the cladding can be left integrated with the cladding, the flexible optical waveguide can be reinforced. Furthermore, since the reinforcing portion can be used as a holding mechanism during connection, etc., the operability and packaging density of the flexible optical waveguide can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】一実施例に係るフレキシブル光導波路基板及び
その製造工程を示す説明図である。
FIG. 1 is an explanatory diagram showing a flexible optical waveguide substrate and its manufacturing process according to one embodiment.

【図2】他の実施例に係るフレキシブル光導波路基板及
びその製造工程を示す説明図である。
FIG. 2 is an explanatory diagram showing a flexible optical waveguide substrate and its manufacturing process according to another embodiment.

【図3】他の実施例に係るフレキシブル光導波路基板及
びその製造工程を示す説明図である。
FIG. 3 is an explanatory diagram showing a flexible optical waveguide substrate and its manufacturing process according to another embodiment.

【図4】従来技術に係るフレキシブル光導波路基板及び
その製造工程を示す説明図である。
FIG. 4 is an explanatory diagram showing a flexible optical waveguide substrate and its manufacturing process according to the prior art.

【図5】従来技術に係る他のフレキシブル光導波路基板
を示す説明図である。
FIG. 5 is an explanatory diagram showing another flexible optical waveguide substrate according to the prior art.

【符号の説明】[Explanation of symbols]

100,200,300  フレキシブル光導波路基板
110,210,310  ベース基板121,221
,321  クラッド 122,222,322  コア 131,132,231,232  接着力改良剤33
1  剥離剤 141,142,241,242,341,342  
補強部
100, 200, 300 Flexible optical waveguide substrate 110, 210, 310 Base substrate 121, 221
, 321 Clad 122, 222, 322 Core 131, 132, 231, 232 Adhesion improver 33
1 Release agent 141, 142, 241, 242, 341, 342
Reinforcement part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  リジッドで平坦なベース基板上に、柔
軟な高分子材料からなるクラッド及び該クラッド上に設
けられて屈折率が該クラッドより大きく柔軟な高分子材
料からなるコア、並びに必要に応じて該コアを覆うよう
設けられ屈折率が該コアより小さい柔軟な高分子材料か
らなる第二のクラッドを順次形成した後上記ベース基板
を除去してなるフレキシブル光導波路基板であって、そ
の一部には上記ベース基板の一部が残留して補強部とし
て固着されていることを特徴とするフレキシブル光導波
路基板。
Claim 1: On a rigid and flat base substrate, a cladding made of a flexible polymeric material, a core made of a flexible polymeric material provided on the cladding and having a refractive index higher than that of the cladding, and as necessary. A flexible optical waveguide substrate obtained by sequentially forming a second cladding made of a flexible polymeric material having a refractive index smaller than that of the core, which is provided to cover the core, and then removing the base substrate, which is a part of the flexible optical waveguide substrate. A flexible optical waveguide substrate, wherein a portion of the base substrate remains and is fixed as a reinforcing portion.
【請求項2】  リジッドで平坦なベース基板上に柔軟
な高分子材料からなるクラッドを形成すると共にこのク
ラッド上に屈折率が該クラッドより大きく柔軟な高分子
材料からなるコアを形成し、さらに必要に応じて屈折率
が該コアより小さく柔軟な高分子材料を該コアを覆う状
態に設けた第二のクラッドを形成した後、上記ベース基
板を除去するフレキシブル光導波路基板の製造方法にお
いて、上記ベース基板の一部に上記クラッドとの接着力
を高める接着力改良剤を付着するか、上記ベース基板の
他部に上記クラッドとの接着力を低下させる剥離剤を付
着するか、又は上記ベース基板の一部に上記クラッドと
の接着力を高める接着力改良剤を付着すると共に他部に
上記クラッドとの接着力を低下させる剥離剤を付着する
かした後上記クラッドを設けてベース基板の一部とクラ
ッドとの接着力を他部とクラッドとの接着力より相対的
に高め、その後、最後にベース基板の一部を残して他部
を除去することを特徴とするフレキシブル光導波路基板
の製造方法。
2. A cladding made of a flexible polymeric material is formed on a rigid and flat base substrate, and a core made of a flexible polymeric material having a refractive index larger than that of the cladding is formed on the cladding, and a core made of a flexible polymeric material is formed on the cladding. In the method of manufacturing a flexible optical waveguide substrate, the base substrate is removed after forming a second cladding in which a flexible polymeric material having a refractive index smaller than that of the core is provided to cover the core, and then the base substrate is removed. Either an adhesive strength improver that increases the adhesive strength with the cladding is attached to a part of the base substrate, a release agent that reduces the adhesive strength with the cladding is attached to another part of the base substrate, or After applying an adhesive force improver that increases the adhesive force with the cladding to some parts and attaching a release agent that reduces the adhesive force to the cladding to other parts, the cladding is provided and becomes a part of the base substrate. A method for manufacturing a flexible optical waveguide substrate, which comprises increasing the adhesive strength between the cladding and other parts of the cladding, and then removing the other part while leaving a part of the base substrate.
【請求項3】  請求項2において、ベース基板の一部
と他部とが予め分離されていることを特徴とするフレキ
シブル光導波路基板の製造方法。
3. The method of manufacturing a flexible optical waveguide substrate according to claim 2, wherein a part of the base substrate and another part are separated in advance.
JP4505191A 1991-03-11 1991-03-11 Flexible optical waveguide substrate and method of manufacturing the same Expired - Fee Related JP3031385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4505191A JP3031385B2 (en) 1991-03-11 1991-03-11 Flexible optical waveguide substrate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4505191A JP3031385B2 (en) 1991-03-11 1991-03-11 Flexible optical waveguide substrate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04281406A true JPH04281406A (en) 1992-10-07
JP3031385B2 JP3031385B2 (en) 2000-04-10

Family

ID=12708557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4505191A Expired - Fee Related JP3031385B2 (en) 1991-03-11 1991-03-11 Flexible optical waveguide substrate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3031385B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389905A (en) * 1992-04-22 1995-02-14 Matsushita Electric Works, Ltd. Damper, electromagnet assembly employing the damper, and relay employing the electromagnet assemblies
EP0678764A1 (en) * 1994-04-22 1995-10-25 AT&T Corp. Method for making polarization independent silica optical circuits
WO1996007116A3 (en) * 1994-08-26 1996-05-23 Akzo Nobel Nv A method of making an optical waveguide to fibre convector using a free-standing, flexible waveguide sheet
WO1998037445A1 (en) * 1997-02-19 1998-08-27 Hitachi, Ltd. Polymer optical waveguide, optical integrated circuit, optical module and optical communication apparatus
US7013055B2 (en) 2002-07-02 2006-03-14 Omron Corporation Optical waveguide device, manufacturing method thereof, and optical communication apparatus
JP2006234985A (en) * 2005-02-22 2006-09-07 Sumitomo Bakelite Co Ltd Optical waveguide formation substrate
JP2006284867A (en) * 2005-03-31 2006-10-19 Sumitomo Bakelite Co Ltd Optical waveguide formed substrate
US7197221B2 (en) 2005-07-25 2007-03-27 Fuji Xeorx Co., Ltd Optical waveguide film, and light transmission and reception module
JP2010152319A (en) * 2008-12-23 2010-07-08 Korea Electronics Telecommun Flexible waveguide structure and optical interconnecting assembly
US7844156B2 (en) 2008-07-24 2010-11-30 Fuji Xerox Co., Ltd. Optical waveguide film and optical transmitter and receiver module
JP2011515715A (en) * 2008-03-28 2011-05-19 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Flexible optical interconnect
JP2015197616A (en) * 2014-04-02 2015-11-09 日本電信電話株式会社 Optical module
JP2017198778A (en) * 2016-04-26 2017-11-02 富士通株式会社 Optical wiring packaging structure, optical module, and electronic apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389905A (en) * 1992-04-22 1995-02-14 Matsushita Electric Works, Ltd. Damper, electromagnet assembly employing the damper, and relay employing the electromagnet assemblies
EP0678764A1 (en) * 1994-04-22 1995-10-25 AT&T Corp. Method for making polarization independent silica optical circuits
WO1996007116A3 (en) * 1994-08-26 1996-05-23 Akzo Nobel Nv A method of making an optical waveguide to fibre convector using a free-standing, flexible waveguide sheet
WO1998037445A1 (en) * 1997-02-19 1998-08-27 Hitachi, Ltd. Polymer optical waveguide, optical integrated circuit, optical module and optical communication apparatus
US6229949B1 (en) 1997-02-19 2001-05-08 Hitachi, Ltd. Polymer optical waveguide, optical integrated circuit, optical module and optical communication apparatus
US7013055B2 (en) 2002-07-02 2006-03-14 Omron Corporation Optical waveguide device, manufacturing method thereof, and optical communication apparatus
JP4696589B2 (en) * 2005-02-22 2011-06-08 住友ベークライト株式会社 Optical waveguide forming substrate
JP2006234985A (en) * 2005-02-22 2006-09-07 Sumitomo Bakelite Co Ltd Optical waveguide formation substrate
JP2006284867A (en) * 2005-03-31 2006-10-19 Sumitomo Bakelite Co Ltd Optical waveguide formed substrate
JP4696647B2 (en) * 2005-03-31 2011-06-08 住友ベークライト株式会社 Optical waveguide forming substrate
US7197221B2 (en) 2005-07-25 2007-03-27 Fuji Xeorx Co., Ltd Optical waveguide film, and light transmission and reception module
US7382960B2 (en) 2005-07-25 2008-06-03 Fuji Xerox Co., Ltd. Optical waveguide film, and light transmission and reception module
JP2011515715A (en) * 2008-03-28 2011-05-19 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Flexible optical interconnect
US8693814B2 (en) 2008-03-28 2014-04-08 Hewlett-Packard Development Company, L.P. Flexible optical interconnect
US7844156B2 (en) 2008-07-24 2010-11-30 Fuji Xerox Co., Ltd. Optical waveguide film and optical transmitter and receiver module
JP2010152319A (en) * 2008-12-23 2010-07-08 Korea Electronics Telecommun Flexible waveguide structure and optical interconnecting assembly
JP2015197616A (en) * 2014-04-02 2015-11-09 日本電信電話株式会社 Optical module
JP2017198778A (en) * 2016-04-26 2017-11-02 富士通株式会社 Optical wiring packaging structure, optical module, and electronic apparatus

Also Published As

Publication number Publication date
JP3031385B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
US6996303B2 (en) Flexible optical waveguides for backplane optical interconnections
JPH04281406A (en) Flexible light waveguide substrate and its production
JP2836770B2 (en) Optical signal distribution system and method of forming the same
JP4679582B2 (en) Optical waveguide film and method for manufacturing the same, opto-electric hybrid film including the same, and electronic device
US5535295A (en) Coupling structure for waveguide connection and process of forming the same
JPH11231163A (en) Optical fiber connector and its manufacture
JPH05281428A (en) Optical interconnection board and optcal waveguide
KR910700477A (en) Method of firmly attaching fiber to integrated optical chip and its products
JP3941003B2 (en) Compact optical splitter / combiner and manufacturing method thereof
JP2001281479A (en) High-polymer optical waveguide element and method for manufacturing the same
CA2252265C (en) Optical fiber array block
JPH04140702A (en) Method and device for connection between optical fiber and optical waveguide
JPWO2007013208A1 (en) Waveguide film cable
JP3450068B2 (en) Optical waveguide coupling structure
JPH05196835A (en) Connecting structure of optical fiber and optical waveguide circuit
JP4018852B2 (en) Optical waveguide substrate
JPH04358105A (en) Connection structure between optical plane waveguide and optical fiber
JPH10239535A (en) Optical wiring parts, and manufacturing thereof
JP2000121868A (en) Connection body of optical waveguide substrate and optical fiber fixing member
JP2001228349A (en) Mode field diameter conversion optical waveguide and its manufacturing method
JPH11223742A (en) Optical fiber connector and manufacture of the same
JPH04125603A (en) Manufacture of optical waveguide
JPS6321609A (en) Optical branching and coupling element for optical fiber
JP3891327B2 (en) Optical fiber array component and method of connecting to optical component using the same
EP1536254A1 (en) Optical waveguide device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000111

LAPS Cancellation because of no payment of annual fees