JPH0195837A - Manufacture of beta type titanium alloy forging - Google Patents

Manufacture of beta type titanium alloy forging

Info

Publication number
JPH0195837A
JPH0195837A JP25223987A JP25223987A JPH0195837A JP H0195837 A JPH0195837 A JP H0195837A JP 25223987 A JP25223987 A JP 25223987A JP 25223987 A JP25223987 A JP 25223987A JP H0195837 A JPH0195837 A JP H0195837A
Authority
JP
Japan
Prior art keywords
zinc
treatment
iron
titanium alloy
type titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25223987A
Other languages
Japanese (ja)
Inventor
Wataru Takahashi
渉 高橋
Heiji Hagita
萩田 兵治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25223987A priority Critical patent/JPH0195837A/en
Publication of JPH0195837A publication Critical patent/JPH0195837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To reduce the manufacturing cost of a product by forming a zinc or an iron-zinc film by blasting treatment on the surface of a beta type titanium alloy, then executing cold forging at specified working speed and executing an aging treatment and a nitriding treatment of specified temp. as well. CONSTITUTION:The blasting treatment 8 by the particle adhering a zinc or iron-zinc alloy is executed on a descaled beta type titanium alloy. After executing zinc phosphate treatment and reaction type metal soap treatment 9 on this titanium alloy on which surface a zinc or iron-zinc film is formed, cold forging is executed at the working speed of <=100S<-1> strain speed and a product is obtd. If necessary, aging treatment or nitriding treatment is executed at the temp. of 400-550 deg.C. Or after executing the nitriding treatment at 730-880 deg.C an aging treatment is executed at 400-550 deg.C to improve the hardness of a product. The cold forgeability of the beta type titanium alloy is thus easily improved, moreover the hardness is increased, hence the product cost is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば自動車エンジン用バルブリテーナ等に
好適な、軽量でかつ高強度のβ型チタン合金鍛造品を低
コストで製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing at low cost a lightweight and high-strength β-type titanium alloy forged product suitable for, for example, valve retainers for automobile engines. It is.

〔従来の技術〕[Conventional technology]

従来、冷間鍛造で製造される自動車用鍛造品類、特に自
動車エンジン用バルブリテーナは肌焼鋼または構造用鋼
を浸炭・焼入れ・焼戻しして製造されていたが、最近、
エンジンの高トルク、高回転数化の要請が強くなり、こ
れに伴ないバルブリテーナの軽量化、高強度化を目的と
してチタン材が用いられつつある。
Conventionally, forged products for automobiles manufactured by cold forging, especially valve retainers for automobile engines, were manufactured by carburizing, quenching, and tempering case-hardened steel or structural steel.
As the demand for higher engine torque and higher engine speed increases, titanium materials are being used to make valve retainers lighter and stronger.

しかしながら、冷間鍛造性の良好な純チタンは、耐摩耗
性が要求されるバルブリテーナ等の部品では母材硬度が
低く、また(α+β)型チタン合金は硬度は高いが冷間
鍛造性が悪いため熱間鍛造でしか製造できず、コストが
高くつく。
However, pure titanium, which has good cold forgeability, has low base material hardness for parts such as valve retainers that require wear resistance, and (α + β) type titanium alloys have high hardness but poor cold forgeability. Therefore, it can only be manufactured by hot forging, which makes it expensive.

他方、β型チタン合金は、冷間鍛造性が良好で、かつ母
材硬度も高く、後工程で時効処理を施せ□ばさらに硬度
を高めることが可能であり、バルブリテーナ材料等とし
て好適である。しかしその反面、変形抵抗が大きく、冷
間鍛造時に焼付きが発生しやすいという問題点がある。
On the other hand, β-type titanium alloy has good cold forgeability and high base material hardness, and can be further hardened by aging treatment in the post-process, making it suitable as a material for valve retainers, etc. . However, on the other hand, there are problems in that the deformation resistance is large and seizure is likely to occur during cold forging.

冷間鍛造時の焼付きを防止するためには、鉄鋼であれば
一般にリン酸亜鉛潤滑処理を施すことができるが、チタ
ン合金は化学的に不活性なためにこの処理はできない。
To prevent seizure during cold forging, steel can generally be subjected to zinc phosphate lubrication treatment, but titanium alloys are chemically inert and cannot be subjected to this treatment.

このため従来はチタンの潤滑処理方法として一般的に行
われる酸化処理を施し、素材表面に酸化被膜を形成し、
この酸化被膜を潤滑下地被膜として鍛造が行われていた
For this reason, conventionally, oxidation treatment, which is commonly performed as a lubrication treatment method for titanium, is applied to form an oxide film on the surface of the material.
Forging was performed using this oxide film as a lubricating base film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、β型チタン合金では適正な条件下で酸化
被膜を形成させると耐焼付き性は良好にはなるが、冷間
鍛造時に酸化被膜に割れが発生し、そのため母材にミク
ロクラックが発生する。このミクロクランクは後工程で
時効処理を行なう場合にはマクロ割れに発展し、最終成
品の疲労強度の劣化をもたらすものである。さらに、酸
化被膜は脱スケールが難しく、一般に行なわれる硝弗酸
酸洗では肌あれを生ずるという問題もある。さらに製品
の耐摩耗性は、チタン合金の母材で得られる以上の性能
が要求される場合もある。
However, although the seizure resistance of β-type titanium alloys is improved by forming an oxide film under appropriate conditions, cracks occur in the oxide film during cold forging, resulting in microcracks in the base material. This microcrank develops into macrocracks when aging treatment is performed in a post-process, resulting in deterioration of the fatigue strength of the final product. Furthermore, it is difficult to descale the oxide film, and the commonly used nitric-fluoric acid pickling causes the problem of rough skin. Furthermore, the wear resistance of the product may be required to be higher than that achieved with the titanium alloy base material.

本発明はかかる問題点の克服を主目的としてなされたも
のであり、軽量かつ高強度でさらに耐摩耗性の優れたβ
型チタン合金鍛造製品の製造方法を提供するものである
The present invention has been made with the main purpose of overcoming these problems, and is a β material that is lightweight, has high strength, and has excellent wear resistance.
The present invention provides a method for manufacturing a molded titanium alloy forged product.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するための本第1発明は、β型チタン
合金材に対して亜鉛または鉄及び亜鉛を含む合金を被着
してなる粒(以下、「鉄・亜鉛粒」という)によるブラ
スト処理を行い、該合金材の表面に亜鉛または鉄・亜鉛
合金被膜層を形成させ、その後、リン酸亜鉛処理し、続
いて水洗・反応型金属石けん処理・乾燥の処理を施した
後、冷間鍛造により、歪速度100s−’以下の加工速
度で成形することを特徴とするものであり、本第2発明
は、第1発明で得られた成形品の表面に形成されている
表面潤滑被膜を除去した後、400〜550℃の温度で
時効処理することにより、内部硬度を増大させることを
特徴とするものである。本第3発明は第2発明の時効温
度で窒化処理と時効処理を同時に行うことを特徴とする
ものである。さらに本第4発明は、第1発明で得られた
成形品の表面に形成された表面潤滑被膜を除去した後、
730〜880℃の温度で窒化処理した後、400〜5
50℃の温度で時効処理することにより表面硬化と共に
内部硬度を増大させることを特徴とするものである。
The first invention to solve the above-mentioned problems is to blast a β-type titanium alloy material with grains (hereinafter referred to as "iron-zinc grains") made by coating zinc or an alloy containing iron and zinc. treatment to form a zinc or iron-zinc alloy coating layer on the surface of the alloy material, followed by zinc phosphate treatment, followed by washing with water, reactive metal soap treatment, drying, and then cold treatment. The second invention is characterized by forming by forging at a processing speed of 100 s-' or less, and the second invention is characterized in that the surface lubricating film formed on the surface of the molded product obtained in the first invention is After removal, the internal hardness is increased by aging treatment at a temperature of 400 to 550°C. The third invention is characterized in that the nitriding treatment and the aging treatment are performed simultaneously at the aging temperature of the second invention. Furthermore, in the fourth invention, after removing the surface lubricating film formed on the surface of the molded product obtained in the first invention,
After nitriding at a temperature of 730-880℃, 400-5
It is characterized by hardening the surface and increasing internal hardness by aging at a temperature of 50°C.

なお、上記歪速度とは次のように定義される。Note that the above strain rate is defined as follows.

一般に、スラブ高さをho、製品高さをhとすると定義
される。
Generally, it is defined that the slab height is ho and the product height is h.

しかし、本明細書では、公称平均歪として、圧縮の場合
、 0−h Δt−h。
However, here we use 0-h Δt-h for compression as the nominal average strain.

と定義する。It is defined as

〔作 用〕[For production]

本発明では、化学的に不活性なβ型チタン合金材の表面
に、鉄・亜鉛粒をブラスト処理することにより、該表面
上に物理的に鉄・亜鉛合金層を付着形成させる。これに
より、続くリン酸亜鉛処理、反応型金属石けん処理等の
潤滑処理が良好に行われ、冷間鍛造時の焼付きを防止す
る。
In the present invention, an iron/zinc alloy layer is physically deposited on the surface of a chemically inert β-type titanium alloy material by blasting iron/zinc particles onto the surface. As a result, subsequent lubrication treatments such as zinc phosphate treatment and reactive metal soap treatment are performed well, and seizure during cold forging is prevented.

歪み速度を1005−’以下とするのは、β型チタン合
金では歪み速度が大きくなると変形能が低下して、大変
形を要する冷間鍛造品が製造出来なくなるためであり、
前記合金の変形能を十分引き出すには1003−’以下
である必要があるからである。
The reason why the strain rate is set to 1005-' or less is because in β-type titanium alloys, when the strain rate increases, the deformability decreases, making it impossible to manufacture cold forged products that require large deformations.
This is because the deformability of the alloy needs to be 1003-' or less in order to fully utilize its deformability.

400〜500℃で冷間鍛造品を時効するのは、母材硬
度を最大にするためであり、400℃未満では時効硬化
が不十分であり、550℃を超えると過時効になるため
である。
The reason why cold forged products are aged at 400 to 500°C is to maximize the hardness of the base material. Below 400°C, age hardening is insufficient, and above 550°C, over-aging occurs. .

窒化は表面を硬化させて耐摩耗性を向上させるためであ
り、400〜500℃での窒化はイオンブレーティング
、PVD等が適用出来る。時効温度で窒化可能な窒化手
段を採用することにより時効処理と窒化処理を同時に行
なうことが出来、工程省略効果がある。他の窒化温度7
30〜880℃はβ型チタン合金の溶体化温度であり、
かつガス窒化温度である。冷間鍛造では品物の形状によ
り部分的に加工度が異なることによる性質が異なるため
、−度溶体化処理をした後、時効すれば各部が均一な性
質を持つ製品が得られる。730℃未満では溶体化が不
十分であり、かつ窒化速度が遅く、880℃を超えると
結晶粒が異常成長するため、730〜880℃を溶体化
兼ガス窒化温度とする。
The purpose of nitriding is to harden the surface and improve wear resistance, and ion blating, PVD, etc. can be applied to nitriding at 400 to 500°C. By employing a nitriding means capable of nitriding at the aging temperature, aging treatment and nitriding treatment can be performed simultaneously, which has the effect of eliminating steps. Other nitriding temperatures 7
30 to 880°C is the solution temperature of β-type titanium alloy,
and the gas nitriding temperature. In cold forging, the properties differ depending on the shape of the product due to the difference in the degree of processing, so if the product is subjected to -degree solution treatment and then aged, a product with uniform properties in each part can be obtained. If it is less than 730°C, the solution treatment is insufficient and the nitriding rate is slow, and if it exceeds 880°C, crystal grains will grow abnormally, so 730 to 880°C is the solution treatment and gas nitriding temperature.

〔発明の具体的構成〕[Specific structure of the invention]

以下、図面を参照しながら本発明を具体的に詳説する。 Hereinafter, the present invention will be specifically explained in detail with reference to the drawings.

第1図はバルブリテーナを得る場合における本発明の製
造工程を示すブロック図である。
FIG. 1 is a block diagram showing the manufacturing process of the present invention when obtaining a valve retainer.

本発明の出発材料たるβ型チタン合金素材1としては、
例えば、Ti−15V −3G −3Al−3Sn。
As the β-type titanium alloy material 1 which is the starting material of the present invention,
For example, Ti-15V-3G-3Al-3Sn.

Ti −3AA −8V −6Cr −4Mo −4Z
r等が好適である。この素材を切削2することによって
直接、第2図(a)に示す加工用スラグ3を得るか、ま
たは前記素材を切断しその表面をMO32油等により潤
滑処理4し、次いで据込み加工と打抜き加工とにより冷
鍛予備成形5し、必要により焼鈍6した後、ショツトブ
ラスト、フッ硝酸等で酸洗し表面にミクロクラックが残
らないように十分清浄に脱スケール7処理し、加工用ス
ラグ3を得る。ここで、冷鍛予備成形の加工度が大きい
場合は、600〜750℃の温度で予備成形品を約30
分間加熱し、焼鈍6するのがよい。その際の脱スケール
も前述の方法で十分行う。
Ti -3AA -8V -6Cr -4Mo -4Z
r etc. are suitable. By cutting 2 this material, we can directly obtain the processing slag 3 shown in Fig. 2(a), or by cutting the material and lubricating its surface with MO32 oil, etc., and then performing upsetting and punching. After cold forging preforming 5 by processing and annealing 6 if necessary, shot blasting, pickling with fluoro-nitric acid, etc., and descaling treatment 7 to ensure sufficient cleanliness so that no microcracks remain on the surface, and process slag 3. obtain. Here, if the processing degree of the cold forging preform is large, the preform should be formed at a temperature of 600 to 750°C for about 30 minutes.
It is preferable to heat the material for 6 minutes and anneal it. At that time, descaling is also carried out sufficiently by the method described above.

このようにして得た加工用スラグに潤滑処理を、予め後
述の鉄・亜鉛粒によるブラスト処理8により潤滑下地処
理を行った後に、リン酸亜鉛処理・水洗・反応型金属石
けん処理・乾燥(ボンデ・ボンダリューベ処理)9によ
り行う。潤滑処理後のチタン合金スラグの潤滑被膜の構
造は第3図に示すように、βチタン合金スラグの上に鉄
・亜鉛合金層β、リン酸亜鉛被膜層C1反応層D、反応
型金属石けん層Eが積層した構造となる。
The processing slag obtained in this way is lubricated by the blasting process 8 with iron/zinc particles described later to provide a lubricating base treatment, followed by zinc phosphate treatment, water washing, reactive metal soap treatment, and drying (bonding).・Bondalube treatment) 9. The structure of the lubricating coating on the titanium alloy slag after the lubrication treatment is as shown in Figure 3. On the β titanium alloy slag, there is an iron/zinc alloy layer β, a zinc phosphate coating layer C1, a reaction layer D, and a reactive metal soap layer. It has a structure in which E is laminated.

このようにして潤滑処理された加工用スラグは冷鍛本成
形工程10に供される。この本成形は歪速度100 S
−’以下の加工速度で行う。これにより冷間鍛造品とし
てのバルブリテーナ−(第2図(b)参照)11が得ら
れる。ここで歪速度とは加工速度とスラグの加工前の高
さとの比である。
The processing slag thus lubricated is subjected to a cold forging main forming process 10. This actual molding has a strain rate of 100 S.
−'The machining speed is below. As a result, a valve retainer (see FIG. 2(b)) 11 as a cold forged product is obtained. Here, the strain rate is the ratio between the machining speed and the height of the slag before machining.

本発明では、いっそうの摩耗防止を図るため、前記本成
形品の潤滑被膜を、湯洗後の塩酸酸洗等により潤滑被膜
を除去12した後、400〜550℃で時効13を施こ
し、母材硬度を増大させればこのままで使用可能となる
。さらに400〜550℃の温度で時効を兼ねたイオン
窒化等の処理14のまま、または730〜880℃の温
度でのガス窒化処理15の後、400〜550℃で時効
16を行い、内部硬度を増大させて完成品とする。
In the present invention, in order to further prevent wear, the lubricating coating of the molded article is removed 12 by hot water washing followed by hydrochloric acid pickling, etc., and then subjected to aging 13 at 400 to 550°C. If the material hardness is increased, it can be used as is. Furthermore, after treatment 14 such as ion nitriding which also served as aging at a temperature of 400 to 550°C, or after gas nitriding treatment 15 at a temperature of 730 to 880°C, aging 16 is performed at 400 to 550°C to improve the internal hardness. Increase it to make a finished product.

次に本発明の各主要工程の具体的内容について説明する
Next, the specific contents of each main step of the present invention will be explained.

本発明の主たる特徴である鉄・亜鉛粒によるブラストは
、例えば特公昭59−9312に開示されているように
鉄粒を核とし、核の表面に鉄・亜鉛合金層を介して亜鉛
が付着した粒を通常の方法でブラストすることによって
加工用スラグの表面に鉄・亜鉛合金層を形成する方法で
ある。この鉄・亜鉛合金層の付着量は後工程のりん酸亜
鉛処理性、潤滑油の保持性、経済性、生産性等を考慮し
て1〜40 glrdが好ましい。すなわち、1 g/
rtf未満ではTi合金素材の全表面をカバーできず、
後工程のりん酸亜鉛処理性が劣り、またプレス加工時の
保持性に劣る。他方40 g/nrが超える付着量にな
ると該鉄・亜鉛合金層の付着に要する時間が長くかかり
、潤滑効果の割には作業性に劣る。
Blasting using iron-zinc particles, which is the main feature of the present invention, uses iron particles as a core, as disclosed in Japanese Patent Publication No. 59-9312, and zinc is attached to the surface of the core through an iron-zinc alloy layer. This method forms an iron-zinc alloy layer on the surface of processing slag by blasting grains using a conventional method. The amount of the iron/zinc alloy layer deposited is preferably 1 to 40 glrd in consideration of zinc phosphate treatment properties in subsequent steps, lubricating oil retention, economic efficiency, productivity, and the like. That is, 1 g/
If it is less than rtf, the entire surface of the Ti alloy material cannot be covered,
Poor zinc phosphate treatment properties in the post-process, and poor retention during press working. On the other hand, if the deposition amount exceeds 40 g/nr, it will take a long time to deposit the iron-zinc alloy layer, and the workability will be poor compared to the lubricating effect.

この投射材料の製造法の一例は、溶融亜鉛法ともいうべ
きもので、金属亜鉛の溶融体、または金属亜鉛に合金成
分としてアルミニウム(約3〜5%)、鋼(約0.2〜
1%)を添加した溶融体Xと、所定粒度、好ましくは1
0メツシユ篩を通過する粒度の鉄粒子(固体)Yとを、
望ましくはY/Xの重量比10〜90%で混合し、反応
温度400〜500℃、反応時間2〜10分程度で反応
させ、得られた反応生成物を冷却した後、機械的に、好
ましくは殻部分の亜鉛または鉄亜鉛の合金層の単離する
量が殻部分の量に対して30%以下となる程度に粉砕す
る方法である。
An example of a method for manufacturing this projection material is the molten zinc method, in which a melt of metallic zinc or metallic zinc is alloyed with aluminum (approximately 3 to 5%) and steel (approximately 0.2 to 5%).
1%) and a predetermined particle size, preferably 1
Iron particles (solid) Y with a particle size that passes through a 0 mesh sieve,
Desirably, Y/X is mixed at a weight ratio of 10 to 90%, reacted at a reaction temperature of 400 to 500°C for a reaction time of about 2 to 10 minutes, and after cooling the obtained reaction product, mechanically, preferably This is a method of grinding to such an extent that the isolated amount of zinc or iron-zinc alloy layer in the shell portion is 30% or less of the amount in the shell portion.

他の例は浸透亜鉛法というべきもので、鉄もしくは鉄合
金の粒子(固体)と亜鉛粉末とを混合し、あるいはさら
にハロゲン化アンモンもしくは塩化物を0.5〜3%程
度添加し、この混合物も鉄製もしくは炭化ケイ素製の円
筒状容器に充填して密閉し、400〜700℃の温度で
3から20分間の加熱処理によって亜鉛を拡散浸透せし
め、鉄粒子の周囲に鉄亜鉛合金相および亜鉛の殻を形成
させる。ここで、加熱処理にあたり、スクリュー式ま1
ま たはプシミア式の外熱型の密閉炉を用いてもよい。
Another example is the permeation zinc method, in which iron or iron alloy particles (solid) and zinc powder are mixed, or ammonium halides or chlorides are added in an amount of about 0.5 to 3%, and this mixture is mixed with iron or iron alloy particles (solid) and zinc powder. Filled in a cylindrical container made of iron or silicon carbide and sealed, zinc is diffused and penetrated by heat treatment at a temperature of 400 to 700°C for 3 to 20 minutes, forming an iron-zinc alloy phase and zinc around the iron particles. Form a shell. Here, for the heat treatment, a screw type or
Alternatively, a Psymia-type external heating closed furnace may be used.

かかる投射材料は常用の投射装置によりチタン表面に投
射すればよい。
Such a projection material may be projected onto the titanium surface using a conventional projection device.

なお、上記投射材料の鉄または鉄合金からなる殻とは、
純鉄のほかC,N、 St、 Mn、 Cr、 Ni等
を含む鉄合金であってもよい。亜鉛合金とは、亜鉛にA
lやCu等が添加された合金である。
In addition, the shell made of iron or iron alloy of the above projection material is
In addition to pure iron, an iron alloy containing C, N, St, Mn, Cr, Ni, etc. may be used. Zinc alloy is zinc with A
It is an alloy to which L, Cu, etc. are added.

上記鉄・亜鉛被膜はメツキでもよいが、ブラストによる
被膜はポーラス状となっているため潤滑被膜の保持性が
よい。従って、本発明では鉄・亜鉛粒のブラストにより
鉄・亜鉛合金層を形成させる方法を採用したのである。
The iron/zinc coating may be plated, but since the coating formed by blasting is porous, the lubricating coating retains well. Therefore, the present invention adopts a method of forming an iron-zinc alloy layer by blasting iron-zinc particles.

次に、りん酸亜鉛処理条件については全酸度30〜35
ポイント、処理温度約80℃、処理時間10〜20分で
よい。要は、一般に冷間鍛造加工に必要とされる付着量
的7g/rrfを確保し得る条件で処理する。りん酸亜
鉛処理後は錆防止のため通常の水洗を行なう。
Next, regarding the zinc phosphate treatment conditions, the total acidity is 30 to 35.
The point is that the treatment temperature may be approximately 80°C and the treatment time may be 10 to 20 minutes. In short, the process is carried out under conditions that can ensure a deposit of 7 g/rrf, which is generally required for cold forging. After zinc phosphate treatment, perform normal water washing to prevent rust.

また、反応型金属石けん処理の条件としては、通常の冷
間鍛造に必要とされている付着量すなわち反応層≧1 
g/nr、反応型石けん付着量≧2.0g/rrr以上
を確保するため、特に限定するものではないが処理濃度
2〜3ポイント、処理温度約80℃、処理時間3〜5分
でよい。なお、反応型石けんとしてはステアリン酸カル
シウムあるいはステアリン酸ナトリウムを用いるのがよ
い。
In addition, the conditions for reactive metal soap treatment are as follows: the amount of adhesion required for normal cold forging, that is, the reaction layer ≧1
g/nr, reactive soap adhesion amount ≧2.0 g/rrr or more, the treatment concentration may be 2 to 3 points, the treatment temperature may be about 80° C., and the treatment time may be 3 to 5 minutes, although there are no particular limitations. Note that calcium stearate or sodium stearate is preferably used as the reactive soap.

反応型石けん処理後の乾燥は、基本的には大気中での自
然乾燥でよいが、速乾性を必要とする場合は熱風乾燥炉
、赤外線乾燥炉、高周波誘導加熱炉等を用いればよい。
Drying after the reactive soap treatment can basically be done by natural drying in the atmosphere, but if quick drying is required, a hot air drying oven, an infrared drying oven, a high frequency induction heating oven, etc. may be used.

なお、りん酸素亜鉛処理材については、水素ぜい性の問
題を解決するためにベーキングを兼ねて約200℃の温
度で乾燥すればよい。
Note that the phosphorous-oxygen-zinc-treated material may be dried at a temperature of about 200° C., which also serves as baking, in order to solve the problem of hydrogen embrittlement.

〔実施例〕〔Example〕

次に実施例を説明する。 Next, an example will be explained.

(実施例1) 第1表に示す合金組成(A)、(B’)を有するβ型チ
タン合金のインゴットを溶製し、これを1oso℃の温
度に加熱し、940℃で圧延して20wφの線材を製造
し、この線材を切削工程、または、切断−フッ素樹脂潤
滑−冷間鍛造−650℃焼鈍−フッ硝酸脱スケール工程
を経て、それぞれ第2図(a)に示す切削スラグと冷鍛
スラグを得た。
(Example 1) An ingot of β-type titanium alloy having the alloy compositions (A) and (B') shown in Table 1 was melted, heated to a temperature of 1 oso℃, and rolled at 940℃ to 20wφ This wire rod is subjected to a cutting process, or a process of cutting, fluororesin lubrication, cold forging, annealing at 650°C, and fluoronitric acid descaling to produce the cutting slag and cold forging shown in Figure 2(a), respectively. Got a slug.

次いでこの両スラグを鉄・亜鉛粒ブラストにより線材表
面に約10g/rrrの鉄・亜鉛合金層を形成し、続い
てリン酸亜鉛被膜処理(全酸度30ポイント、処理温度
80℃、処理時間15分、付着置駒7.8g/rrr)
を施こし、水洗後ステアリン酸ナトリウム処理(濃度約
2ポイント、処理温度80℃、処理時間5分、付着量:
反応要約1.6g/rrr、反応型層けん被膜約5.7
g/rrfを施こし、約200℃で乾燥した後、歪速度
10s−’の加工速度で本成形して、第2(b)に示す
バルブリテーナを得た。
Next, both slags were subjected to iron/zinc particle blasting to form an iron/zinc alloy layer of approximately 10 g/rrr on the wire surface, followed by zinc phosphate coating treatment (total acidity 30 points, treatment temperature 80°C, treatment time 15 minutes). , attached piece 7.8g/rrr)
After washing with water, sodium stearate treatment (concentration approximately 2 points, treatment temperature 80℃, treatment time 5 minutes, coating amount:
Reaction summary 1.6g/rrr, reactive layer coating approx. 5.7
g/rrf and dried at about 200°C, main molding was carried out at a processing speed of 10 s-' strain rate to obtain the valve retainer shown in 2(b).

このリテーナの冷間鍛造性と硬度測定結果を第2表に示
す。
Table 2 shows the cold forgeability and hardness measurement results of this retainer.

第    2    表 第2表には比較のために両スラグを、650℃×20分
間の酸化処理をし、1.5℃/seeの冷却速度で空冷
後、フッ素樹脂潤滑を施し、歪速度103−’の加工速
度で本成形して得られたバルブリテーナの冷間鍛造性と
硬度測定結果を第2表に併せて記載する。
Table 2 For comparison, both slags were oxidized at 650°C for 20 minutes, cooled in air at a cooling rate of 1.5°C/see, and then lubricated with fluorine resin. The cold forgeability and hardness measurement results of the valve retainer obtained by main forming at a processing speed of ' are also listed in Table 2.

第2表から明らかなごとく、酸化による潤滑処理したバ
ルブリテーナは、肉眼で認められる割れはないが、×1
00の顕微鏡にて微細な割れがみられた。これに対し本
発明法による場合は、全く割れが認められず良好な冷間
鍛造性を示した。また硬度はいずれもHV320以上と
なっている。
As is clear from Table 2, the valve retainer treated with oxidation lubrication has no cracks that can be seen with the naked eye, but
Fine cracks were observed under the 00 microscope. On the other hand, in the case of the method of the present invention, no cracks were observed and good cold forgeability was exhibited. Moreover, the hardness of all of them is HV320 or higher.

(実施例2) 実施例1の供試材Bより製造した切削スラグを実施例1
の方法でリン酸亜鉛−石けん処理を行い潤滑した後、歪
速度を種々変えて本成形を行って得られたバルブリテー
ナの冷間鍛造性および冷間鍛造のままの硬度測定結果を
第3表に示す。
(Example 2) Cutting slag manufactured from sample material B of Example 1 was used in Example 1.
Table 3 shows the cold forgeability and hardness measurement results of the valve retainers obtained by performing zinc phosphate-soap treatment and lubrication using the method described above, followed by main forming at various strain rates. Shown below.

第    3    表 歪速度=加工速度/スラグ初期高さ(1/S−’)第3
表より、歪速度が100s−’を超える加工速度では割
れが発生し、変形能が低下していることがわかる。
Table 3 Strain rate = Machining speed / Initial slag height (1/S-') 3rd
From the table, it can be seen that when the strain rate exceeds 100 s-', cracks occur and the deformability decreases.

(実施例3) 実施例1で製造した供試体Bの本成形品(バルブリテー
ナ)を、湯洗と5%塩酸で潤滑被膜を除去した後、第4
表に示す温度で20時間、イオン窒化処理を施した製品
の窒化深さと窒化後の硬度測定結果を第4表に示す。
(Example 3) After removing the lubricating film from the molded product (valve retainer) of specimen B produced in Example 1 with hot water and 5% hydrochloric acid,
Table 4 shows the nitriding depth and hardness measurement results after nitriding of products subjected to ion nitriding treatment at the temperatures shown in the table for 20 hours.

第   4   表 第4表より、400℃未満の温度では十分な層厚の窒化
層が得られず、また550℃を超える温度では、リテー
ナの内部が過時効により軟化することがわかる。また、
第2表と比較すれば時効により母材硬度が増大すること
がわかる。
Table 4 Table 4 shows that at temperatures below 400°C, a sufficiently thick nitrided layer cannot be obtained, and at temperatures above 550°C, the inside of the retainer softens due to overaging. Also,
A comparison with Table 2 shows that the hardness of the base material increases with aging.

(実施例4) 実施例1で製造した供試材Bの本成形品(バルブリテー
ナ)を、湯洗と5%塩酸で潤滑被膜を除去した後、85
0℃X15Hrのガス窒化と溶体化をした後、第5表に
示す温度で時効した製品の窒化深さと硬度測定結果を同
表に示す。
(Example 4) After removing the lubricating film from the molded product (valve retainer) of test material B manufactured in Example 1 with hot water and 5% hydrochloric acid,
Table 5 shows the nitriding depth and hardness measurement results of products that were subjected to gas nitriding and solution treatment at 0° C. for 15 hours and then aged at the temperatures shown in Table 5.

第   5   表 第2表と第5表を比較すれば、400℃未満の温度では
冷間鍛造のままの硬度と同じであり、550℃を超える
温度では、過時効のため、最高硬度が得られないことが
わかる。なお、溶体化時効材の硬度が製品断面について
均一となること、窒化表面が母材より耐摩耗性に優れて
いることは周知である。
Table 5 Comparing Tables 2 and 5, it is found that at temperatures below 400°C, the hardness is the same as that of cold forging, and at temperatures above 550°C, the highest hardness is obtained due to overaging. It turns out that there isn't. It is well known that the hardness of solution-aged materials is uniform across the cross section of the product, and that the nitrided surface has better wear resistance than the base material.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、β型チタン合金スラグよ
り冷間鍛造性の優れたβ型チタン合金鍛造品を低コスト
で製造できるので、これまでβチタン合金を素材に適用
できなかったバルブリテーナ−は勿論のこと、ギア類、
シャフト類、ボルト類等の各種鍛造品にもβ型チタン合
金番適用することが可能となり、自動車用部品のみなら
ず、航空機等の部品にもその用途が拡大されるという大
なる効果を奏するものである。
As described above, according to the present invention, a β-type titanium alloy forged product with better cold forgeability than β-type titanium alloy slag can be manufactured at a low cost. Not only retainers but also gears,
It is now possible to apply β-type titanium alloy numbers to various forged products such as shafts and bolts, which has the great effect of expanding its use not only to automobile parts but also to aircraft parts. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製造工程を示すブロック図、第2図
(a)、 (blはバルブリテーナ−の加工用スラグと
バルブリテーナ−の形状を示す縦断面図、第3図は加工
用スラグに施した潤滑被膜構造を示す図である。
Fig. 1 is a block diagram showing the manufacturing process of the present invention, Fig. 2(a), (bl is a longitudinal cross-sectional view showing the processing slag of the valve retainer and the shape of the valve retainer, and Fig. 3 is a longitudinal cross-sectional view showing the processing slag of the valve retainer. It is a figure which shows the lubricating film structure applied to.

Claims (4)

【特許請求の範囲】[Claims] (1)脱スケールしたβ型チタン合金材に、亜鉛又は鉄
亜鉛合金を被着してなる粒によるブラスト処理を行ない
、該合金材の表面に亜鉛又は鉄亜鉛被膜を形成させ、そ
の後リン酸亜鉛処理し、続いて水洗・反応型金属石けん
処理・乾燥の工程を経た後、冷間鍛造により、歪速度1
00s^−^1以下の加工速度で成形することを特徴と
するβ型チタン合金鍛造品の製造方法。
(1) Descaled β-type titanium alloy material is blasted with particles coated with zinc or iron-zinc alloy to form a zinc or iron-zinc coating on the surface of the alloy material, and then zinc phosphate After processing, followed by washing with water, treatment with reactive metal soap, and drying, the strain rate is 1 by cold forging.
A method for manufacturing a β-type titanium alloy forged product, characterized by forming at a processing speed of 00s^-^1 or less.
(2)脱スケールしたβ型チタン合金材に、亜鉛又は鉄
亜鉛合金を被着してなる粒によるブラスト処理を行ない
、該合金材の表面に亜鉛又は鉄亜鉛被膜を形成させ、そ
の後リン酸亜鉛処理し、続いて水洗・反応型金属石けん
処理・乾燥の工程を経た後、冷間鍛造により、歪速度1
00s^−^1以下の加工速度で成形し、続いて得られ
た成形品の表面に形成されている表面潤滑被膜を除去し
た後、400〜550℃の温度で時効することを特徴と
するβ型チタン合金鍛造品の製造方法。
(2) Descaled β-type titanium alloy material is blasted with particles coated with zinc or iron-zinc alloy to form a zinc or iron-zinc coating on the surface of the alloy material, and then zinc phosphate After processing, followed by washing with water, treatment with reactive metal soap, and drying, the strain rate is 1 by cold forging.
β characterized by molding at a processing speed of 00s^-^1 or less, followed by removing the surface lubricating film formed on the surface of the obtained molded product, and then aging at a temperature of 400 to 550 ° C. Method for manufacturing molded titanium alloy forged products.
(3)脱スケールしたβ型チタン合金材に、亜鉛又は鉄
亜鉛合金を被着してなる粒によるブラスト処理を行ない
、該合金材の表面に亜鉛又は鉄亜鉛被膜を形成させ、そ
の後リン酸亜鉛処理し、続いて水洗・反応型金属石けん
処理・乾燥の工程を経た後、冷間鍛造により、歪速度1
00s^−^1以下の加工速度で成形し、次いで得られ
た成形品の表面に形成された表面潤滑被膜を除去した後
、400〜550℃の温度で窒化することにより表面処
理と同時に時効することを特徴とするβ型チタン合金鍛
造品の製造方法。
(3) Descaled β-type titanium alloy material is blasted with particles coated with zinc or iron-zinc alloy to form a zinc or iron-zinc coating on the surface of the alloy material, and then zinc phosphate After processing, followed by washing with water, treatment with reactive metal soap, and drying, the strain rate is 1 by cold forging.
Molding is performed at a processing speed of 00s^-^1 or less, and then the surface lubricating film formed on the surface of the obtained molded product is removed, and then aged at the same time as surface treatment by nitriding at a temperature of 400 to 550°C. A method for manufacturing a β-type titanium alloy forged product, characterized by:
(4)脱スケールしたβ型チタン合金材に、亜鉛又は鉄
亜鉛合金を被着してなる粒によるブラスト処理を行ない
、該合金材の表面に亜鉛又は鉄亜鉛被膜を形成させ、そ
の後リン酸亜鉛処理し、続いて水洗・反応型金属石けん
処理・乾燥の工程を経た後、冷間鍛造により、歪速度1
00s^−^1以下の加工速度で成形し、次いで得られ
た成形品の表面に形成された表面潤滑被膜を除去した後
、730〜880℃の温度で窒化処理した後、400〜
550℃の温度で時効することを特徴とするβ型チタン
合金鍛造品の製造方法。
(4) Descaled β-type titanium alloy material is blasted with particles coated with zinc or iron-zinc alloy to form a zinc or iron-zinc coating on the surface of the alloy material, and then zinc phosphate After processing, followed by washing with water, treatment with reactive metal soap, and drying, the strain rate is 1 by cold forging.
After molding at a processing speed of 00s^-^1 or less, then removing the surface lubricating film formed on the surface of the obtained molded product, and nitriding at a temperature of 730~880℃,
A method for producing a β-type titanium alloy forged product characterized by aging at a temperature of 550°C.
JP25223987A 1987-10-06 1987-10-06 Manufacture of beta type titanium alloy forging Pending JPH0195837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25223987A JPH0195837A (en) 1987-10-06 1987-10-06 Manufacture of beta type titanium alloy forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25223987A JPH0195837A (en) 1987-10-06 1987-10-06 Manufacture of beta type titanium alloy forging

Publications (1)

Publication Number Publication Date
JPH0195837A true JPH0195837A (en) 1989-04-13

Family

ID=17234448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25223987A Pending JPH0195837A (en) 1987-10-06 1987-10-06 Manufacture of beta type titanium alloy forging

Country Status (1)

Country Link
JP (1) JPH0195837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603235A (en) * 1994-12-16 1997-02-18 Hyundai Motor Company Forging process for titanium alloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603235A (en) * 1994-12-16 1997-02-18 Hyundai Motor Company Forging process for titanium alloys
DE19546975B4 (en) * 1994-12-16 2006-06-29 Hyundai Motor Co. Forging process for titanium alloys

Similar Documents

Publication Publication Date Title
US3532560A (en) Cold-working process
JPH04232234A (en) Production of product from doping material containing alloy on basis of titanium aluminide
US20080277030A1 (en) Composition and Process for Enhanced Properties of Ferrous Components
JPH02205661A (en) Production of spring made of beta titanium alloy
CN113333655B (en) Fine wire for high-temperature alloy GH2132 cold heading and preparation method thereof
JPH0325253B2 (en)
JPH09263906A (en) Iron-nickel-chrome-alum. ferritic alloy and its production
JPH0195837A (en) Manufacture of beta type titanium alloy forging
JPH0535203B2 (en)
JP2004525768A (en) Manufacturing process for manufacturing engine parts made of high carbon steel using cold forming
US8444781B1 (en) Method of strengthening metal parts through ausizing
WO2006098346A1 (en) Method for heat-treating steel material
JPH07138613A (en) Production of heat-treated ferrous sintered alloy parts
JP2792020B2 (en) Titanium alloy cold-forged parts and their manufacturing method
JPH08127851A (en) Production of forged aluminum alloy wheel excellent in corrosion fatigue resistance
JPS6345320A (en) T-head bolt
EP3464660B1 (en) Method of treating a workpiece comprising a titanium metal and object
JP2830436B2 (en) Manufacturing method of steel parts
JPH0637701B2 (en) Manufacturing method of β titanium alloy forged products
EP0533128B1 (en) Piston ring made of a titanium alloy and process for production thereof
JPH01208440A (en) Manufacture of spring made of beta type titanium alloy
CN102912102A (en) Manufacturing method of GCr15 coiled cold-drawn material for cold extrusion of metal structural part
JPS63186841A (en) Titanium alloy forged parts and its production
JPS61117203A (en) Production of sinter forged parts
JPH10219353A (en) Production of exhaust valve