JPS63186841A - Titanium alloy forged parts and its production - Google Patents

Titanium alloy forged parts and its production

Info

Publication number
JPS63186841A
JPS63186841A JP1786687A JP1786687A JPS63186841A JP S63186841 A JPS63186841 A JP S63186841A JP 1786687 A JP1786687 A JP 1786687A JP 1786687 A JP1786687 A JP 1786687A JP S63186841 A JPS63186841 A JP S63186841A
Authority
JP
Japan
Prior art keywords
hardness
titanium alloy
cold forging
forged
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1786687A
Other languages
Japanese (ja)
Other versions
JP2792021B2 (en
Inventor
Wataru Takahashi
渉 高橋
Minoru Okada
稔 岡田
Tetsuya Kuwayama
桑山 哲也
Mitsuru Masuda
満 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62017866A priority Critical patent/JP2792021B2/en
Publication of JPS63186841A publication Critical patent/JPS63186841A/en
Application granted granted Critical
Publication of JP2792021B2 publication Critical patent/JP2792021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To produce a lightened Ti alloy forged parts having high hardness at low cost, by subjecting a material obtd. by preliminarily applying an alloy consisting of specific compsns. of Zr and Ti to wire drawing machining to a specified oxidizing treatment and thereafter subjecting the alloy to a lubrication treatment and cold forging. CONSTITUTION:The Ti alloy composed of 5-22wt.% Zr and the balance consisting of Ti with inevitable impurities is preliminarily applied to the wire drawing machining. Said material is subjected to the oxidizing treatment at 450-600 deg.C for 10-60min to form an oxidized film onto the surface thereof. Said material subjected to the oxidizing treatment is then applied to the lubrication treatment and thereafter is subjected to the main molding by executing the cold forging. In this way, the Ti alloy forged parts having the hardness >=270Hv is obtd. Said forged parts are furthermore subjected to a nitriding treatment at 400-550 deg.C after the main molding, by which the wear resistance can be improved while retaining the internal hardness to >=270Hv.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、冷間鍛造によって所定形状にまで加工した
ときに高硬度となり、所要強度が確保でき、軽量化する
ことのできるチタン合金製鍛造部品およびその製法に関
する。
[Detailed Description of the Invention] (Field of Industrial Application) This invention provides a forged titanium alloy that becomes highly hard when processed into a predetermined shape by cold forging, secures the required strength, and is lightweight. Regarding parts and their manufacturing methods.

(従来の技術とその問題点) 従来、自動車、航空機等に使用されるバルブリテーナ−
あるいは歯車等は、肌焼鋼または構造用鋼を浸炭、焼入
・焼戻しして製造されていたが、最近、エンジンの高ト
ルク化、高回転数化がさけばれ、そのため前記部品の軽
量化が検討され、使用材料のチタン化が進められようと
している。
(Conventional technology and its problems) Valve retainers conventionally used in automobiles, aircraft, etc.
Alternatively, gears and the like were manufactured by carburizing, quenching, and tempering case-hardened steel or structural steel, but recently, as engines are becoming increasingly high-torque and high-speed, it is necessary to reduce the weight of these parts. The use of titanium as the material is being considered.

しかしながら、冷間鍛造性(以下、「冷鍛性」と略称す
る)の良い純Ti材では、耐摩耗性の必要なこの部品と
して鍛造後の硬度が不足し、(α+β)型Ti材では、
硬度は高いが冷鍛性が悪いため、熱間鍛造でしか製造で
きず、コスト高であった。
However, pure Ti material with good cold forgeability (hereinafter abbreviated as "cold forgeability") lacks the hardness after forging for this part that requires wear resistance, and (α+β) type Ti material has
Although it has high hardness, it has poor cold forging properties, so it can only be manufactured by hot forging, resulting in high costs.

β型Ti材では、冷間鍛造時の加工割れ、つまり冷鍛割
れは生じず、鍛造後の硬度も高いし、後工程で時効する
ことによりさらに硬度を高めることが可能であるが、合
金成分が多いため、素材費が高く、かつ変形抵抗が高す
ぎるので、工具寿命が低いという問題があった。
With β-type Ti material, work cracking during cold forging, that is, cold forging cracking, does not occur, and the hardness after forging is high, and it is possible to further increase the hardness by aging in the post-process, but the alloy composition There was a problem that the material cost was high and the deformation resistance was too high, resulting in a short tool life.

したがって、この発明の目的は、冷間鍛造後十分な硬度
ををするとともに素材自体安価である軽量鍛造部品を提
供することである。
Therefore, an object of the present invention is to provide a lightweight forged part that has sufficient hardness after cold forging and is made of inexpensive material.

さらに、この発明の別の目的は、軽量化が容易なチタン
合金から上述の如き鍛造部品を製造する方法を提供する
ことである。
Furthermore, another object of the present invention is to provide a method for manufacturing the above-mentioned forged parts from a titanium alloy, which can easily reduce the weight.

(問題点を解決するための手段) この発明の発明者らは、上記現状に鑑み、素材コストの
安いZr系Ti合金に着口して検討したところ、その内
の特定の合金組成が、冷間鍛造時にすぐれた加工性を呈
し、かつ冷間鍛造後の硬度イ高く維持でき、バルブリテ
ーナ−あるいは歯車等の鍛造部品に最適であることを知
り、この発明を完成したや すなわち、この発明の発明者らは、冷鍛性を維持し、冷
間鍛造による本成形後の部品の硬度をHv270以上と
するためには、Zr≧1.0重量%、かつ、Zr+25
X [(h]≧5重量%および3 ×Zr+ 220X
[0□]≦66重量%の条件を満たす量のジルコニウム
および不純物あるいは積極的添加元素としての酸素を加
えたTi−Zr系合金が適正であることを見出した。
(Means for Solving the Problems) In view of the above-mentioned current situation, the inventors of the present invention started with and studied Zr-based Ti alloys, which have low material costs, and found that a specific alloy composition among them He realized that it exhibited excellent workability during cold forging and maintained a high level of hardness after cold forging, making it ideal for forged parts such as valve retainers and gears. The inventors found that in order to maintain cold forgeability and make the hardness of the part after main forming by cold forging to Hv270 or more, Zr≧1.0% by weight and Zr+25
X [(h]≧5wt% and 3×Zr+ 220X
It has been found that a Ti-Zr alloy containing zirconium in an amount satisfying the condition of [0□]≦66% by weight and oxygen as an impurity or an active additive element is suitable.

また、その特定材料を鍛造部品製造に適用するに際し、
冷間鍛造後の硬度がHv270以上となるように予め伸
線を施して加工硬化により硬度を高めておき、しかも冷
間鍛造による本成形前に焼付防止のために温度と時間を
制限した酸化処理、そしてそれに続く潤滑処理を行うこ
とにより軟化を防ぐと共に所要の冷鍛性を確保できるこ
とを知った。
In addition, when applying the specific material to the production of forged parts,
Wire drawing is performed in advance to increase the hardness by work hardening so that the hardness after cold forging is Hv270 or higher, and oxidation treatment is performed with limited temperature and time to prevent seizure before the main forming by cold forging. , and learned that subsequent lubrication treatment can prevent softening and ensure the required cold forgeability.

さらに、冷間鍛造による本成形後に400〜550℃の
低温の窒化処理を行い、表面は硬化させるが、内部の軟
化は防止するようにして、一層の摩耗防止をはかること
ができることを知った。
Furthermore, it has been found that after the main forming by cold forging, a low-temperature nitriding treatment of 400 to 550°C is performed to harden the surface but prevent internal softening, thereby further preventing wear.

すなわち、この発明の要旨とするところは、Zr≧1.
0重量%、かつ、Zr+25X [0□]≧5重量%お
よび3 ×Zr+ 220X [Oz] 566重量%
の条件を満たす量のジルコニウムおよび酸素、残部チタ
ンと不可避不純物より成る組成を有するチタン合金から
構成されるHv 270以上の硬度を有するチタン合金
製鍛造部品である。
That is, the gist of this invention is that Zr≧1.
0% by weight, and Zr+25X [0□]≧5% by weight and 3×Zr+ 220X [Oz] 566% by weight
This forged part is made of a titanium alloy and has a hardness of Hv 270 or more, which is made of a titanium alloy having a composition of zirconium and oxygen in amounts that satisfy the following conditions, the balance being titanium and unavoidable impurities.

さらに、この発明の要旨とするところは、Zr≧1.0
重量%、かつ、Zr+25X [Oz]≧5重量%およ
び3 xZr+ 220x [0□]≦66重量%の条
件を満たす量のジルコニウムおよび酸素、残部チタンと
不可避不純物より成る組成を存するチタン合金から成る
、予め伸線加工を施された加工用素材を、冷間鍛造によ
り本成形するに先立って、450〜600℃の温度範囲
で10〜60分間酸化処理し、表面に酸化皮膜を形成し
た後、潤滑処理を施し、次いで冷間鍛造により本成形し
、Hv 270以上の硬度とすることを特徴とする、チ
タン合金製鍛造部品の製法である。
Furthermore, the gist of this invention is that Zr≧1.0
% by weight, and an amount of zirconium and oxygen that satisfies the conditions of Zr + 25X [Oz] ≧ 5% by weight and 3 x Zr + 220x [0□] ≦ 66% by weight, the balance consisting of titanium and unavoidable impurities, consisting of a titanium alloy. Prior to final forming by cold forging, the wire-drawn material is oxidized for 10 to 60 minutes at a temperature range of 450 to 600°C to form an oxide film on the surface, and then lubricated. This is a method for manufacturing a forged titanium alloy part, which is characterized by subjecting the titanium alloy to a treatment, followed by main forming by cold forging to obtain a hardness of Hv 270 or more.

なお、酸素が不純物として存在するにすぎない場合、上
述の合金組成はZr:5〜22重量%、残部チタンと不
可避不純物となる。
In addition, when oxygen exists only as an impurity, the above-mentioned alloy composition becomes Zr: 5 to 22% by weight, and the balance is titanium, which is an inevitable impurity.

この発明の別の態様にあっては、上記鍛造部品を400
〜550℃の温度範囲で窒化処理し、内部硬度をHv 
270以上に保持することを特徴とするチタン合金製鍛
造部品の製造方法が提供される。
In another aspect of the invention, the forged part is made of 400
Nitriding treatment in the temperature range of ~550℃ to reduce the internal hardness to Hv
Provided is a method for manufacturing a titanium alloy forged part characterized in that the titanium alloy forged part is maintained at a temperature of 270 or higher.

(作用) 以下、この発明を自動車用バルブリテーナ−に適用した
場合を添付図面を用いて添付図面を参照しながら詳しく
説明する。
(Function) Hereinafter, a case in which the present invention is applied to a valve retainer for an automobile will be described in detail with reference to the accompanying drawings.

第1図fatおよびCb)は、加工用素材(スラグ)I
Oおよびバルブリテーナ−12のそれぞれ略式断面図で
ある。スラグ10は熱延材を伸線して加工硬化を生しさ
せた線材から、切削あるいは冷間鍛造によって製造され
る。これは大体の形状に成形されており、次いで、適宜
潤滑処理を施してがら冷間鍛造によって本成形し、所定
の形状、寸法のバルブリテーナ−12とするのである。
Figure 1 fat and Cb) are processing material (slag) I
FIG. 2 is a schematic cross-sectional view of the valve retainer 12 and the valve retainer 12. FIG. The slug 10 is manufactured by cutting or cold forging from a wire rod that has been work-hardened by drawing a hot-rolled material. This is formed into a general shape, and then subjected to proper lubrication treatment and finally formed by cold forging to form the valve retainer 12 of a predetermined shape and size.

なお、寸法、形状等は特定のものに制限されるものでな
いことは、当業者には明らかであろう。図示例は単に説
明のためのものである。
Note that it will be clear to those skilled in the art that the dimensions, shape, etc. are not limited to specific values. The illustrated example is for illustration only.

第2図は、この発明にかかるバルブリテーナ−の製法の
工程図である。
FIG. 2 is a process diagram of a method for manufacturing a valve retainer according to the present invention.

第2図の工程図に示すように、まず、この発明にかかる
合金組成を有するチタン合金材を用意し、熱間圧延によ
り大体の寸法の熱間圧延材(以下、「熱延材Jという)
を得る。
As shown in the process diagram of FIG. 2, first, a titanium alloy material having the alloy composition according to the present invention is prepared, and then hot-rolled into a hot-rolled material with approximate dimensions (hereinafter referred to as "hot-rolled material J").
get.

次いで、このようにして得たTi合金熱延材に例えばフ
ッ素樹脂潤滑剤を塗布して、潤滑処理し、切削スラグを
作る場合は、減面率20〜40%の伸線を施し、冷間鍛
造スラグの場合は減面率5〜15%の伸線を施し、加工
硬化させる。熱延材は酸化スケールがついているため、
潤滑処理(フッ素樹脂、ダイス前潤滑)のみで伸線でき
る。この発明において伸線するのは、本成形時に加工度
の低い部品を予め加工硬化させておいて、加工硬化を補
うためであり、さらには真円度、線径精度向上のために
行うのである。
Next, when the Ti alloy hot-rolled material obtained in this way is coated with a fluororesin lubricant for lubrication treatment to produce a cutting slag, it is subjected to wire drawing with an area reduction rate of 20 to 40% and then cold-rolled. In the case of forged slag, it is subjected to wire drawing with an area reduction rate of 5 to 15% and work hardened. Hot-rolled materials have oxide scale, so
Wire drawing is possible only with lubrication treatment (fluororesin, pre-die lubrication). In this invention, wire drawing is performed in order to compensate for work hardening by work-hardening the parts with a low degree of processing in advance during the actual molding, and also to improve roundness and wire diameter accuracy. .

そして、このようにして得た伸線材より、適宜長さに切
断後、それぞれ切削または冷間鍛造加工によりスラグを
製造する。冷間鍛造スラグは加工後ショツトブラスト、
フッ硝酸酸洗等で脱スケールさせる。
Then, the drawn wire material thus obtained is cut into appropriate lengths, and slags are manufactured by cutting or cold forging, respectively. Cold forged slag is shot blasted after processing.
Descale by fluorofluoric acid pickling, etc.

これらのスラグは、冷間鍛造による本成形によって鍛造
部品とするが、この発明によれば冷間鍛造に先立って、
スラグを大気炉中にて450〜600℃、10〜60分
間加熱し、潤滑下地用のスケールをスラグが軟化しない
条件で付着させる。その後、フッ素樹脂等で潤滑処理し
てから、冷間鍛造による本成形を行うと、平均硬度がH
v 270以上となる。
These slags are formed into forged parts by cold forging, but according to the present invention, prior to cold forging,
The slag is heated in an atmospheric furnace at 450 to 600°C for 10 to 60 minutes, and scale for a lubricating base is attached under conditions that the slag does not soften. After that, after lubrication treatment with fluororesin etc., main forming by cold forging is performed, and the average hardness is H.
v 270 or more.

このような潤滑処理によればすぐれた冷鍛性が確保でき
、冷間鍛造時の変形抵抗の低下、工具寿命の延長が図ら
れる。
Such lubrication treatment ensures excellent cold forging properties, reduces deformation resistance during cold forging, and extends tool life.

次いで、さらに一層の摩耗防止のためには、好ましくは
窒化処理を行うが、窒化前には脱スケールする。窒化方
法は、鍛造品内部の軟化を防止するために400〜55
0℃で行うが、それにはイオン窒化、軟窒化等が適当で
ある。いずれにしても、窒化法それ自体は公知であって
、400〜650℃の比較的低温で行う窒化法である限
り、この発明にあって特定のものに制限されるものでは
ない。
Next, in order to further prevent wear, a nitriding treatment is preferably performed, but descaling is performed before nitriding. The nitriding method uses 400-55 to prevent softening inside the forged product.
This is carried out at 0° C., and suitable methods include ion nitriding and soft nitriding. In any case, the nitriding method itself is well known, and the present invention is not limited to any particular method as long as it is carried out at a relatively low temperature of 400 to 650°C.

以上のように、この発明によれば、十分使用に耐える硬
度を持つ、チタン合金製鍛造部品を低コストで量産でき
る。
As described above, according to the present invention, titanium alloy forged parts having sufficient hardness for use can be mass-produced at low cost.

次に、この発明における合金組成および加工条件の限定
理由を説明すると下記の通りである。
Next, the reasons for limiting the alloy composition and processing conditions in this invention are as follows.

まず、合金組成を上述のように限定した理由について述
べる。成分組成に関する%は特に指定のない限り、「重
量%Jである。
First, the reason for limiting the alloy composition as described above will be described. Percentages relating to component compositions are "wt% J" unless otherwise specified.

ジルコニウムは、単独添加の場合は、冷間鍛造本成形後
の硬さを確保するために5%以上添加の必要があり、2
2%を越えると鍛造部品に要求される冷鍛性が得られな
くなる。
If zirconium is added alone, it must be added in an amount of 5% or more to ensure hardness after cold forging.
If it exceeds 2%, the cold forging properties required for forged parts cannot be obtained.

酸素は通常不純物として含有されているが、積極的に酸
素を添加する場合には、酸素により、冷間鍛造後の硬さ
が向上するので、ジルコニウムが5%未満であってもよ
いが、酸素は冷鍛性を阻害する元素でもあるので、多量
の添加はできなく、Zrは1.0%以上添加する必要が
ある。また、ジルコニウムはチタンに全率に固溶する合
金元素であり、1.0%以上添加することにより、酸化
処理時の昇温による軟化の程度を小さくすることができ
る。このため、ジルコニウム含有量の下限を1.0%と
した。
Oxygen is usually contained as an impurity, but if oxygen is actively added, oxygen will improve the hardness after cold forging, so zirconium may be less than 5%, but oxygen Zr is also an element that inhibits cold forging properties, so it cannot be added in large amounts, and it is necessary to add 1.0% or more of Zr. Furthermore, zirconium is an alloying element that is completely dissolved in titanium, and by adding 1.0% or more, it is possible to reduce the degree of softening caused by temperature rise during oxidation treatment. Therefore, the lower limit of the zirconium content was set to 1.0%.

一方、冷間鍛造による本成形(通常加工度60%程度)
後の硬度及び窒化後の硬度がHv 270よりも高くな
るための下限として、研究の結果、Zr + 25×[
0□コ≧5重量%を満足する量が必要であることが判明
した。
On the other hand, main forming by cold forging (normal processing rate is about 60%)
As a result of research, Zr + 25 × [
It has been found that an amount satisfying 0□□≧5% by weight is required.

ところで、ジルコニウム、酸素を必要以上に多量にチタ
ン中に添加した場合、冷鍛性を阻害し、本成形時に割れ
が生じる0発明者らの研究の結果、このような冷間鍛造
による割れ発生の防止のための上限は、3 ×Zr+ 
220X [0!]≦66重量%であることが判明した
。このため、Zr、0よの上限を、3 ×Zr+ 22
(IX [(hl ≦66重IOAとした。
By the way, if zirconium or oxygen is added to titanium in an unnecessarily large amount, cold forging properties will be inhibited and cracks will occur during main forming.As a result of the research conducted by the inventors, it has been found that such cracks do not occur during cold forging. The upper limit for prevention is 3 x Zr+
220X [0! ]≦66% by weight. Therefore, the upper limit of Zr, 0 is 3 × Zr + 22
(IX [(hl ≦66 IOA.

なお、酸素は通常不純物として0.04〜0.06%含
有されている。
Note that oxygen is normally contained as an impurity in an amount of 0.04 to 0.06%.

第3図にはこの発明における酸素量とジルコニウム量と
の関係をグラフに示しである。酸素が不純物として含有
される場合も含めて、この発明におけるチタン合金は第
3図の斜線領域に入る。
FIG. 3 is a graph showing the relationship between the amount of oxygen and the amount of zirconium in this invention. The titanium alloy according to the present invention, including the case where oxygen is contained as an impurity, falls within the shaded area in FIG.

スラグの酸化処理における温度条件として、450〜6
00℃の温度範囲に限定したのは、450℃未満では酸
化皮膜が薄すぎて、潤滑剤の保持効果が小さく、本成形
時に焼付きが生じる。一方、600℃超では、スラグが
軟化しすぎて、本成形後に)Iv270以上の硬度にな
らないからである。この酸化処理は、上記の温度域で1
0〜60分間大気中で保持するが、10分未満では、酸
化膜の生成が不十分で、60分超ではスラグが軟化した
り、経済的に不利である。
The temperature conditions for oxidation treatment of slag are 450 to 6
The reason why the temperature range is limited to 00°C is that below 450°C, the oxide film is too thin and the lubricant retention effect is small, causing seizure during main molding. On the other hand, if the temperature exceeds 600°C, the slag becomes too soft and does not have a hardness of Iv270 or higher (after main molding). This oxidation treatment is performed in the above temperature range.
The slag is held in the atmosphere for 0 to 60 minutes, but if it is less than 10 minutes, the formation of an oxide film is insufficient, and if it is more than 60 minutes, the slag may become soft or economically disadvantageous.

さらに、表面摩耗を防止するために、鍛造成形品を脱ス
ケール後、400〜550℃の温度範囲で窒化するが、
400℃未満では、十分厚い窒化層ができず、550℃
超では鍛造品内部が軟化し、Hv 270以上となら゛
ないからである。なお、鍛造部品硬度をHv270以上
としたのは、この硬度より小さいと強度不足および摩耗
が生じるからである。
Furthermore, in order to prevent surface wear, the forged molded product is nitrided at a temperature range of 400 to 550°C after descaling.
If the temperature is less than 400℃, a sufficiently thick nitrided layer cannot be formed, and if the temperature is lower than 550℃.
This is because the inside of the forged product becomes softer and Hv cannot exceed 270. The reason why the hardness of the forged part is set to Hv270 or higher is that if the hardness is lower than this, insufficient strength and wear will occur.

次に、この発明を自動車バルブリテーナ−を製造する場
合の実施例により実施例に関連させてさらに詳細に説明
する。
Next, the present invention will be explained in more detail in conjunction with an embodiment in which an automobile valve retainer is manufactured.

〔実施例1〕 第1表に合金組成を示す各種チタン合金の30kgイン
ゴットを溶製し、1100℃の加熱でβ鍛造を行った後
、850℃に加熱してα+β鍛造を行い、直径2Qmm
の線材とした。
[Example 1] A 30 kg ingot of various titanium alloys whose alloy compositions are shown in Table 1 was melted, heated to 1100°C for β forging, then heated to 850°C to perform α+β forging to obtain a diameter of 2Q mm.
It was made into a wire rod.

得られた線材を、フッ素樹脂で潤滑し、7%伸線と25
%伸線を行い、前者は冷間鍛造し、第1図に示すような
形状のスラグとし、加工後、ショツトブラストによって
脱スケールを行ワた。後者は、切削によりスラグとした
The obtained wire rod was lubricated with fluororesin, 7% wire drawn and 25%
% wire drawing, and the former was cold forged to form a slag in the shape shown in Fig. 1. After processing, descaling was performed by shot blasting. The latter was made into slag by cutting.

このようにして得た2種のスラグを500℃×20分大
気中で酸化処理のあと、二硫化モリブデンにより潤滑し
、60%の冷間鍛造を行ってバルブリテーナ−とした。
The two types of slag thus obtained were oxidized at 500° C. for 20 minutes in the atmosphere, then lubricated with molybdenum disulfide and cold forged at 60% to form valve retainers.

このようにして得られたバルブリテーナ−の冷間鍛造性
および硬度を評価し、結果と同じく第1表にまとめて示
す。
The cold forgeability and hardness of the valve retainer thus obtained were evaluated, and the results are summarized in Table 1.

第1表の結果からも明らかなように、いずれのスラグよ
り製造したバルブリテーナ−の平均硬度もほぼ等しく、
発明例では鍛造割れを生じずにHv270以上を示すが
、比較例磁8,9は冷鍛性は良好であるが、硬度がHv
 270未満で不適である。
As is clear from the results in Table 1, the average hardness of valve retainers manufactured from either slag is almost the same.
The invention example exhibits Hv270 or more without forging cracks, but Comparative Examples 8 and 9 have good cold forgeability, but the hardness is Hv
If it is less than 270, it is unsuitable.

〔実施例2〕 実施例1の線材のうち、発明例隘7の材料を用い、ステ
アリン酸Caを潤滑剤として使い25%伸線し、切削加
工によりスラグとした。
[Example 2] Among the wire rods of Example 1, the material of Invention Example No. 7 was used, and the wire was drawn to 25% using Ca stearate as a lubricant, and then cut into slag.

得られたスラグは酸化温度を変え、フッ素樹脂で潤滑処
理ののち、60%の冷間鍛造を行う本成形によりバルブ
リテーナ−とした。
The obtained slag was oxidized at different temperatures, lubricated with fluororesin, and then formed into a valve retainer by 60% cold forging.

硬度を測定した結果を第2表にまとめて示す。The results of hardness measurements are summarized in Table 2.

酸化処理温度が450℃未満では、硬度は)Iv 27
0以上であるが、焼付が生じている。 600℃超の酸
化温度では焼付が生じないが、硬度が不足する。この実
施例により、酸化温度は450〜600℃が適正である
と判明した。なお、酸化時間はすべて20分間であった
When the oxidation treatment temperature is less than 450°C, the hardness is ) Iv 27
Although it is 0 or more, burn-in has occurred. An oxidation temperature of over 600° C. will not cause seizure, but the hardness will be insufficient. According to this example, it was found that an appropriate oxidation temperature is 450 to 600°C. Note that the oxidation time was 20 minutes in all cases.

〔実施例3〕 実施例2で製造した切削スラグを500℃の酸化温度で
、酸化時間を変えて酸化皮膜を形成させ、次いで、同様
の潤滑処理ののち、60%の加工度の冷間鍛造によりリ
テーナ−に成形した。このときの冷鍛性および硬度測定
結果を第3表に示す。10分未満では焼付き、60分超
では硬度が低くなり、問題がある。これより、酸化時間
は10〜60分間が適正であると判明した。
[Example 3] An oxide film was formed on the cutting slag produced in Example 2 at an oxidation temperature of 500° C. by varying the oxidation time, and then, after the same lubrication treatment, cold forging with a workability of 60% was performed. It was molded into a retainer. The cold forgeability and hardness measurement results at this time are shown in Table 3. If it takes less than 10 minutes, it will seize, and if it takes more than 60 minutes, the hardness will decrease, causing problems. From this, it was found that the appropriate oxidation time was 10 to 60 minutes.

〔実施例4〕 実施例2にあって、500℃で酸化処理をして得たバル
ブリテーナ−について、第4表に示す各温度で15時間
のイオン窒化を行った。イオン窒化の条件は、ガス圧力
が5 Torr、雰囲気はNl/H1−3/7であり、
放電電圧ば300Vであった。
[Example 4] Regarding the valve retainer obtained by performing the oxidation treatment at 500° C. in Example 2, ion nitriding was performed for 15 hours at each temperature shown in Table 4. The conditions for ion nitriding are a gas pressure of 5 Torr, an atmosphere of Nl/H1-3/7,
The discharge voltage was 300V.

このときの結果を同じく第4表にまとめて示す。The results at this time are also summarized in Table 4.

400℃未満では十分な厚さの窒化層ができず、550
℃超では良好な硬化層はできるが、リテーナ−内部が軟
化して、Hv 270より小となり、不適である。
At temperatures below 400°C, a sufficiently thick nitrided layer cannot be formed;
If the temperature exceeds .degree. C., a good hardened layer will be formed, but the inside of the retainer will soften and the Hv will be less than 270, which is not suitable.

以上の説明から明らかなように、この発明にかかる方法
によって、チタン合金製鍛造部品が低コストで製造でき
、品質上も全く問題がないことが判明した。上記説明は
、バルブリテーナ−に例をとって説明したが、これに限
らず従来、肌焼鋼あるいは構造用鋼を浸炭して製造して
いた歯車、シャフト、ボルト等の鍛造部品に適用できる
ことは勿論であり、そのいずれにおいても、きわめて有
用な効果が得られる。
As is clear from the above description, it has been found that by the method of the present invention, forged parts made of titanium alloy can be manufactured at low cost, and there are no problems in terms of quality. The above explanation has been explained using an example of a valve retainer, but it is not limited to this and can be applied to forged parts such as gears, shafts, and bolts, which were conventionally manufactured by carburizing case hardened steel or structural steel. Of course, extremely useful effects can be obtained in either case.

第1表 (注)本二木成形時に割れ発生の有無による、第2表 第3表 O:焼付け、割れなし 第4表Table 1 (Note) Table 2 based on the presence or absence of cracks during Honfutaki molding. Table 3 O: Baked, no cracks Table 4

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alおよびCb)は、加工用素材(スラグ)お
よびバルブリテーナ−のそれぞれ略式断面図:第2図は
、この発明にかかる鍛造部品の製法の工程図;および 第3図は、この発明における酸素とジルコニウムとの量
的関係を示すグラフである。
Fig. 1 (al and Cb) is a schematic sectional view of the processing material (slag) and the valve retainer; Fig. 2 is a process diagram of the manufacturing method of a forged part according to the present invention; and Fig. 3 is a schematic sectional view of the processing material (slag) and a valve retainer. It is a graph showing the quantitative relationship between oxygen and zirconium in the invention.

Claims (6)

【特許請求の範囲】[Claims] (1)Zr:5〜22重量%、残部チタンと不可避不純
物より成る組成を有するチタン合金から構成されるHv
270以上の硬度を有するチタン合金製鍛造部品。
(1) Hv composed of a titanium alloy having a composition of Zr: 5 to 22% by weight, the balance consisting of titanium and unavoidable impurities.
Titanium alloy forged parts with hardness of 270 or higher.
(2)Zr:5〜22重量%、残部チタンと不可避不純
物より成る組成を有するチタン合金から成る、予め伸線
加工を施された加工用素材を、冷間鍛造により本成形す
るに先立って、450〜600℃の温度範囲で10〜6
0分間酸化処理し、表面に酸化皮膜を形成した後、潤滑
処理を施し、次いで冷間鍛造により本成形し、Hv27
0以上の硬度とすることを特徴とする、チタン合金製鍛
造部品の製法。
(2) Zr: 5 to 22% by weight, the balance being titanium and unavoidable impurities. Prior to main forming by cold forging, a pre-drawn material made of a titanium alloy has a composition consisting of titanium and unavoidable impurities. 10-6 in the temperature range of 450-600℃
After oxidation treatment for 0 minutes to form an oxide film on the surface, lubrication treatment was performed, and then cold forging was performed to form the final product to Hv27.
A method for manufacturing a titanium alloy forged part, characterized by having a hardness of 0 or more.
(3)前記鍛造部品を、冷間鍛造による本成形後、40
0〜550℃の温度範囲で窒化処理し、かつ内部硬度を
Hv270以上に保持することを特徴とする、特許請求
の範囲第2項記載のチタン合金製鍛造部品の製法。
(3) After the forged parts are formed by cold forging,
3. The method for producing a forged titanium alloy part according to claim 2, which comprises performing a nitriding treatment in a temperature range of 0 to 550[deg.] C. and maintaining an internal hardness of Hv270 or higher.
(4)Zr≧1.0重量%、かつ、Zr+25×[O_
2]≧5重量%および3×Zr+220×[O_2]≦
66重量%の条件を満たす量のジルコニウムおよび酸素
、残部チタンと不可避不純物より成る組成を有するチタ
ン合金から構成されるHv270以上の硬度を有するチ
タン合金製鍛造部品。
(4) Zr≧1.0% by weight, and Zr+25×[O_
2]≧5% by weight and 3×Zr+220×[O_2]≦
A forged part made of a titanium alloy and having a hardness of Hv270 or more, which is made of a titanium alloy having a composition of zirconium and oxygen in an amount satisfying the condition of 66% by weight, and the balance being titanium and unavoidable impurities.
(5)Zr≧1.0重量%、かつ、Zr+25×[O_
2]≧5重量%および3×Zr+220×[O_2]≦
66重量%の条件を満たす量のジルコニウムおよび酸素
、残部チタンと不可避不純物より成る組成を有するチタ
ン合金から成る、予め伸線加工を施された加工用素材を
、冷間鍛造により本成形するに先立って、450〜60
0℃の温度範囲で10〜60分間酸化処理し、表面に酸
化皮膜を形成した後、潤滑処理を施し、次いで冷間鍛造
により本成形し、Hv270以上の硬度とすることを特
徴とする、チタン合金製鍛造部品の製法。
(5) Zr≧1.0% by weight, and Zr+25×[O_
2]≧5% by weight and 3×Zr+220×[O_2]≦
Prior to main forming by cold forging, a material for processing is made of a titanium alloy having a composition of zirconium and oxygen in an amount satisfying the condition of 66% by weight, and the balance is titanium and unavoidable impurities. 450-60
Titanium, characterized in that it is oxidized in a temperature range of 0°C for 10 to 60 minutes to form an oxide film on the surface, then subjected to lubrication treatment, and then main-formed by cold forging to have a hardness of Hv270 or more. Manufacturing method for alloy forged parts.
(6)前記鍛造部品を、冷間鍛造による本成形後、40
0〜550℃の温度範囲で窒化処理し、かつ内部硬度を
Hv270以上に保持することを特徴とする、特許請求
の範囲第5項記載のチタン合金製鍛造部品の製法。
(6) After the forged parts are formed by cold forging, 40
6. The method for producing a forged titanium alloy part according to claim 5, wherein the titanium alloy forged part is nitrided in a temperature range of 0 to 550°C and its internal hardness is maintained at Hv270 or higher.
JP62017866A 1987-01-28 1987-01-28 Titanium alloy cold-forged parts and their manufacturing method Expired - Fee Related JP2792021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62017866A JP2792021B2 (en) 1987-01-28 1987-01-28 Titanium alloy cold-forged parts and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62017866A JP2792021B2 (en) 1987-01-28 1987-01-28 Titanium alloy cold-forged parts and their manufacturing method

Publications (2)

Publication Number Publication Date
JPS63186841A true JPS63186841A (en) 1988-08-02
JP2792021B2 JP2792021B2 (en) 1998-08-27

Family

ID=11955584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62017866A Expired - Fee Related JP2792021B2 (en) 1987-01-28 1987-01-28 Titanium alloy cold-forged parts and their manufacturing method

Country Status (1)

Country Link
JP (1) JP2792021B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131387A (en) * 1990-09-21 1992-05-06 Nissan Motor Co Ltd Titanium lubricating member for vacuum
JP2002371331A (en) * 2001-06-18 2002-12-26 Sumitomo Metal Ind Ltd Titanium alloy
JP2009082939A (en) * 2007-09-28 2009-04-23 Nuclear Fuel Ind Ltd Method for manufacturing zircon or zircon alloy-made shaft-like part with stepping and fuel rod end stopper obtained with this manufacturing method
CN102108887A (en) * 2009-12-24 2011-06-29 爱三工业株式会社 Engine valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228458A (en) * 1984-04-06 1985-11-13 フアイザー・コーポレーシヨン Antidiarrheal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228458A (en) * 1984-04-06 1985-11-13 フアイザー・コーポレーシヨン Antidiarrheal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131387A (en) * 1990-09-21 1992-05-06 Nissan Motor Co Ltd Titanium lubricating member for vacuum
JP2002371331A (en) * 2001-06-18 2002-12-26 Sumitomo Metal Ind Ltd Titanium alloy
JP2009082939A (en) * 2007-09-28 2009-04-23 Nuclear Fuel Ind Ltd Method for manufacturing zircon or zircon alloy-made shaft-like part with stepping and fuel rod end stopper obtained with this manufacturing method
CN102108887A (en) * 2009-12-24 2011-06-29 爱三工业株式会社 Engine valve

Also Published As

Publication number Publication date
JP2792021B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
EP0608431B1 (en) Titanium alloy bar suitable for producing engine valve
JP4517095B2 (en) High strength titanium alloy automotive engine valve
JP2000317738A (en) Manufacture of stainless steel bolt
KR920003630B1 (en) Surface treatment method for titanium or titanium alloy
JPH02205661A (en) Production of spring made of beta titanium alloy
JPS63186841A (en) Titanium alloy forged parts and its production
JPS63183144A (en) Titanium alloy forged parts and production thereof
JPH1150227A (en) Formation of surface oxidized coating on ti alloy or machine parts made of ti alloy
CA2050208C (en) Manufacturing process for products with very high fracture loads from unstable austenitic steel and use thereof
JP3022015B2 (en) Manufacturing method of titanium alloy valve
JP7264117B2 (en) Steel part and its manufacturing method
JPS61231150A (en) Manufacture of ti alloy wire rod
JPH09176786A (en) Non-heat treated steel with high strength and low ductility
JPH0535203B2 (en)
JP3623313B2 (en) Carburized gear parts
JP4078689B2 (en) Lubrication method for high strength bolt base material
JPH0853711A (en) Surface hardening treating method
JP2585168B2 (en) Method for producing high strength low linear expansion Fe-Ni alloy wire
JPH06256886A (en) Ti alloy member excellent in wear resistance and its production
JPH0637701B2 (en) Manufacturing method of β titanium alloy forged products
JP6326933B2 (en) Ring manufacturing method
JP4632239B2 (en) Beta titanium alloy material for cold working
WO1999066092A1 (en) Bearing material for cold rolling forming and forming member thereof
JP7310723B2 (en) Steel part and its manufacturing method
JP6543981B2 (en) β-type titanium alloy sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees