JPH0193423A - Formation of superconducting film - Google Patents

Formation of superconducting film

Info

Publication number
JPH0193423A
JPH0193423A JP62251156A JP25115687A JPH0193423A JP H0193423 A JPH0193423 A JP H0193423A JP 62251156 A JP62251156 A JP 62251156A JP 25115687 A JP25115687 A JP 25115687A JP H0193423 A JPH0193423 A JP H0193423A
Authority
JP
Japan
Prior art keywords
film
films
laser beam
materials
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62251156A
Other languages
Japanese (ja)
Inventor
Yukinori Kuwano
桑野 幸徳
Masanobu Yoshisato
善里 順信
Fumito Konishi
小西 史人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62251156A priority Critical patent/JPH0193423A/en
Publication of JPH0193423A publication Critical patent/JPH0193423A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To make materials constituting a superconductor into a molten state approximately simultaneously and to contrive to improve qualities of superconducting film in melting the materials by laser beam and then annealing the materials in an oxidizing atmosphere, by successively laminating films of the materials on a supporting substrate in the ascending order of melting point. CONSTITUTION:For example, in the case of YBa2Cu3O7, CuO film 2, BaO film 3 and Y2O3 film 4 are successively laminated to the surface of a supporting substrate 1. The films 2-4 are made by making fine powder of each oxide material into paste by using a binder and successively applying the paste or formed by lamination through EB or sputtering. Correlation of thickness of the films 2-4 are set to be made into the ratio of the melting stage of the following process of Y:Ba:Cu=1:2:3. Then the surface of the laminated three layers 2-4 on the substrate 1 are irradiated with laser beam 5 and the films 2-4 are melted.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は超伝導膜の形成方法に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to a method for forming a superconducting film.

(ロ)従来の技術 近年、例えばY B a * Cu s Otで代表さ
れる酸化物超伝導体が液体窒素の沸点(77K)より高
い臨界温度で超伝導状態に入ることが見出されて脚光を
浴びている。
(b) Conventional technology In recent years, it has been discovered that oxide superconductors such as YBa*CusOt enter a superconducting state at a critical temperature higher than the boiling point of liquid nitrogen (77K), and have attracted attention. is bathed in

そしてこのY B am Cus O、を形成する方法
として種々提案されており、そのうちの代表的なものと
して、レーザビームに依り素材を溶融した後、酸化雰囲
気中でアニール処理する方法がある。
Various methods have been proposed for forming Y B am Cus O, and a typical method includes melting the material using a laser beam and then annealing the material in an oxidizing atmosphere.

(ハ)発明が解決しようとした問題点 ところがレーザビーム照射に依る膜の厚み方向に生じる
温度分布を原因とした膜組成の偏析不均一が発生してい
た。特に素材として、Y、Ba、Cuを含む材料の混合
粉末を用いる場合、支持基板に接する材料まで完全に溶
融させなければならないので大きなパワーのレーザビー
ムを用いる必要があるが、その場合、膜の表面近傍はオ
ーバパワーとなり、Baなどの蒸気圧の低い材料成分が
蒸発してしまい、膜質の低下を来すと同時に、組成比率
が変わってしまい、超伝導状態が得られないものとなっ
てしまうおそれがあった。
(c) Problems that the invention sought to solve However, non-uniform segregation of the film composition occurred due to the temperature distribution generated in the thickness direction of the film due to laser beam irradiation. In particular, when using a mixed powder of materials containing Y, Ba, and Cu, it is necessary to completely melt the material in contact with the supporting substrate, so it is necessary to use a laser beam with high power. The area near the surface becomes overpowered, and material components with low vapor pressure such as Ba evaporate, resulting in a decrease in film quality and a change in the composition ratio, making it impossible to obtain a superconducting state. There was a risk.

(ニ)問題点を解決するための手段 本発明は、支持基板表面に、酸化物超伝導体を構成する
素材のうち、融点の低い素材の膜から順次積層し、この
素材積層表面からレーザビームを照射して該積層を溶融
し、続いて酸化雰囲気中でアニール処理を施すものであ
る。
(d) Means for solving the problem The present invention involves sequentially laminating films of materials with low melting points among the materials constituting the oxide superconductor on the surface of a supporting substrate, and laser beams are emitted from the surface of the laminated materials. is irradiated to melt the laminated layer, followed by annealing in an oxidizing atmosphere.

(ホ)作用 本発明に依れば、超伝導体を構成する素材を略同時に溶
融状態としたことになるので、超伝導膜質の低下などの
問題点が解決移れる。
(E) Function According to the present invention, since the materials constituting the superconductor are brought into a molten state almost simultaneously, problems such as deterioration of superconducting film quality can be solved.

(へ)実施例 本発明の実施例を、YBamCumOtの場合について
説明する。
(f) Example An example of the present invention will be described for the case of YBamCumOt.

本発明の第1の工程は、第1図に示すように、アルミ□
すなどの高融点の絶縁材料、あるいは金属材料から構成
される支持基板(1)表面に、CuO膜(2)、BaO
膜(3)、並びにY2O,膜(4)を順次積層するとこ
ろにある。これらの6膜(2)(3)(4)は各酸化物
素材の微粉末をメタノールなどのバインダを用いてペー
スト化して5〜50μの厚みで順次塗布する方法でも良
いし、EB或いはスパッタに依り5μ前後の厚みで順次
積層する方法も採用し得る。
The first step of the present invention is as shown in FIG.
A CuO film (2), BaO
The film (3), Y2O, and film (4) are sequentially laminated. These six films (2), (3), and (4) may be formed by making a paste of fine powder of each oxide material using a binder such as methanol and applying it sequentially to a thickness of 5 to 50μ, or by EB or sputtering. Therefore, it is also possible to adopt a method of sequentially laminating layers with a thickness of about 5 μm.

尚、この時の6膜(2)(3)(4)の厚みの関係は、
後の工程でこれらの膜(2)(3)(4)は溶融状態に
されるのであるが、その溶融段階での比率がY:Ba:
Cu−1:2:3になるように設定きれる。
In addition, the relationship between the thicknesses of the six films (2), (3), and (4) at this time is as follows:
In the later process, these films (2), (3), and (4) are brought into a molten state, and the ratio at the melting stage is Y:Ba:
It can be set so that Cu-1:2:3.

本発明においては、これらの膜(2)(3)(4)のv
tB順序に特徴がある。即ち、CuO膜(2)の融点は
1026℃、BaO膜(3)の融点は1740℃、モし
てY x Os膜(4)の融点は2410℃で、特徴と
しているところは、支持基板(1)に近く位置する膜は
どその融点が低い、別の表現をするならば、膜表面側が
最も高融点の材料が位置し、内側に向かうほど融点が低
い材料が配置されているところにある。
In the present invention, v of these membranes (2), (3), and (4)
There is a characteristic in the tB order. That is, the melting point of the CuO film (2) is 1026°C, the melting point of the BaO film (3) is 1740°C, and the melting point of the Y x Os film (4) is 2410°C. The membrane located close to 1) has a low melting point. To put it another way, the material with the highest melting point is located on the surface of the membrane, and the closer to the inside the material is located, the lower the melting point is. .

本発明の第2の工程は、支持基板(1)上の積層三膜(
2)(3)(4)の表面からレーザビーム(5)を照射
して該積層三膜(2)(3)(4)を溶融(6)すると
ころにある(第2図)、この時のレーザビーム(5)と
しては、CO3、又はYAGレーザに依って、10〜1
00Wのハイパワーのパルスレーザが用いられる。
The second step of the present invention is the laminated three-layer film (
2) The laser beam (5) is irradiated from the surfaces of (3) and (4) to melt (6) the three laminated films (2), (3), and (4) (Fig. 2). The laser beam (5) is 10 to 1 depending on the CO3 or YAG laser.
A high power pulse laser of 00 W is used.

ここでこのようにしてレーザビーム(5)の照射を受け
た積層三膜(2)(3)(4)の温度分布を考えて見る
。第3図に示すように、最表面のY、0.膜(4)はレ
ーザビーム(5)の照射を直接受けるので温度は最も高
く、次にBaO膜(3)はレーザビーム(5)のエネル
ギーをY、0.膜(4)を介して受けるので、該Y、0
.膜(4)よりは少し低くなり、更にCuO膜(2)は
BaO膜(3)の温度より更に低くなる。
Here, let us consider the temperature distribution of the three laminated films (2), (3), and (4) that have been irradiated with the laser beam (5) in this manner. As shown in FIG. 3, Y of the outermost surface, 0. Since the film (4) is directly irradiated with the laser beam (5), its temperature is the highest, and then the BaO film (3) receives the energy of the laser beam (5) by Y, 0. Since it is received through the membrane (4), the Y, 0
.. The temperature of the CuO film (2) is a little lower than that of the film (4), and the temperature of the CuO film (2) is even lower than that of the BaO film (3).

一方、これらの積層三膜(2)(3)(4)の融点分布
は上記したように表面から順次低くなっているので、こ
の融点分布と第3図の温度分布とが略−致することとな
り、レーザビーム(5)を積層三膜(2)(3)(4’
j表面から照射することに依ってこれらの積層三膜(2
)(’a )(4>を略同時に溶融状態としたことにな
る。従ってレーザビーム(5)の照射を受けて溶融(6
)された個所はレーザビーム(5)の照射がなくなると
直ちに凝固してY−Ba−Cu系の凝固物(7)となる
On the other hand, since the melting point distribution of these three laminated films (2), (3), and (4) gradually decreases from the surface as described above, this melting point distribution and the temperature distribution in Figure 3 approximately match. Then, the laser beam (5) is laminated with three films (2) (3) (4'
By irradiating from the j surface, these three laminated films (2
)('a)(4> is melted almost at the same time.Therefore, it melts (6) upon being irradiated with the laser beam (5).
) is solidified immediately after the laser beam (5) is no longer irradiated, and becomes a Y-Ba-Cu solidified material (7).

本発明の最終工程は、凝固物(7)を有する支持基板(
1)を酸素などの酸化雰囲気中で850°C15時間程
度のアニール処理を施すことにある。このアニール処理
の結果、第4図に示すように、Y−Ba−Cu系の凝固
物(7)が所定の量の酸素を取や込み、 Y B am
 Cus Oyで表わされる酸化物超伝導膜(8)を得
る。
The final step of the present invention is the supporting substrate (
1) is annealed at 850° C. for about 15 hours in an oxidizing atmosphere such as oxygen. As a result of this annealing treatment, as shown in FIG. 4, the Y-Ba-Cu solidified material (7) takes in a predetermined amount of oxygen, and
An oxide superconducting film (8) represented by Cus Oy is obtained.

以上の説明に於てはレーザビーム(5)の照射形態につ
いて言及しなかったが、積層三膜(2)(3)(4)全
面に照射するのではなく、予め決められたパターンに従
って照射すれば所望のパターンの超伝導パターン膜が得
られる。
Although the irradiation form of the laser beam (5) was not mentioned in the above explanation, it is not necessary to irradiate the entire surface of the three laminated films (2), (3), and (4), but to irradiate it according to a predetermined pattern. A superconducting patterned film with a desired pattern can be obtained.

尚、本発明は、Y B a * Cu s Oyで表わ
される超伝導体に限定されるものではなく、その他の組
成のものにも応用できることは言を待たない。
It goes without saying that the present invention is not limited to the superconductor represented by YBa*CusOy, but can also be applied to superconductors of other compositions.

(ト)発明の効果 本発明は以上の説明から明らかな如く、酸化物超伝導体
素材を融点の低い順に積層しているので、レーザビーム
の照射に依る熱エネルギーが各素材の融点に適合した状
態で供給され、各素材が略同時に溶融状態となり、超伝
導膜に偏析不均一が発生することはなく、また膜の組成
比率の変化の恐れは全くない。
(G) Effects of the Invention As is clear from the above explanation, the present invention stacks oxide superconductor materials in order of decreasing melting point, so that the thermal energy generated by laser beam irradiation matches the melting point of each material. Since each material is supplied in a molten state at the same time, there is no possibility of non-uniform segregation in the superconducting film, and there is no fear that the composition ratio of the film will change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第4図は夫々本発明方法を工程順に示
した断面図、第3図は本発明の工程中における温度分布
図である。 (1)・・・・支持基板、(2)・・・・CuO膜、(
3)−BaO膜、(4)””Y to −膜、(5)・
・・・レーザビーム、 (8)・・・・酸化物超伝導膜。
FIGS. 1, 2, and 4 are cross-sectional views showing the method of the present invention in the order of steps, and FIG. 3 is a temperature distribution diagram during the steps of the present invention. (1)...Support substrate, (2)...CuO film, (
3) -BaO film, (4)""Y to - film, (5)・
... Laser beam, (8) ... Oxide superconducting film.

Claims (2)

【特許請求の範囲】[Claims] (1)支持基板表面に、酸化物超伝導体を構成する素材
のうち、融点の低い素材の膜から順次積層し、この素材
積層表面からレーザビームを照射して該積層を溶融し、
続いて酸化雰囲気中でアニール処理を施すことを特徴と
した超伝導膜の形成方法。
(1) Films of materials constituting the oxide superconductor having a low melting point are sequentially laminated on the surface of the support substrate, and a laser beam is irradiated from the surface of the laminated material to melt the laminated layer,
A method for forming a superconducting film characterized by subsequently performing an annealing treatment in an oxidizing atmosphere.
(2)上記酸化物超伝導体を構成する素材は、支持基板
側から酸化銅、酸化バリウム、酸化イットリウムである
ことを特徴とした特許請求の範囲第1項記載の超伝導膜
の形成方法。
(2) The method for forming a superconducting film according to claim 1, wherein the materials constituting the oxide superconductor are copper oxide, barium oxide, and yttrium oxide from the supporting substrate side.
JP62251156A 1987-10-05 1987-10-05 Formation of superconducting film Pending JPH0193423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251156A JPH0193423A (en) 1987-10-05 1987-10-05 Formation of superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251156A JPH0193423A (en) 1987-10-05 1987-10-05 Formation of superconducting film

Publications (1)

Publication Number Publication Date
JPH0193423A true JPH0193423A (en) 1989-04-12

Family

ID=17218507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251156A Pending JPH0193423A (en) 1987-10-05 1987-10-05 Formation of superconducting film

Country Status (1)

Country Link
JP (1) JPH0193423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115823A (en) * 1987-10-29 1989-05-09 Toyota Central Res & Dev Lab Inc Production of thin film superconductor
WO1991006128A1 (en) * 1989-10-16 1991-05-02 American Superconductor Corporation Process for making electrical connections to high temperature superconductors using a metallic precursor and the product made thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115823A (en) * 1987-10-29 1989-05-09 Toyota Central Res & Dev Lab Inc Production of thin film superconductor
WO1991006128A1 (en) * 1989-10-16 1991-05-02 American Superconductor Corporation Process for making electrical connections to high temperature superconductors using a metallic precursor and the product made thereby

Similar Documents

Publication Publication Date Title
JPH01222488A (en) Method of forming patterned layer of high tc oxide superconductor
JP2855614B2 (en) Method of forming superconducting circuit
DE69309306T2 (en) Electrical connection structures
JPH0193423A (en) Formation of superconducting film
JPH0355889A (en) Manufacture of superconducting multilayered circuit
JP3403465B2 (en) Method for producing oxide superconducting tape having stabilizing layer
JP3361016B2 (en) Superconducting member and manufacturing method thereof
WO1989003125A1 (en) A process for producing an electric circuit including josephson diodes
JP2703403B2 (en) Superconducting wiring fabrication method
JPS63291485A (en) Manufacture of oxide superconducting circuit
JP2925571B2 (en) How to make a superconducting circuit
JPS63276822A (en) Patterning method for superconductive thin film
JPH01246141A (en) Production of oxide superconductor thin film
JPS63310182A (en) Manufacture of superconductive wiring
JP2641972B2 (en) Superconducting element and manufacturing method thereof
JPS63265475A (en) Manufacture of superconducting electronic circuit
JPS63276812A (en) Oxide superconductor
JPS637675A (en) Manufacture of superconducting device
JPH04171872A (en) Josephson device and manufacture thereof
JPS6420639A (en) Manufacture of superconductor
KR100334404B1 (en) Method for fabricating high temperature superconductor device
JPH01259582A (en) Manufacture of oxide superconductive thin film
JPH04310596A (en) Production of oxide superconducting thin film and its multilayered element
JPH02255506A (en) Production of oxide superconductor
JPH063766B2 (en) Superconducting coil manufacturing method