JPH02255506A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH02255506A
JPH02255506A JP1080053A JP8005389A JPH02255506A JP H02255506 A JPH02255506 A JP H02255506A JP 1080053 A JP1080053 A JP 1080053A JP 8005389 A JP8005389 A JP 8005389A JP H02255506 A JPH02255506 A JP H02255506A
Authority
JP
Japan
Prior art keywords
layer
substrate
oxide superconductor
irradiated
laser beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1080053A
Other languages
Japanese (ja)
Inventor
Shigeo Nagaya
重夫 長屋
Izumi Hirabayashi
泉 平林
Toshiaki Suga
菅 敏昭
Toru Shiobara
融 塩原
Shoji Tanaka
昭二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Kansai Electric Power Co Inc
SWCC Corp
Original Assignee
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Kansai Electric Power Co Inc
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER, Kansai Electric Power Co Inc, Showa Electric Wire and Cable Co filed Critical KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Priority to JP1080053A priority Critical patent/JPH02255506A/en
Publication of JPH02255506A publication Critical patent/JPH02255506A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve superconducting characteristics by coating a substrate with a soln. of org. metallic salts contg. the constituent elements of an oxide superconducting material and by irradiating the resulting coating layer with laser beams to crystallize the layer and simultaneously volatilize carbon as an impurity. CONSTITUTION:A substrate is coated with a soln. of org. metallic salts contg. the constituent elements of an oxide superconducting material and the resulting coating layer is irradiated with laser beams in an oxygen atmosphere. The layer may be simultaneously irradiated with laser beams and UV to generate ozone. The layer is crystallized and carbon as an impurity is volatilized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化物超電導体の製造方法に係わり、特に有機
金属塩の塗布、熱分解によって酸化物超電導膜を形成す
る方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an oxide superconductor, and particularly to an improvement in a method for forming an oxide superconductor film by coating and thermal decomposition of an organic metal salt.

[従来の技術] 近年、酸化物超電導物質の開発が著しい速度で進められ
ており、La系、Y系、Bi系、TI系等の超電導物質
の利用が有力視されている。しかしながら、これらの物
質はその超電導特性に異方性、すなわち結晶方位による
特性の差が著しく、通常の合成法によって得られた原料
粉末を成型後、焼結しただけではランダムな結晶方位の
ものしか得られないため、実用的レベルに達する電気的
、磁気的特性が得られないという問題があった。
[Prior Art] In recent years, the development of oxide superconducting materials has progressed at a remarkable speed, and the use of superconducting materials such as La-based, Y-based, Bi-based, and TI-based materials is considered promising. However, the superconducting properties of these materials are anisotropic, that is, there are significant differences in properties depending on the crystal orientation, and simply molding and sintering the raw material powder obtained by normal synthesis methods will only result in properties with random crystal orientation. Therefore, there was a problem in that electrical and magnetic properties reaching a practical level could not be obtained.

酸化物超電導体を製造する方法の一つとして、有機金属
塩を含む溶液を基板上に塗布した後、焼成することによ
って膜状の超電導体を得る方法が知られている。この方
法は塗布、仮焼結を複数回繰返した後、焼結することが
できるため、膜厚の制御が容易であり、かつその方法も
簡単であるという利点を有する。
As one of the methods for producing an oxide superconductor, a method is known in which a solution containing an organic metal salt is applied onto a substrate and then baked to obtain a film-like superconductor. This method allows sintering to be carried out after repeating coating and pre-sintering several times, so it has the advantage that the film thickness can be easily controlled and the method is also simple.

[発明が解決しようとする課題) しかしながら、上記の方法においては、有機物を用いる
ため超電導体内部に不純物として炭素が残存し、超電導
物質は得られるものの、その臨界電流密度は低い値しか
得られないという問題がある。
[Problem to be solved by the invention] However, in the above method, since an organic substance is used, carbon remains as an impurity inside the superconductor, and although a superconducting material is obtained, the critical current density thereof is only a low value. There is a problem.

本発明は、上記の難点を解決するためになされたもので
、有機金属塩の塗布、熱分解により超電導体を製造する
場合に、結晶の配向性を向上させ、かつ不純物を効率的
に除去することにより臨界電流密度を向上させることの
できる方法を提供することをその目的とする。
The present invention has been made in order to solve the above-mentioned difficulties, and is intended to improve crystal orientation and efficiently remove impurities when producing superconductors by applying organic metal salts and thermal decomposition. The object is to provide a method that can improve the critical current density.

[課題を解決するための手段] 上記目的を達成するために本発明の酸化物超電導体の製
造方法は、基体上に酸化物超電導物質の構成元素を含む
有機金属塩を含む溶液を塗布した後、この塗布層に酸素
雰囲気下でレーザビームを照射し、結晶化させると同時
に炭素を揮散させるものである。
[Means for Solving the Problems] In order to achieve the above object, the method for producing an oxide superconductor of the present invention includes applying a solution containing an organic metal salt containing constituent elements of an oxide superconducting substance onto a substrate, and then This coating layer is irradiated with a laser beam in an oxygen atmosphere to crystallize it and at the same time volatilize the carbon.

上記のレーザビームの照射と同時に紫外線を照射し、光
励起された高エネルギーのオゾンを発生させることによ
り、より効果的に不純物を除去することができる。
Impurities can be removed more effectively by irradiating ultraviolet rays simultaneously with the laser beam irradiation to generate optically excited high-energy ozone.

本発明における酸化物超電導物質としては特に限定され
ず、たとえばLa−Ba−Cu−0系、La−8r−C
a−Cu−0系、Y−Ba−Cu−0系、B1−3r−
Ca−Cu−0系、T 1−Da−Ca−Cu−0系等
の酸化物を挙げることができる。また、上記の有機金属
塩としては、炭酸塩や、脂肪酸、樹脂酸、ナフテン酸等
のアルカリ塩以外の金属塩、すなわち金属石けんを用い
ることができる。また、本発明におけるレーザビームと
しては、Ar、 WAG 、 CO2等のCW(連続)
レーザを使用することができる。
The oxide superconducting material in the present invention is not particularly limited, and includes, for example, La-Ba-Cu-0, La-8r-C
a-Cu-0 series, Y-Ba-Cu-0 series, B1-3r-
Examples include Ca-Cu-0-based oxides, T1-Da-Ca-Cu-0-based oxides, and the like. Moreover, as the above-mentioned organic metal salt, metal salts other than alkali salts such as carbonates, fatty acids, resin acids, naphthenic acids, ie, metal soaps can be used. Further, as the laser beam in the present invention, CW (continuous) such as Ar, WAG, CO2, etc.
Lasers can be used.

例えば、ビーム系20〜50μmφ程度のものを使用し
て、1〜10cm/secの走査速度で移動させる。
For example, a beam system of about 20 to 50 μm in diameter is used and moved at a scanning speed of 1 to 10 cm/sec.

この場合走査方向に配向した結晶を得るためにツインビ
ーム、トリプルビーム、スリットビーム等を用い、走査
方向に大きな温度勾配を形成することができる。
In this case, in order to obtain crystals oriented in the scanning direction, a twin beam, triple beam, slit beam, etc. can be used to form a large temperature gradient in the scanning direction.

[作用] 本発明においては、レーザビームの走査により非常に狭
い帯域で急速に溶融、凝固させることができるため、非
常に大きな温度勾配を達成することができるとともに、
不純物の炭素を短時間で揮発させることができる。さら
に、ビーム速度を制御することにより、高い配向性を有
する結晶が得られ、臨界電流密度を向上させることがで
きる。
[Function] In the present invention, since it is possible to rapidly melt and solidify in a very narrow band by scanning a laser beam, it is possible to achieve a very large temperature gradient, and
Impurity carbon can be volatilized in a short time. Furthermore, by controlling the beam speed, highly oriented crystals can be obtained and the critical current density can be improved.

[実施例] ナフテン酸イツトリウム、ナフテン酸バリウムおよびナ
フテン酸銅の所定量をY:Ba:Cu −1:2:3と
なるように秤量して、トルエンに溶解せしめて5νt%
の溶液を得た。この溶液をMgO基板上に塗布し、10
0℃に加熱して溶媒を揮発させ、次いで500℃に加熱
して仮焼結した。このような塗布→仮焼結の工程を20
回繰返して基板上に厚さ5μlの被膜を形成した。この
被膜に出力5w、ビーム径50μ■φ、ビーム焦点間距
離100μlの2本のYAGレーザ(ツインビーム)を
酸素加圧下で10cm/seeで照射し、同時に紫外線
を照射して被膜を結晶化させた。このようにして得られ
た超電導被膜の臨界温度(Tc)は90K、臨界電流密
度(J c)は77に、OTでto3〜104^/c−
であった。
[Example] Predetermined amounts of yttrium naphthenate, barium naphthenate, and copper naphthenate were weighed so that the ratio was Y:Ba:Cu -1:2:3, and dissolved in toluene to give 5vt%.
A solution of was obtained. This solution was applied onto an MgO substrate, and
It was heated to 0°C to volatilize the solvent, and then heated to 500°C for temporary sintering. This process of coating → temporary sintering takes 20 minutes.
This was repeated several times to form a film with a thickness of 5 μl on the substrate. This film was irradiated with two YAG lasers (twin beams) with an output of 5 W, a beam diameter of 50 μΦ, and a beam focal length of 100 μl at a rate of 10 cm/see under oxygen pressure, and at the same time, ultraviolet rays were irradiated to crystallize the film. Ta. The critical temperature (Tc) of the superconducting film obtained in this way was 90K, the critical current density (Jc) was 77, and the OT was to3~104^/c-
Met.

一方、上記の基板上に形成した被膜に970℃×lO分
間および800℃X20時間の熱処理を施した酸化物被
膜のTcおよびJcはそれぞれ90K 、 102A/
Gll ”以下であった。
On the other hand, the Tc and Jc of the oxide film formed on the above substrate and subjected to heat treatment at 970°C for 1O minutes and at 800°C for 20 hours are 90K and 102A/, respectively.
Gll” or less.

[発明の効果] 以上述べたように本発明によれば、レーザビームの照射
により高い配向性の結晶体を得ることができるとともに
、酸化物超電導物質に残存し易い不純物を除去すること
ができる。これにより、超電導特性の優れた膜体を得る
ことができる。
[Effects of the Invention] As described above, according to the present invention, a highly oriented crystal can be obtained by laser beam irradiation, and impurities that tend to remain in the oxide superconducting material can be removed. Thereby, a film body with excellent superconducting properties can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)基体上に酸化物超電導物質の構成元素を含む有機
金属塩を含む溶液を塗布した後、この塗布層に酸素雰囲
気下でレーザビームを照射し、結晶化させると同時に炭
素を揮散させることを特徴とする酸化物超電導体の製造
方法。
(1) After applying a solution containing an organic metal salt containing the constituent elements of an oxide superconducting material onto a substrate, this applied layer is irradiated with a laser beam in an oxygen atmosphere to crystallize and at the same time volatilize carbon. A method for producing an oxide superconductor characterized by:
(2)レーザビームの照射と同時に紫外線を照射しオゾ
ン発生させることを特徴とする請求項1記載の酸化物超
電導体の製造方法。
(2) The method for producing an oxide superconductor according to claim 1, characterized in that ozone is generated by irradiating ultraviolet rays at the same time as irradiating the laser beam.
JP1080053A 1989-03-30 1989-03-30 Production of oxide superconductor Pending JPH02255506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1080053A JPH02255506A (en) 1989-03-30 1989-03-30 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1080053A JPH02255506A (en) 1989-03-30 1989-03-30 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02255506A true JPH02255506A (en) 1990-10-16

Family

ID=13707497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1080053A Pending JPH02255506A (en) 1989-03-30 1989-03-30 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02255506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252641A (en) * 2008-04-09 2009-10-29 National Institute Of Advanced Industrial & Technology Method of producing superconducting oxide material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252641A (en) * 2008-04-09 2009-10-29 National Institute Of Advanced Industrial & Technology Method of producing superconducting oxide material

Similar Documents

Publication Publication Date Title
EP0341520B1 (en) Process for the production of a layer of metal oxide supraconductor material by laser evaporation
JPH0682869B2 (en) Method for forming patterned layer of high Tc oxide superconductor
JPH08502626A (en) Method for making thin films by pulsed excimer laser deposition
JP2866265B2 (en) Method for producing high critical temperature superconducting flexible conductor
JP2855614B2 (en) Method of forming superconducting circuit
EP0498306B1 (en) Method of preparing oxide superconducting material
JPH02255506A (en) Production of oxide superconductor
JP2573650B2 (en) Superconductor manufacturing method
WO1988010011A1 (en) Process for manufacturing conductive regions from an oxide-ceramic superconducting material having a high conductivity-change temperature
JPH0534287B2 (en)
JP3181642B2 (en) Manufacturing method of oxide superconducting wire
DE4114976A1 (en) Mfr. of high temp. superconductors with melt-structured grain boundaries - comprises homogeneously distributing silver@ in film, heating superconducting part to 910-960 deg. C., cooling in inert atmos., then oxygen@ annealing
JPH01262680A (en) Processing of superconductor oxide
JPH03109204A (en) Production of superconducting thin film
JP2637080B2 (en) Method for manufacturing compound superconductor
JPH02239102A (en) Production of oxide superconductor
JP2633892B2 (en) Manufacturing method of oxide superconductor
JPH012220A (en) Manufacturing method of ceramic superconducting wire
JP2928311B2 (en) Manufacturing method of oxide superconductor
JPH02279507A (en) Production of oxide superconductor
JPH01160808A (en) Formation of oxide superconductor thin film
JPH01249613A (en) Production of superconductor
JPH0193423A (en) Formation of superconducting film
JPS63274019A (en) Structure of superconductor and its manufacture
JPH01242477A (en) Formation of protective film on superconductor