JPH0192546A - Fuel supply control device for internal combustion engine - Google Patents

Fuel supply control device for internal combustion engine

Info

Publication number
JPH0192546A
JPH0192546A JP25045487A JP25045487A JPH0192546A JP H0192546 A JPH0192546 A JP H0192546A JP 25045487 A JP25045487 A JP 25045487A JP 25045487 A JP25045487 A JP 25045487A JP H0192546 A JPH0192546 A JP H0192546A
Authority
JP
Japan
Prior art keywords
acceleration
fuel
amount
engine
supply amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25045487A
Other languages
Japanese (ja)
Inventor
Mitsuaki Hashimoto
橋本 光明
Masayuki Fukuhara
正之 福原
Masaaki Uchida
正明 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP25045487A priority Critical patent/JPH0192546A/en
Publication of JPH0192546A publication Critical patent/JPH0192546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make it possible to prevent mis-fire even during acceleration, in an engine in which the amount of fuel is compensated so as to be increased during acceleration, by changing the acceleration increase compensating fuel amount between the case of acceleration from normal operation and the case of acceleration from deceleration. CONSTITUTION:During operation of an engine, a basic fuel computing means (c) computes a basic fuel supply amount in accordance with an operating condition of the engine detected by an operating condition detecting means (a). When an acceleration means (b) judges that the engine is shifted into an accelerating condition, a compensating amount computing means (d) computes a first acceleration increase compensating fuel amount upon acceleration from normal operation, or computes a second acceleration increase compensating amount upon acceleration from deceleration. Further, a supply amount setting means (e) compensates a basic supply amount in accordance with these acceleration compensating increase fuel amounts so as to set a final fuel supply amount, and accordingly, the amount of fuel fed to an engine from a fuel supply means (f) is controlled in accordance with the final fuel supply amount.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等エンジンの燃料供給装置に係り、特
に加速時に燃料の増量補正を行う装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel supply device for an engine such as an automobile, and particularly to a device that performs fuel increase correction during acceleration.

(従来の技術) 一般に、エンジンに対する要求出力が変化した際には、
その要求程度に応じて応答性よく燃料供給量を制御する
ことが必要であり、これは特に過渡運転時における空燃
比に影響を与え、ドライブフィーリングや排気組成等の
運転性能を左右する。
(Prior art) Generally, when the required output for the engine changes,
It is necessary to control the fuel supply amount with good responsiveness according to the degree of demand, and this affects the air-fuel ratio particularly during transient operation, and influences driving performance such as drive feeling and exhaust composition.

従来のこの種の内燃機関の燃料供給制御装置としては、
例えば特公昭47−41288号公報に記載されたもの
がある。
Conventional fuel supply control devices for this type of internal combustion engine include:
For example, there is one described in Japanese Patent Publication No. 47-41288.

この装置では、吸入空気量とエンジン回転数に基づいて
基本噴射量を演算するとともに、絞弁の開度を検出し、
その増加割合が一定値を超えると基本噴射量とは独立に
燃料の一時的加算を直ちに実行し加速の程度に応じた増
量補正を行うとともに、急加速時には通常の燃料噴射制
御とは別に非同期に噴射(割込み噴射)を行って運転性
能の向上を図っている。
This device calculates the basic injection amount based on the intake air amount and engine speed, and also detects the opening degree of the throttle valve.
When the rate of increase exceeds a certain value, temporary addition of fuel is immediately performed independently of the basic injection amount, and the increase is corrected according to the degree of acceleration.In addition, during sudden acceleration, an asynchronous addition of fuel is performed separately from normal fuel injection control. Injection (interrupt injection) is performed to improve driving performance.

すなわち、加速時には急激に吸入空気量が増加するため
、実際に燃料を噴射する時点では測定した時点に比べ空
燃比が大幅にリーン化していることがある。このように
、加速時に空燃比が過度にリーン化すると加速応答性の
悪化等の不具合が生じて運転性の悪化を招来する。した
がって、このような加速時の空燃比のリーン化を防止し
て運転性の低下を回避するために従来例では上述のよう
に加速時における同期あるいは非同期の燃料噴射を行っ
ている。
That is, since the amount of intake air increases rapidly during acceleration, the air-fuel ratio may be significantly leaner at the time of actual fuel injection than at the time of measurement. As described above, when the air-fuel ratio becomes excessively lean during acceleration, problems such as deterioration of acceleration response occur, resulting in deterioration of drivability. Therefore, in order to prevent the air-fuel ratio from becoming lean during acceleration to avoid deterioration in drivability, conventional examples perform synchronous or asynchronous fuel injection during acceleration as described above.

(発明が解決しようとする問題点) しかしながら、このような従来の内燃機関の燃料供給制
御装置にあっては、定常からの加速時と減速からの再加
速とでは加速初期の空燃比に大きな違いがあるにも拘ら
ず、同一の加速状態では同一の加速増量補正量であった
ため、定常からの加速に加速増量補正を合わせると減速
からの加速では空燃比のリッチ化からリッチ失火が発生
して運転性、排気エミッションに悪影響を及ぼすことが
あり、反対に、減速からの加速状態に加速増量補正を合
わせると定常からの加速では空燃比のリーン化からリー
ン失火が発生して運転性、排気エミッションが悪化して
しまうという問題点があった。
(Problem to be solved by the invention) However, in such a conventional fuel supply control device for an internal combustion engine, there is a large difference in the air-fuel ratio at the beginning of acceleration between acceleration from steady state and re-acceleration from deceleration. Despite this, the acceleration increase correction amount was the same in the same acceleration state, so if the acceleration increase correction is applied to acceleration from steady state, rich misfire will occur due to the enrichment of the air-fuel ratio when accelerating from deceleration. This may have a negative effect on drivability and exhaust emissions.On the other hand, if the acceleration increase correction is applied to an acceleration state from deceleration, lean misfire will occur due to the lean air-fuel ratio when accelerating from steady state, resulting in poor drivability and exhaust emissions. There was a problem that it worsened.

すなわち、定常から加速状態に移行した場合の絞弁開度
TVO1空燃比および燃焼室内圧力Piの変化を第5図
(A)〜(C)実線に示し、減速から加速状態に移行し
た場合の絞弁開度TVO1空燃比および燃焼室内圧力P
iの変化を同図破線に示すと、絞弁開度TVOの変化に
対し、定常からの加速では空燃比はリーン側にあり、燃
焼室内圧力Piでみると同図(C)の実線に示すように
リーン失火が発生してしまう。一方、減速からの再加速
では、空燃比はリンチ側にあり、Piでみると同図(C
)の破線に示すようにリッチ失火となる。
That is, the solid lines in Fig. 5 (A) to (C) show the changes in the throttle valve opening TVO1 air-fuel ratio and the combustion chamber pressure Pi when the state shifts from a steady state to an acceleration state, and the changes in the throttle valve opening TVO1 air-fuel ratio and combustion chamber pressure Pi when the state shifts from a steady state to an acceleration state are shown in solid lines. Valve opening TVO1 air-fuel ratio and combustion chamber pressure P
The change in i is shown by the broken line in the same figure. With respect to the change in the throttle valve opening TVO, the air-fuel ratio is on the lean side during acceleration from steady state, and when viewed in terms of the combustion chamber pressure Pi, it is shown by the solid line in the same figure (C). A lean misfire will occur. On the other hand, during re-acceleration after deceleration, the air-fuel ratio is on the Lynch side, and when viewed from Pi, the same figure (C
), a rich misfire occurs as shown by the broken line.

(発明の目的) そこで本発明は、定常からの加速と減速からの加速とで
加速増量補正量を変えることにより、定常から加速した
ときのリーン失火や減速から加速したときのリッチ失火
を防止して、運転性や排気エミッション特性を向上させ
ることを目的としている。
(Objective of the Invention) Therefore, the present invention prevents lean misfires when accelerating from steady state and rich misfires when accelerating from deceleration by changing the acceleration increase correction amount depending on acceleration from steady state and acceleration from deceleration. The aim is to improve driveability and exhaust emission characteristics.

(問題点を解決するための手段) 本発明による内燃機関の燃料供給制御装置は上記目的達
成のため、その基本概念図を第1図に示すように、エン
ジンの運転状態を検出する運転状態検出手段aと、エン
ジンが加速状態にあることを検出する加速検出手段すと
、エンジンの運転状態に基づいて燃料の基本供給量を演
算する基本値演算手段Cと、エンジンが加速状態に移行
したとき、定常時からの加速であれば前記基本供給量を
補正する第1加速増量補正量を演算し、減速時からの加
速であれば前記基本供給量を補正する第2加速増量補正
量を演算する補正量演算手段dと、基本値演算手段Cの
出力に基づいて最終供給量を決定するとともに、エンジ
ンが加速状態に移行すると前記基本供給量を前記第1又
は第2加速増量補正量に基づき補正して最終供給量を設
定する供給量設定手段eと、供給量設定手段eの出力に
基づいてエンジンに燃料を供給する燃料供給手段fと、
を備えている。
(Means for Solving the Problems) In order to achieve the above object, the fuel supply control device for an internal combustion engine according to the present invention has an operating state detection system that detects the operating state of the engine, as shown in FIG. Means a, acceleration detection means for detecting that the engine is in an acceleration state, basic value calculation means C for calculating the basic supply amount of fuel based on the operating state of the engine, and when the engine shifts to an acceleration state. If the acceleration is from a steady state, a first acceleration increase correction amount is calculated to correct the basic supply amount, and if it is an acceleration from a deceleration state, a second acceleration increase correction amount is calculated to correct the basic supply amount. The final supply amount is determined based on the outputs of the correction amount calculation means d and the basic value calculation means C, and when the engine shifts to an acceleration state, the basic supply amount is corrected based on the first or second acceleration increase correction amount. a supply amount setting means e for setting the final supply amount; a fuel supply means f for supplying fuel to the engine based on the output of the supply amount setting means e;
It is equipped with

(作用) 本発明では、エンジンが定常時から加速状態に移行する
と基本供給量が第1加速増量補正量に応じて増量補正さ
れ、また、エンジンが減速時から加速状態に移行すると
基本供給量が第2加速増量補正量に応じて増量補正され
る。したがって、加速初期の空燃比に応じた適切な加速
増量補正量が供給され、定常から加速した場合のリーン
失火や減速から加速した場合のリッチ失火が防止される
(Function) In the present invention, when the engine shifts from a steady state to an acceleration state, the basic supply amount is increased according to the first acceleration increase correction amount, and when the engine shifts from a deceleration state to an acceleration state, the basic supply amount is increased. The increase is corrected in accordance with the second acceleration increase correction amount. Therefore, an appropriate acceleration increase correction amount is supplied according to the air-fuel ratio at the initial stage of acceleration, and a lean misfire when accelerating from a steady state and a rich misfire when accelerating from deceleration are prevented.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜4図は本発明の一実施例を示す図である。2 to 4 are diagrams showing one embodiment of the present invention.

まず、構成を説明する。第2図において、■はエンジン
であり、吸入空気はエアクリーナ2より吸気管3を通し
て各気筒に供給され、燃料は噴射信号Siに基づきイン
ジェクタ(燃料供給手段)4により噴射される。気筒内
で燃焼した排気は排気管5を通して触媒コンバータ6に
導入され、触媒コンバータ6内で排気中の有害成分(C
o、HC,N0x)を三元触媒により清浄化して排出さ
れる。
First, the configuration will be explained. In FIG. 2, ▪ is an engine, in which intake air is supplied from an air cleaner 2 to each cylinder through an intake pipe 3, and fuel is injected by an injector (fuel supply means) 4 based on an injection signal Si. The exhaust gas combusted in the cylinders is introduced into the catalytic converter 6 through the exhaust pipe 5, where it removes harmful components (C) from the exhaust gas.
o, HC, NOx) are purified by a three-way catalyst and discharged.

吸入空気の流量Qはエアフローメータ7により検出され
、吸気管3内の絞弁8によって制御される。絞弁8の開
度TVOは絞弁開度センサ(加速検出手段)9により検
出され、エンジン1の回転数Nはクランク角センサ10
により検出される。また、ウォータジャケットを流れる
冷却水の温度TWは水温センサ11により検出され、エ
ンジンのアイドル状態はアイドルスイッチ12により検
出される。アイドルスイッチ12は絞弁8が所定のアイ
ドル開度にあるときONL、アイドル開度以外のときO
FFする。さらに、排気中の酸素濃度は酸素センサ13
により検出され、酸素センサ13は理論空燃比でその出
力Vsが急変する特性をもつもの等が用いられる。
The intake air flow rate Q is detected by an air flow meter 7 and controlled by a throttle valve 8 in the intake pipe 3. The opening TVO of the throttle valve 8 is detected by a throttle valve opening sensor (acceleration detection means) 9, and the rotation speed N of the engine 1 is detected by a crank angle sensor 10.
Detected by Further, the temperature TW of the cooling water flowing through the water jacket is detected by a water temperature sensor 11, and the idle state of the engine is detected by an idle switch 12. The idle switch 12 is ON when the throttle valve 8 is at a predetermined idle opening, and O when the throttle valve 8 is at a predetermined idle opening.
FF. Furthermore, the oxygen concentration in the exhaust gas is determined by the oxygen sensor 13.
The oxygen sensor 13 used has a characteristic that its output Vs suddenly changes at the stoichiometric air-fuel ratio.

上記エアフローメータ7、絞弁開度センサ9、クランク
角センサ10、アイドルスイッチ12は運転状態検出手
段14を構成しており、運転状態検出手段14、水温セ
ンサ11、アイドルスイッチ12および酸素センサ13
からの出力はコントロールユニット15に入力される。
The air flow meter 7, the throttle valve opening sensor 9, the crank angle sensor 10, and the idle switch 12 constitute the operating state detecting means 14, the water temperature sensor 11, the idle switch 12, and the oxygen sensor 13.
The output from is input to the control unit 15.

コントロールユニット15は基本値演算手段、補正量演
算手段および供給量設定手段としての機能を有しCPU
21、ROM22、RAM23およびI10ポート24
により構成される。CPU21はROM22に書き込ま
れているプログラムに従ってI10ボート24より必要
とする外部データを取り込んだり、またRAM23との
間でデータの授受を行ったりしながら、燃料供給制御に
必要な処理値を演算処理し、必要に応じて処理したデー
タをI10ボート24へ出力する。I10ボート24に
はセンサ群7.9.10.12.13からの信号が入力
されるとともに、I10ポート24からは噴射信号Si
が出力される。ROM22はCP U21における演算
プログラムを格納しており、RAM23は演算に使用す
るデータをマツプ等の形で記憶している。
The control unit 15 has functions as a basic value calculation means, a correction amount calculation means, and a supply amount setting means.
21, ROM22, RAM23 and I10 port 24
Consisted of. The CPU 21 takes in necessary external data from the I10 boat 24 according to the program written in the ROM 22, and while exchanging data with the RAM 23, calculates processing values necessary for fuel supply control. , and outputs the processed data to the I10 boat 24 as necessary. Signals from the sensor group 7.9.10.12.13 are input to the I10 boat 24, and the injection signal Si is input from the I10 port 24.
is output. The ROM 22 stores calculation programs for the CPU 21, and the RAM 23 stores data used in calculations in the form of a map or the like.

次に、作用を説明する。Next, the effect will be explained.

第3図は燃料供給制御のプログラムを示すフローチャー
トであり、本プログラムは所定期間毎に一度実行される
。まず、Plで絞弁8の開度TVOを読み込み、P2で
開度変化(負荷速度)ΔTVO/Δtを演算する。次い
で、P3で今回の開度変化ΔTVO/Δtを所定値と比
較してエンジンが加速状態になったか否かを判別する。
FIG. 3 is a flowchart showing a fuel supply control program, and this program is executed once every predetermined period. First, the opening TVO of the throttle valve 8 is read at Pl, and the opening change (load speed) ΔTVO/Δt is calculated at P2. Next, in P3, the current opening degree change ΔTVO/Δt is compared with a predetermined value to determine whether the engine is in an accelerated state.

加速状態でないとき(定常運転のとき)はP4で次式■
に従って通常の基本噴射量(基本パルス幅)Tpを演算
する。
When not in an acceleration state (in steady operation), use the following formula in P4■
A normal basic injection amount (basic pulse width) Tp is calculated according to the following.

’rp=K・ □  ・・・・・・■ 但し、K:定数 Q:吸入空気量 N:エンジン回転数 エンジンが加速状態のときはP5でアイドルスイッチ1
2がONになってから所定の時間(本実施例では0.5
sec)を経過したか(アイドルスイッチON≧0.5
か)否かを判別し、アイドルスイッチON<0.5のと
きは定常走行からの加速であり加速直後の空燃比はリー
ン側にあると判断してP6で次式■に従って加速時の燃
料噴射量T I) +を演算する。
'rp=K・ □ ・・・・・・■ However, K: Constant Q: Intake air amount N: Engine speed
2 is turned on for a predetermined time (in this example, 0.5
sec) has elapsed (idle switch ON≧0.5
If the idle switch is ON < 0.5, it is determined that the acceleration is from steady running and the air-fuel ratio immediately after acceleration is on the lean side, and fuel injection during acceleration is performed according to the following formula (■) in P6. Calculate the quantity T I) +.

’rp、=MX5+K・−・・・・・・■但し、M:加
速増量パルス幅 5:割込み回数(5回噴射) 一方、アイドルスイッチON≧0.5のときは減速走行
からの加速であり加速直後の空燃比はリッチ側にあると
判断してP、で次式〇に従って加速時の燃料噴射量T 
I) zを演算する。
'rp, = MX5+K・-・・・・・・・■ However, M: Acceleration increase pulse width 5: Number of interruptions (5 injections) On the other hand, when the idle switch is ON≧0.5, the acceleration is from deceleration driving. Judging that the air-fuel ratio immediately after acceleration is on the rich side, P, the fuel injection amount during acceleration is calculated according to the following formula 〇.
I) Calculate z.

Tp2=Mx5Xα十K・−・・・・・・■但し、α:
減速補正係数 次いで、P8で上記T p 、 T p +あるいは’
rp2をI10レジスタにストアして、所定クランク角
度でこのTp、Tp+ 、TI)2に対応する燃料噴射
パルス幅を有する噴射信号Siをインジェクタ4に出力
して今回の処理を終了する。
Tp2=Mx5Xα10K・−・・・・・・■However, α:
Deceleration correction coefficient Next, in P8, the above T p , T p + or '
rp2 is stored in the I10 register, and an injection signal Si having a fuel injection pulse width corresponding to Tp, Tp+, TI)2 is output to the injector 4 at a predetermined crank angle, and the current process ends.

第4図(A)〜(C)は加速開始後の絞弁開度TVO1
空燃比および燃焼室内圧力Piの変化を示すタイミング
チャートである。同図(A)に示すように定常からの加
速の場合は加速直後の空燃比はリーン側にあってリーン
失火が発生しやすいため、減速補正係数αを乗じない通
常の加速増量補正量(第1加速増量補正量)により基本
噴射量が補正される。また、減速からの場合は空燃比が
リッチ側にあってリッチ失火が発生しやすいため、減速
補正係数を乗じた加速増量補正量(第2加速増量補正量
)により基本噴射量が補正される。したがって、同図(
B)に示すように定常からの加速、減速からの加速何れ
の場合であっても空燃比は加速状態に合わせてなだから
に変化し、同図(C)に示すように燃焼室内圧力Piみ
て明らかなようにリーン失火、リッチ失火の発生が適切
に防止される。
Figure 4 (A) to (C) show the throttle valve opening TVO1 after the start of acceleration.
5 is a timing chart showing changes in air-fuel ratio and combustion chamber pressure Pi. As shown in Figure (A), in the case of acceleration from steady state, the air-fuel ratio immediately after acceleration is on the lean side and lean misfires are likely to occur. The basic injection amount is corrected by the 1-acceleration increase correction amount). Furthermore, in the case of deceleration, the air-fuel ratio is on the rich side and rich misfire is likely to occur, so the basic injection amount is corrected by the acceleration increase correction amount (second acceleration increase correction amount) multiplied by the deceleration correction coefficient. Therefore, the same figure (
As shown in Fig. B), the air-fuel ratio changes depending on the acceleration state, regardless of whether the acceleration is from steady state or from deceleration, and as shown in Fig. As is clear, the occurrence of lean misfires and rich misfires can be appropriately prevented.

(効果) 本発明によれば、定常からの加速と減速からの加速とで
加速増量補正量を変えているので、定常から加速したと
きのリーン失火や減速から加速したときのリッチ失火を
防止することができ、運転性や排気エミッション特性を
向上させることをかできる。
(Effect) According to the present invention, since the acceleration increase correction amount is changed depending on acceleration from steady state and acceleration from deceleration, lean misfire when accelerating from steady state and rich misfire when accelerating from deceleration can be prevented. It is possible to improve drivability and exhaust emission characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念図、第2〜4図は本発明の一
実施例を示す図であり、第2図はその全体構成図、第3
図はその燃料供給制御のプログラムを示すフローチャー
ト、第4図はその作用を説明するためのタイミングチャ
ート、第5図は従来の内燃機関の燃料供給制御装置を示
すその作用を説明するためのタイミングチャートである
。 1・・・・・・エンジン、 4・・・・・・インジェクタ(燃料供給手段)、9・・
・・・・絞弁開度センサ(加速検出手段)、14・・・
・・・運転状態検出手段、 15・・・・・・コントロールユニット(基本値演算手
段、補正量演算手段、供給量設定手段)。
Fig. 1 is a basic conceptual diagram of the present invention, Figs. 2 to 4 are diagrams showing an embodiment of the present invention, Fig. 2 is an overall configuration diagram thereof, and Fig. 3 is a diagram showing an embodiment of the present invention.
FIG. 4 is a flowchart showing the fuel supply control program, FIG. 4 is a timing chart for explaining its operation, and FIG. 5 is a timing chart for explaining its operation, showing a conventional fuel supply control device for an internal combustion engine. It is. 1...Engine, 4...Injector (fuel supply means), 9...
... Throttle valve opening sensor (acceleration detection means), 14...
... Operating state detection means, 15... Control unit (basic value calculation means, correction amount calculation means, supply amount setting means).

Claims (1)

【特許請求の範囲】 a)エンジンの運転状態を検出する運転状態検出手段と
、 b)エンジンが加速状態にあることを検出する加速検出
手段と、 c)エンジンの運転状態に基づいて燃料の基本供給量を
演算する基本値演算手段と、 d)エンジンが加速状態に移行したとき、定常時からの
加速であれば前記基本供給量を補正する第1加速増量補
正量を演算し、減速時からの加速であれば前記基本供給
量を補正する第2加速増量補正量を演算する補正量演算
手段と、 e)基本値演算手段の出力に基づいて最終供給量を決定
するとともに、エンジンが加速状態に移行すると前記基
本供給量を前記第1又は第2加速増量補正量に基づき補
正して最終供給量を設定する供給量設定手段と、 f)供給量設定手段の出力に基づいてエンジンに燃料を
供給する燃料供給手段と、 を備えたことを特徴とする内燃機関の燃料供給制御装置
[Scope of Claims] a) Operating state detection means for detecting the operating state of the engine; b) Acceleration detection means for detecting that the engine is in an accelerated state; c) Based on the operating state of the engine, determining the basis of fuel a basic value calculation means for calculating the supply amount; d) when the engine shifts to an acceleration state, calculates a first acceleration increase correction amount that corrects the basic supply amount if the acceleration is from a steady state; e) correction amount calculation means for calculating a second acceleration increase correction amount for correcting the basic supply amount if the acceleration is: e) determining the final supply amount based on the output of the basic value calculation means, and and f) supply amount setting means for correcting the basic supply amount based on the first or second acceleration increase correction amount to set a final supply amount; f) supplying fuel to the engine based on the output of the supply amount setting means; A fuel supply control device for an internal combustion engine, comprising: a fuel supply means for supplying fuel;
JP25045487A 1987-10-02 1987-10-02 Fuel supply control device for internal combustion engine Pending JPH0192546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25045487A JPH0192546A (en) 1987-10-02 1987-10-02 Fuel supply control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25045487A JPH0192546A (en) 1987-10-02 1987-10-02 Fuel supply control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0192546A true JPH0192546A (en) 1989-04-11

Family

ID=17208117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25045487A Pending JPH0192546A (en) 1987-10-02 1987-10-02 Fuel supply control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0192546A (en)

Similar Documents

Publication Publication Date Title
US5570574A (en) Air-fuel ratio control system for internal combustion engine
US20030159434A1 (en) Emission control apparatus for engine
JPS62162746A (en) Air-fuel ratio control device
US5168700A (en) Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
JP2969540B2 (en) Air-fuel ratio control device for internal combustion engine
JPH06194331A (en) Abnormal air-fuel ratio detector for internal combustion engine
JP3791032B2 (en) Fuel injection control device for internal combustion engine
JPH10159625A (en) Air-fuel ratio control device for internal combustion engine
JPH0192546A (en) Fuel supply control device for internal combustion engine
JP2737482B2 (en) Degradation diagnosis device for catalytic converter device in internal combustion engine
JPH01305142A (en) Fuel injection controller of internal combustion engine
US4646699A (en) Method for controlling air/fuel ratio of fuel supply for an internal combustion engine
JP3601210B2 (en) Engine air-fuel ratio control device
JPH01305144A (en) Fuel injection controller of internal combustion engine
JPH01110852A (en) Air-fuel ratio controller for internal combustion engine
JPH0571381A (en) Fuel feed control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPH02104938A (en) Device for controlling air-fuel ratio of internal combustion engine
JPH0631155Y2 (en) Air-fuel ratio controller for engine
JPS62162742A (en) Air-fuel ratio control device
JP2004346778A (en) Fuel injection control device for engine
JPH06346775A (en) Air-fuel ratio control device for internal combustion engine
JPH01290951A (en) Air amount sensing device of internal combustion engine
JPH01273853A (en) Fuel feed controller for internal combustion engine
JPS61129443A (en) Air-fuel ratio learning control for internal-combustion engine