JPH0160888B2 - - Google Patents

Info

Publication number
JPH0160888B2
JPH0160888B2 JP22213383A JP22213383A JPH0160888B2 JP H0160888 B2 JPH0160888 B2 JP H0160888B2 JP 22213383 A JP22213383 A JP 22213383A JP 22213383 A JP22213383 A JP 22213383A JP H0160888 B2 JPH0160888 B2 JP H0160888B2
Authority
JP
Japan
Prior art keywords
cathode
discharge
ion
plasma
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22213383A
Other languages
English (en)
Other versions
JPS60115140A (ja
Inventor
Kazuo Takayama
Katsuhiko Sunago
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Ulvac Inc
Original Assignee
Tokai University
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Nihon Shinku Gijutsu KK filed Critical Tokai University
Priority to JP22213383A priority Critical patent/JPS60115140A/ja
Publication of JPS60115140A publication Critical patent/JPS60115140A/ja
Publication of JPH0160888B2 publication Critical patent/JPH0160888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 この発明は、イオン注入装置等に用いるイオン
源に関するものである。
従来この種のイオン源としては熱フイラメント
から出た電子を加速し、この電子を導入ガスと衝
突させてプラズマを生成し、それに基づくイオン
を利用していた。この場合、電子の飛程距離を増
大させるために磁場コイル或いはフイラメントを
流れる電流によつて生じる磁場が用いられてお
り、このような磁場の中のプラズマは密度、電場
等の乱れを生じ、得られるイオンビームの横方向
に広がる速度の軸方向速度に対する割り合い、す
なわちエミツタンスが大きくなる。熱フイラメン
トは、放電の陰極であり、流入するプラズマイオ
ンの衝撃によるスパツタリング及び使用する放電
ガス、あるいはその分解物との化学反応により消
耗したり断線するため、定期的に交換する必要が
ある。
ところで、イオン注入技術では砒素や燐のよう
に500℃前後の温度で放電に必要な蒸気圧力を得
ることができるもの以外の元素は水素化合物やハ
ロゲン化合物等のガス体として供給され、所要の
元素イオンをもつプラズマを生成している。この
ような方法では、化合物ガスおよび放電により生
じる分解ガスがガス体およびイオンの形態でイオ
ン引出開口より流出し、排気系統のポンプの機能
低下、排気されたガスの処理などの問題が生じて
いる。
そこで、この発明の目的は、上述のような従来
のイオン源のもつ欠点や問題点を解消するため、
熱フイラメント、磁場、化合物ガスなどを用いず
にエミツタンスが小さく、静かで安定した所要元
素のイオンビームを発生できるホロー陰極放電型
イオン源を提供することにある。
この目的を達成するために、この発明によるイ
オン源は、大部分を陰極とし、残りの部分を陽極
とし、これら両電極間に電気的絶縁材を介在させ
てガス漏れのない筒状放電室を構成し、この筒状
放電室の壁部分に放電を維持するためのガスの導
入口と陰極表面物質補給口を、陰極壁部分にイオ
ン引出用開口を設け、またイオン引出用開口の外
部にイオン引出用電極を配置し、陰極と陽極との
間のグロー放電によりホロー陰極放電プラズマを
生成するように構成したことを特徴としている。
放電室は筒状であればどのような形状でもよ
く、例えば円筒状または多角形筒状に構成するこ
とができる。イオン引出用開口もスリツト形、円
形或いは任意の多角形等種々の形状にし、また、
必要に応じてこれを多数個設けることができる。
放電ガス導入口より導入されるアルゴン等の希
ガスによつて陰極と陽極との間にホロー陰極グロ
ー放電が発生される。プラズマは負グローとして
筒状放電室を満し、その電位は陽極電位に近く、
放電電圧の大部分はプラズマと陰極との間に生じ
る陰極鞘に印加される。プラズマのイオンはこの
電圧により加速されて陰極に入射・流入し、2次
電子を放出させて放電を維持すると共に、陰極表
面物質をスパツタし、また入射イオンの一部は陰
極壁部分に設けたイオン引出用開口を通つて射出
する。従つて、実際のプラズマイオンは希ガスと
スパツタされた陰極表面物質とで構成され、両者
の混合イオンがイオン引出用開口から引出される
ことになる。
このようにして、モリブデン等を材料として用
いる陰極の表面を所要の元素で、その元素の電気
抵抗値が高いときはその金属間化合物で被覆し、
これをスパツタすることによつて高温でも蒸気圧
力の低い元素のイオンビームを得ることができ
る。
また長時間の運転により、陰極表面物質が無く
なるおそれのある場合には、陰極表面物質補給口
より陰極表面物質を陰極内部に供給することによ
つて、それはスパツタリングされて陰極表面に引
き続き補給されることになる。
イオン引出用開口の外部に対応して設けられた
イオン引出用電極は引出電圧の印加によりイオン
ビームの電流密度を高くするように作用する。
この発明によるイオン源においては、排気され
るガスは主として希ガスであり、排気系統に悪い
影響を及ぼすことがなく、またホロー陰極を満す
プラズマは負グローでありしかも磁場を用いない
ため、プラズマ内の密度、電場等の乱れは非常に
小さく、また熱フイラメントを用いる必要がな
い。さらに、イオン温度は0.5ev以下であつて、
陰極鞘電位に比べて小さいため、得られるイオン
ビームのエミツタンスは小さい。放電電力の大部
分は陰極への熱入力となり、陰極温度を上昇させ
る。そこで熱放射シールドまたは冷却装置を設
け、放電室の温度を適温に保つことができる。
さらにこの発明においては、プラズマ粒子の壁
への損失を減らし、プラズマ密度を高く保つた
め、イオン引出用開口の近くを除いた放電室壁の
表面近くに多極磁場を用いることも可能である。
以下この発明を添附図面を参照してさらに説明
する。
第1−1図、第1−2図および第2図にはこの
発明によるホロー陰極放電型イオン源の実施例を
概略的に示す。
これらの図面において、1は円筒状の中空陰極
で、例えばモリブデンで構成する。
このホロー陰極1に、第1−1図では図示した
ようにその軸線に平行にイオン引出用スリツト2
が設けられ、第1−2図では円筒端面に軸線を中
心とした円形のイオン引出用開口が設けられてい
る。またこのホロー陰極1には図示したようにガ
ス導入管3および陰極表面物質補給管4が取付け
られている。また第1−1図ではホロー陰極1の
両端に、第1−2図ではホロー陰極の一端に、そ
れぞれ例えばセラミツクから成り得る環状絶縁体
5を介して陽極6が設けられている。第1−1図
の場合、各陽極6は第2図に示すように内方へ突
出した円板状部分6aを備え、ホロー陰極1の端
部との間に挿置された環状絶縁体5の内側表面が
汚染して絶縁破壊の生じないような工夫がなされ
ている。従つて環状絶縁体5自体も当然その内側
表面形状を入り込んだ形にしてその表面全体が汚
染されないようにされる。またイオン引出用スリ
ツト2の前方には第2図に示すように引出電極7
が配置されている。図示イオン源では左右、上下
対称に構成されている。また各電極要素(1,
6,7)は第2図に示すように給電系に接続され
る。ガス導入管3にはHe,Ar等の不活性ガスが
供給される。
第3図には、直径50mm、長さ100mmのホロー陰
極を用いた第1−1,2図によるイオン源におけ
る放電電圧(Vd)およびプラズマ空間電圧
(Vs)をイオン源の内部圧力(作動圧力)の関数
として示し、使用したガスはHeで、放電電流は
0.1アンペアである。また電子温度および電子密
度は圧力0.5Torrで、それぞれ0.7ev、5×1011
c.c.である。第3図から認められるようにプラズマ
空間電位はほぼ陽極電位に近く、比較的高い圧力
領域では一致しており、このプラズマ空間電位が
数mm足らずの厚さの陰極鞘を通じてプラズマと陰
極との間に生じていることを示している。従つて
プラズマからのイオンはプラズマ空間電位で加速
され、陰極に入射する。イオン引出用開口があれ
ば、引出電極7に引出電圧を印加しなくてもイオ
ンは数百evのエネルギーで射出される。またこ
のことは、放電の電力の大部分が陰極壁に注入さ
れ、陰極温度が容易に上昇されることを意味して
いる。例えば直径25mmのホロー陰極では、放電電
流0.4アンペアで800℃以上になることが観察され
た。従つて必要ならば前述のように熱放射シール
ドまたは冷却装置を設けて放電室温度を所定の温
度に保つことができる。
第4,5図は、イオンビーム流の特性を示す。
即ち第4図は長さ100mmのホロー陰極において、
Heガス0.1Torr、放電電流0.1アンペアのとき0.5
×15mm2のイオン引出用スリツトから10mmの位置に
おける長手方向に沿つたイオンビーム流の分布状
態を示し、第5図は直径25mmのホロー陰極におい
てHeガス0.4Torr、放電電流0.4アンペア、イオ
ン引出用電圧2kvのとき、イオン引出用スリツト
から30,40,60,80mmの位置,,,の
各々における横方向に沿つたイオンビーム流の広
がり状態を示す。これらのグラフから明らかなよ
うに、イオン引出用スリツトから引出されるイオ
ンビームの長手方向密度分布は一様で、かつ広が
り頂角は約3゜程度である。使用する引出電極の形
状および位置決め等を適当に選択することによつ
て、上述の広がり角度をさらに小さくすることが
できる。
第6図には引出イオンビームのイオン電流密度
を放電電流との関係を示す。この場合、使用した
ホロー陰極は直径25mm、長さ50mm、イオン引出用
スリツトの大きさは0.5×15mm2、また使用ガスは
Heガスで圧力は0.5Torrである。曲線は引出電
圧(Vacc)=0KVのとき、は3KV、そして
は6KVのときであり、イオン電流密度は放電電
流に正比例し、引出電圧を大きくすることによ
り、イオン電流密度は大きくなることが認められ
る。
第7図は、第6図の場合と同じホロー陰極を使
用し、イオン源の圧力をHeガス0.5Torr、加速電
圧(Vacc)を6KV、放電電流を0.2アンペアとし
たときの12時間の動作におけるイオンビームの時
間に対する安定性の一例を示す。このグラフから
わかるように、イオンビームのドリフトは12時間
を通じて数%にすぎず、極めて安定したものとな
つている。
第8図にはスパツタリング効果とイオン衝撃に
よる陰極加熱とによつてステンレス製の陰極材料
の金属イオンが生成される様子を示す。図示グラ
フは、イオン源の圧力がArガス0.4Torr、放電電
流が0.4アンペアのとき、質量分析を行なつた結
果を示し、放電電流の増加および陰極温度の上昇
と共に放電維持ガスのイオン(Ar+)より陰極材
料のイオン(Fe+,Cr+など)の量が増加するこ
とが認められた。すなわち公知のスパツタリング
収量値からも認められるように、陰極壁の表面材
料がArイオンで衝撃されてスパツタし、プラズ
マ中に入つてイオン(Fe+など)となり、この金
属イオンが陰極壁を衝撃し、その結果セルフスパ
ツタリング状態となり、得られる金属イオンは
Arガスのイオンの量より多くなる。
以上説明してきたように、この発明によるイオ
ン源は構造が極めて簡単で、しかもフイラメント
を使用してないので長寿命であり、またプラズマ
密度はグロー放電の場合より高く、また磁場を使
用しないので生成されるイオンビームは極めて静
かで、長時間にわたつて安定しており、さらにこ
の発明によるイオン源のホロー陰極の内壁表面物
質は陰極鞘電位によつて加速されたイオンにより
スパツタされてプラズマのイオンとなり、陰極に
設けたイオン引出開口より射出する。
電気抵抗値の高い元素、例えばホウ素のとき
は、電気抵抗値の低い金属間化合物(ホウ化チタ
ンTiB2など)として用いる。
また、放電維持に用いるガスはアルゴン等の希
ガスであり、ポンプ系統に悪い影響を及ぼすハロ
ゲン化合物は存在しない。
なおホロー陰極およびスリツトの形状は図示実
施例に限定されるものではなく、種々の形に変形
または変更することができる。
【図面の簡単な説明】
第1−1図および第1−2図はこの発明による
イオン源の要部の実施例を示す斜視図、第2図は
第1−1図のイオン源の縦断面図、第3図はこの
発明によるイオン源における圧力と放電電圧およ
びプラズマ空間電圧との関係を示すグラフ、第
4,5図はイオン引出用スリツトからのイオンビ
ームの特性を示すグラフ、第6図は放電電流とイ
オン電流密度との関係を示すグラフ、第7図は時
間に対するイオンビームの特性を示すグラフであ
り、第8図は生成されるイオンを質量分析した結
果の一例を示すグラフである。 図中、1:ホロー陰極、2:イオン引出用開
口、3:ガス導入口、4:陰極表面物質補給口、
5:絶縁体、6:陽極、7:引出電極。

Claims (1)

  1. 【特許請求の範囲】 1 大部分を陰極とし、残りの部分を陽極とし、
    これら両電極間に電気的絶縁部材を介在させてガ
    ス漏れのない筒状放電室を構成し、この筒状放電
    室の壁部分に、放電を維持するためのガスの導入
    口と陰極表面物質補給口とを設け、上記筒状放電
    室の陰極壁部分にイオン引出用開口を設け、また
    イオン引出用開口の外部にイオン引出用電極を配
    置し、陰極と陽極との間のグロー放電によりホロ
    ー陰極放電プラズマを生成するように構成したこ
    とを特徴とするホロー陰極放電型イオン源。 2 放電室が円筒状または多角形筒状である特許
    請求の範囲第1項に記載のイオン源。 3 筒状放電室を、ガス導入口より導入する希ガ
    スのグロー放電によるプラズマで満し、プラズマ
    のイオンを陰極鞘電位により加速して陰極に入射
    し、陰極表面物質をスパツタさせ、スパツタされ
    た陰極表面物質と希ガスとの混合イオンをイオン
    引出用開口から射出するように構成した特許請求
    の範囲第1項に記載のイオン源。
JP22213383A 1983-11-28 1983-11-28 ホロ−陰極放電型イオン源 Granted JPS60115140A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22213383A JPS60115140A (ja) 1983-11-28 1983-11-28 ホロ−陰極放電型イオン源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22213383A JPS60115140A (ja) 1983-11-28 1983-11-28 ホロ−陰極放電型イオン源

Publications (2)

Publication Number Publication Date
JPS60115140A JPS60115140A (ja) 1985-06-21
JPH0160888B2 true JPH0160888B2 (ja) 1989-12-26

Family

ID=16777682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22213383A Granted JPS60115140A (ja) 1983-11-28 1983-11-28 ホロ−陰極放電型イオン源

Country Status (1)

Country Link
JP (1) JPS60115140A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273542A (ja) * 1985-09-27 1987-04-04 Tokai Univ ホロ−・カソ−ド型イオン源
CN107385416B (zh) * 2017-09-01 2023-11-03 常州比太科技有限公司 一种镀膜进气结构

Also Published As

Publication number Publication date
JPS60115140A (ja) 1985-06-21

Similar Documents

Publication Publication Date Title
JP6469700B2 (ja) イオン注入システムのための、金属汚染が微量に低減されたイオン源
JP5212760B2 (ja) イオン注入装置用のイオン源およびそのためのリペラ
CA2162748C (en) Ion generating source for use in an ion implanter
EP0851453B1 (en) Endcap for indirectly heated cathode of ion source
US5886355A (en) Ion implantation apparatus having increased source lifetime
US5763890A (en) Cathode mounting for ion source with indirectly heated cathode
US4714860A (en) Ion beam generating apparatus
JPH0132627B2 (ja)
US8796649B2 (en) Ion implanter
US3955118A (en) Cold-cathode ion source
US4737688A (en) Wide area source of multiply ionized atomic or molecular species
US4412153A (en) Dual filament ion source
US6352626B1 (en) Sputter ion source for boron and other targets
JPH04503889A (ja) 金属イオン源および金属イオン生成方法
US8330118B2 (en) Multi mode ion source
KR101983294B1 (ko) Bnct 가속기용 대전류 듀오플라즈마트론 이온원의 전극 구성과 그 장치
JP3529775B2 (ja) アークダウンを防止するための接地されたシールドを有する電子ビームガン
Keller et al. Metal beam production using a high current ion source
JPH0160888B2 (ja)
JP3075129B2 (ja) イオン源
US4891525A (en) SKM ion source
US4004172A (en) Gas discharge electron gun for generating an electron beam by means of a glow discharge
RU2796652C1 (ru) Устройство для формирования пучка кластерных или атомарных ионов газа
US11961696B1 (en) Ion source cathode
JPS594045Y2 (ja) 薄膜生成用イオン化装置