KR101983294B1 - Bnct 가속기용 대전류 듀오플라즈마트론 이온원의 전극 구성과 그 장치 - Google Patents

Bnct 가속기용 대전류 듀오플라즈마트론 이온원의 전극 구성과 그 장치 Download PDF

Info

Publication number
KR101983294B1
KR101983294B1 KR1020170171387A KR20170171387A KR101983294B1 KR 101983294 B1 KR101983294 B1 KR 101983294B1 KR 1020170171387 A KR1020170171387 A KR 1020170171387A KR 20170171387 A KR20170171387 A KR 20170171387A KR 101983294 B1 KR101983294 B1 KR 101983294B1
Authority
KR
South Korea
Prior art keywords
plasma
electrode
expansion cup
cup
chamber
Prior art date
Application number
KR1020170171387A
Other languages
English (en)
Other versions
KR20180104546A (ko
Inventor
이수영
김효진
이강선
황정진
김동수
최병호
박선순
Original Assignee
주식회사 다원메닥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 다원메닥스 filed Critical 주식회사 다원메닥스
Publication of KR20180104546A publication Critical patent/KR20180104546A/ko
Application granted granted Critical
Publication of KR101983294B1 publication Critical patent/KR101983294B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • H01J27/10Duoplasmatrons ; Duopigatrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Plasma Technology (AREA)

Abstract

본 발명은 BNCT 가속기용 대 전류 듀오플라즈마트론 이온원의 전극 구성과 그 장치에 관한 것이다.

Description

BNCT 가속기용 대전류 듀오플라즈마트론 이온원의 전극 구성과 그 장치{An Electron Structure of a Large Current Duo Plasmatron Ion Source for BNCT Accelerator and an Apparatus Comprising the Same}
본 발명은 BNCT 가속기용 대 전류 듀오플라즈마트론 이온원의 전극 구성과 그 장치에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
듀오플라즈마트론 이온원(Duo Plasmatron Ion Source)은 아크 방전을 통하여 플라즈마를 발생시키는 구조로서, 1956년 Manfred von Ardenne에 의해 처음 제안되었으며, 고(高) 밀도의 플라즈마 생성을 위하여 음극, 양극 사이에 중간전극을 두고 좁은 중간전극의 구멍을 통하여 방전통로를 구성함으로써 플라즈마를 공간적으로 제한하여 고밀도 플라즈마를 얻는다. 여기에 덧붙여 중간전극과 양극 사이의 플라즈마 발생 공간을 둘러싸고 4,000 Gauss의 축 방향 자기장을 걸어주어 플라즈마 하전입자들을 자기장으로 묶어 둠으로써 이중으로 플라즈마를 구속, 압축하여 양극 근방에서 직경 1-2 mm의 가는 기둥 형태의 고밀도 플라즈마를 얻을 수 있다. 이 고밀도의 플라즈마를 양극 중심에 위치한 핀홀(pin hole)을 통하여 연이은 플라즈마 확장 컵으로 확산 전달하고 공간적으로 확장하여 플라즈마 밀도를 빔 인출에 적합하도록 적절히 낮춘다. 이후 여기에 양의 고전압을 걸어 플라즈마 중 양이온 빔을 인출하게 된다.
이러한 기본 원리를 적용한, 종래의 듀오플라즈마트론은 수 mA급의 중전류 및 연속 이온빔 인출에는 적합하나, 50 mA 이상의 대전류 이온빔 인출시 확장컵 내의 고밀도 플라즈마 유입과 유지에 제한이 따라 대전류 빔 인출이 어려웠다. 또한, 인출단의 플라즈마 표면 형상이 균일치 못하여 빔의 질을 결정하는 이미턴스(emittance)가 증가하고, 빔이 불안정하였다.
또한, 열 전자 방출용 음극으로 텅스텐, 토륨 텅스텐(Tungsten-Thorium), LaB6 등을 사용하고 있으나, 방전시 플라즈마 이온들의 음극 충돌에 의한 소재의 스퍼터링(sputtering) 현상으로 수명이 짧고, 열 전자를 방출하기 위한 높은 온도를 유지하기 위하여 필라멘트 가열 전력이 상당히 소요되는 단점이 있다. 또한, 대전류 빔 인출시, 특히 펄스 빔(pulsed beam) 인출시 빔 인출 계통에서의 플라즈마 확산 등에 의한 공간전하의 다량 발생으로 인해 절연체를 통한 방전이 발생하여 20~30 kV의 낮은 빔 인출 전압에서도 방전이 일어나 빔이 불안정하게 되는 요인이 있다.
한편, BNCT(Boron Neutron Capture Therapy)의 열외중성자발생용 양성자가속기의 이온원의 요건으로는 수소 이온빔 전류가 50mA 이상이고, 빔 이미턴스가 0.3 π·mm·mrad 이하, 빔 안정도 1% 이하, 음극수명 40시간 이상, 연속가동시간 10 시간 이상이 요구되어, 이 조건에 맞도록 종래의 듀오플라즈마트론 이온원을 개선, 개량할 필요가 있다.
상기와 같은 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 BNCT 가속기용 대전류 듀오플라즈마트론 이온원의 전극 구성과 그 장치는, 이온화될 가스를 공급하는 가스 공급관; 열전자를 발생시켜 가스로부터 양이온을 발생시키는 산화물 음극; 아크 방전으로 양이온으로부터 플라즈마를 발생시키는 중간전극; 플라즈마 방출구; 및 플라즈마 방출구의 반대편에 형성되는 환형의 조립 플렌지;를 포함하는 플라즈마 챔버; 플라즈마 챔버를 원통형으로 감싸고 배치되어, 플라즈마를 원기둥 형태로 압축하여 밀도를 높이는 전자석 코일; 회전축 중심에 양극 핀 홀(anode pin hole)을 포함하되, 플라즈마 방출구로부터 플라즈마를 인출하는 인출전극; 플라즈마 챔버의 진공은 유지된 상태에서 플라즈마 챔버의 반경 방향 위치를 조정함으로써, 생성된 원기둥 형태의 플라즈마의 중심축과 양극 핀 홀을 정렬하는 중간전극 정밀조정기구; 양극 핀 홀로부터 인출된 고밀도의 플라즈마가 수용되는 플라즈마 확장컵; 플라즈마 확장컵에 유지된 플라즈마의 인출 부위 표면 형상을 제어하는 플라즈마 표면 제어전극; 플라즈마 확장컵에 유지된 플라즈마로부터 대전류 빔을 인출하는 가속전극; 플라즈마 확장컵과 가속전극 사이에 배치되고, 플라즈마 확장컵으로부터 대전류 빔을 인출할 때 양이온 이외의 전자의 방출을 억제하는 감속전극; 가속전극 및 감속전극의 반경 방향 외측에 배치되되, 빔 진행 방향으로 복수로 배치되어 가속 전압에 의한 방전을 방지하는 등전위(equipotential)전극; 및 전자석 코일, 인출전극 및 플라즈마 확장컵이 고정되는 하우징;을 포함하는 것을 특징으로 한다.
또한, 산화물 음극은 메쉬(mesh) 형태로 형성되고, 열전자를 생성하기 위해 전압이 인가되지만 플라즈마 발생 이후에는 전압 공급이 없이 방전에 의한 자가 발열(self-heating)에 플라즈마 발생이 유지되는 것을 특징으로 한다.
또한, 중간전극 정밀조정기구는 하우징과 플라즈마 챔버 사이에 배치되고, 조립 플렌지를 닫는 플라즈마 챔버 커버; 플라즈마 챔버 커버와 하우징을 전기적으로 절연인 상태로 연결하는 복수의 조립 볼트; 플라즈마 챔버 커버와 하우징 사이에 배치되는 환형의 제1절연링; 하우징과 조립 플렌지 사이에 배치되는 환형의 제2절연링; 환형의 절연 링 양측면에 구비되는 진공 씰 조립부; 및 제1절연링의 외주면으로부터 관통되어 형성된 복수의 나사구멍에 나사결합하고 조립 플렌지의 외주면에 맞닿도록 배치되어, 플라즈마 챔버의 반경 방향의 위치 조정을 수행하는 복수의 미세위치 조정나사;를 포함하되, 조립 볼트가 체결됨으로써 플라즈마 챔버는 진공이 유지된 상태에서 반경 방향으로 소정 범위 내의 미끄러짐이 가능하고, 복수의 미세위치 조정나사를 조정함으로써 플라즈마 챔버의 반경 방향 위치가 조정되고, 생성된 원기둥 형태의 플라즈마의 중심축과 양극 핀 홀을 정렬하는 것을 특징으로 한다.
또한, 플라즈마 확장컵은 이온 및 전자로 구성된 플라즈마가 수용되는 내벽을 전기 부도체로 구성하여, 이온 또는 전자가 내벽과 전하 교환을 통해 재결합 후 소멸하는 것 때문에 플라즈마 밀도가 저하되는 것을 방지하도록 구성된 것을 특징으로 한다.
또한, 플라즈마 확장컵은 내벽에 밀착되고, 내벽의 형상을 따라 형성되는 세라믹 소재의 전기 부도체인 플라즈마 확장컵 절연체가 조립되는 구조를 포함하는 것을 특징으로 한다.
또한, 플라즈마 표면 제어전극은 플라즈마 확장컵의 외측에 배치되어 플라즈마 확장컵에 수용된 플라즈마의 표면 형상을 제어함으로써 가속전극에 의해 플라즈마로부터 인출되는 빔의 확산을 방지하고 직진성 혹은 수렴성을 확보하는 것을 특징으로 한다.
또한, 플라즈마 표면 제어전극은 플라즈마 확장컵의 외측에 배치되어 플라즈마 확장컵에 수용된 플라즈마의 표면 형상을 듀오플라즈마트론 이온원의 광축 방향에 수직인 평면 형상이 되도록 제어하는 것을 특징으로 한다.
본 발명은 BNCT 가속기용 대전류 듀오플라즈마트론 이온원에 관한 것으로 대전류의 이온빔을 장시간 안정되게 공급할 수 있는 효과가 있다.
또한, 이온화될 가스로부터 양이온을 발생시키는 음극(cathode)을 메쉬(mesh) 형태의 산화물 음극(oxide cathode)을 사용하여 수십 시간 이상의 음극 운전 수명이 확보될 수 있다.
또한, 중간전극과 양극(anode)인 인출전극의 양극 핀 홀(pin hole)을 정렬하는 정밀조정기구를 플라즈마 챔버에 구비하여 진공이 유지된 상태에서 고밀도의 플라즈마가 손실 없이 양극 핀 홀로 인출되도록 손쉽게 정렬할 수 있다.
또한, 양극 핀 홀로 인출된 플라즈마가 수용되는 플라즈마 확장컵의 내벽을 전기 부도체로 구성하여, 이온 또는 전자가 내벽과 전하 교환을 통해 재결합 후 소멸하는 것을 방지하여 플라즈마의 밀도를 유지할 수 있다.
또한, 플라즈마 확장컵 내에 수용된 플라즈마의 빔 인출 방향 표면 형상을 플라즈마 표면 제어전극으로 제어하여 인출되는 빔의 확산을 방지하고 직진성을 확보하여 빔 밀도 손실을 방지하고, 빔 확산에서 야기될 수 있는 인출 전극 주변의 방전을 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 대전류 듀오플라즈마트론 이온원을 나타내는 외관 사시도이다.
도 2는 본 발명의 일 실시예에 따른 대전류 듀오플라즈마트론 이온원을 나타내는 단면도이다.
도 3은 각종 음극 재료의 온도에 따른 열 전자 방출 특성을 나타내는 그래프이다.
도 4는 본 발명의 일 실시예에 따른 듀오플라즈마트론 이온원에 적용된 메쉬 형태의 산화물 음극을 나타내는 사진이다.
도 5는 본 발명의 일 실시예에 따른 대전류 듀오플라즈마트론 이온원의 중간전극 정밀조정기구를 나타내는 정면도 및 좌우 측면도이다.
도 6은 본 발명의 일 실시예에 따른 중간전극 정밀조정기구를 나타내는 사진이다.
도 7은 다양한 벽 재질의 재결합 계수를 나타내는 표이다.
도 8은 플라즈마 표면 모양에 따른 양이온 빔의 인출 방향 특성을 나타내는 개념도이다.
도 9는 본 발명의 일 실시예에 따른 듀오플라즈마트론 이온원에 적용된 절연물 내부의 등전위 전극의 구성을 나타내는 부분 단면도이다.
도 10은 본 발명의 일 실시예에 따른 듀오플라즈마트론 이온원을 나타내는 사진이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 '포함', '구비'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 '…부', '모듈' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 1은 본 발명의 일 실시예에 따른 대전류 듀오플라즈마트론 이온원을 나타내는 외관 사시도이다.
본 발명의 일 실시예에 따른 듀오플라즈마트론 이온원(1)은 붕소 중성자 포획 치료법(BNCT)용 양성자 가속기에서 대전류의 양이온 빔을 LEBT(Low Energy Beam Transport)에 공급하는 역할을 한다.
붕소 중성자 포획 치료법은 중성자선의 조사에 의하여 암세포를 사멸시키는 중성자 포착요법이다. BNCT에서는 붕소를 포함하는 약재를 환자에게 투여하여 암세포가 존재하는 부위에 붕소를 집적시키고, 이 붕소가 집적된 부위에 중성자선을 조사하면 암세포에 모인 붕소화합물이 중성자를 집중적으로 흡수하게 되고, 이때 나오는 2차 방사선으로 암세포를 사멸시킨다.
중성자 포착요법 장치는 양성자선 발생장치와, 양성자선을 조사대상인 환자에게 유도하는 진공 배관인 빔 라인과, 양성자선을 집속하고 양성자선의 지향성을 높이는 콜리메이터(collimator), 양성자선의 진행 방향을 제어하는 전자석, 중성자 생성을 위한 중성자 표적계 등의 장치 요소를 포함한다.
이러한 BNCT의 열외 중성자 발생용 양성자가속기의 이온원의 요건으로는 수소 이온빔 전류가 50 mA 이상이고, 빔 이미턴스가 0.3 π·mm·mrad 이하, 빔 안정도 1% 이하, 음극수명 40시간 이상, 연속가동시간 10 시간 이상이 요구되어, 이 조건에 맞도록 종래의 듀오플라즈마트론 이온원을 개선, 개량할 필요가 있다.
본 발명의 일 실시예에서는 듀오플라즈마트론 이온원(1)에 다음과 같은 기술적 특징을 부여해 대전류의 이온빔이 안정적으로 인출되도록 한다.
첫째, 이온화될 가스로부터 양이온을 발생시키는 음극(12)에 메쉬 형태의 산화물 음극(oxide cathode, 120)을 사용하여 음극(12)의 운전 수명을 확보한다.
둘째, 중간전극(130)과 양극인 인출전극(30)의 양극 핀 홀(anode pin hole, 310)을 정렬하는 중간전극 정밀조정기구(40)를 플라즈마 챔버(plasma chamber, 10)에 구비하여 진공이 유지된 상태에서 고밀도의 플라즈마가 손실 없이 양극 핀 홀(310)로 인출되도록 손쉽게 정렬한다.
셋째, 양극 핀 홀(310)로 인출된 플라즈마가 수용되는 플라즈마 확장컵(plasma expansion cup, 50)의 내벽을 전기 부도체로 구성하여, 이온 또는 전자가 내벽과 전하 교환을 통해 재결합 후 소멸하는 것을 방지하여 플라즈마의 밀도를 유지한다.
넷째, 플라즈마 확장컵(50) 내에 수용된 플라즈마의 빔 인출 방향 표면 형상을 플라즈마 표면 제어전극(60)으로 제어하여 인출되는 빔의 확산을 방지하고 직진성을 확보하여 빔 밀도 손실을 방지하고, 빔 확산에서 야기될 수 있는 인출 전극 주변의 방전을 방지한다.
도 2는 본 발명의 일 실시예에 따른 대전류 듀오플라즈마트론 이온원을 나타내는 단면도이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 대전류 듀오플라즈마트론 이온원(1)은 플라즈마 챔버(10), 전자석 코일(20), 인출전극(30), 중간전극 정밀조정기구(40), 플라즈마 확장컵(50), 플라즈마 표면 제어전극(60), 가속전극(62), 감속전극(64), 등전위전극(equipotential electrode, 66) 및 하우징(70)을 포함한다.
플라즈마 챔버(10)는 이온화될 가스를 공급하는 가스 공급관(110), 열전자를 발생시켜 가스로부터 양이온을 발생시키는 산화물 음극(120), 산화물 음극(120)을 지지하는 음극봉(122), 아크 방전으로 양이온으로부터 플라즈마를 발생시키는 중간전극(130), 플라즈마 방출구(140), 플라즈마 방출구(140)의 반대편에 형성되는 환형의 조립 플렌지(150) 및 조립 플렌지(150)를 닫는 플라즈마 챔버 커버(160)를 포함한다.
전자석 코일(20)은 플라즈마 챔버(10)를 원통형으로 감싸고 배치되어, 플라즈마를 원기둥 형태로 압축하여 밀도를 높인다.
인출전극(30)은 회전축 중심에 양극 핀 홀(310)을 포함하되, 플라즈마 방출구(140)로부터 플라즈마를 인출한다.
중간전극 정밀조정기구(40)는 플라즈마 챔버(10)의 진공은 유지된 상태에서 플라즈마 챔버(10)의 반경 방향 위치를 조정함으로써, 생성된 원기둥 형태의 플라즈마의 중심축과 양극 핀 홀(310)의 중심축을 정렬한다.
플라즈마 확장컵(50)은 양극 핀 홀(310)로부터 인출된 고밀도의 플라즈마를 수용한다.
플라즈마 표면 제어전극(60)은 플라즈마 확장컵(50)에 유지된 플라즈마의 인출 부위 표면 형상을 제어한다.
가속전극(62)은 플라즈마 확장컵(50)에 유지된 플라즈마로부터 대전류 빔을 인출한다.
감속전극(64)은 플라즈마 확장컵(50)과 가속전극(62) 사이에 배치되고, 플라즈마 확장컵(50)으로부터 대전류 빔을 인출할 때 양이온 이외의 전자의 방출을 억제한다.
등전위전극(66)은 가속전극(62) 및 감속전극(64)의 반경 방향 외측에 배치되되, 빔 진행 방향으로 복수로 배치되어 가속 전압에 의한 방전을 방지한다.
하우징(70)에는 전자석 코일(20), 인출전극(30) 및 플라즈마 확장컵(50)이 고정된다.
도 3은 각종 음극 재료의 온도에 따른 열 전자 방출 특성을 나타내는 그래프이다.
플라즈마 챔버(10) 내에 배치되는 음극봉(122)은 두 가지의 역할이 있다. 첫째, 산화물 음극(120)이 중간전극(130)에 접촉되지 않고 고정될 수 있도록 하는 고정대의 역할이다. 둘째, 산화물 음극(120)을 통해 전기가 흐르고 열이 발생하여 공급된 가스로부터 양이온(H+)을 발생하기 위한 열전자를 방출한다.
본 발명의 일 실시예에서는 음극(12)에 메쉬 형태의 산화물 음극(120)을 채용한다. 의료용 BNCT는 연속적인 환자 치료를 위해 장시간 안정적인 빔 인출이 가능한 대전류 이온원이 요구되며, 음극(12)의 수명을 높여 긴 운전 시간을 확보하고 교체 주기를 줄여야 안정적인 운영이 가능하고 운영비를 절감하여 상업적인 운영이 가능하다.
Figure 112017124273944-pat00001
표 1은 여러 음극 재료의 열전자 방출 특성 및 일 함수(work function)을 나타낸다. 표 1을 참조하면, 아크 방전을 이용하는 이온원의 경우 대표적으로 사용되는 음극 재료인 텅스텐, 레늄, LaB6, BaO/SrO 산화물 음극 등의 특성을 확인할 수 있다. 하지만 텅스텐 선, 레늄 선 등 필라멘트 형 음극은 방전 시 플라즈마 이온들의 음극 충돌에 의한 스퍼터링(sputtering) 현상으로 필라멘트 원자를 떼어내는 효과와 재질이 경화되는 효과에 의해서 십여 시간 정도 사용하면 끊어지게 된다.
도 4는 본 발명의 일 실시예에 따른 듀오플라즈마트론 이온원에 적용된 메쉬 형태의 산화물 음극을 나타내는 사진이다.
본 발명의 일 실시예에서는 음극(12)의 수명 향상과 낮은 온도에서의 운전을 위해 통상의 텅스텐 필라멘트 대신, 도 4와 같이 메쉬형 산화물 음극(120)을 채용하여 수명을 수십 시간 이상 늘리는 방법을 개시한다. 본 발명의 일 실시예에 따른 산화물 음극(120)은 일 함수가 작아 800-900 K의 낮은 온도에서 작동이 가능하고, 수명이 100시간 이상이 가능한 메쉬 형태의 산화물 음극(120)을 채용한다. 텅스텐 선 음극은 열전자 방출 단면적이 작아서 높은 온도가 필요하나, 본 발명의 일 실시예에서 채택된 산화물 음극(120)은 폭넓은 메쉬 형태로 제작되어 열전자 방출 면적이 넓으며 음극(12) 수명이 수배 이상 길다.
도 3을 참조하면 산화물은 텅스텐에 비해 금속으로부터 자유전자를 떼어내는 데 필요한 최소 에너지를 나타내는 일 함수가 작고, 전자 방출률(emission current density)가 커서 1000 K 정도의 운전 온도를 유지할 수 있어, 음극의 수명을 증가시킬 수 있다.
또한 텅스텐 필라멘트의 경우 충분한 열 전자를 방출하려면 2800 K 정도의 높은 온도를 계속 유지하여야 되므로 계속해서 필라멘트에 전압을 공급해주어야 하지만, 본 발명의 일 실시예에 따른 산화물 음극(120)은 플라즈마 방전 발생 시에만 전압을 인가하고 플라즈마 발생 이후에는 전압을 공급하지 않아도 방전에 의한 자가 발열(self-heating)을 통해 열전자를 방출하고 플라즈마를 유지한다.
도 5는 본 발명의 일 실시예에 따른 대전류 듀오플라즈마트론 이온원의 중간전극 정밀조정기구를 나타내는 정면도 및 좌우 측면도이다.
도 6는 본 발명의 일 실시예에 따른 중간전극 정밀조정기구를 나타내는 사진이다.
듀오플라즈마트론 이온원은 아크 방전을 통하여 플라즈마를 발생시키는 구조로서, 중간전극(130)은 고밀도의 플라즈마 생성을 위하여 음극(12), 양극인 인출전극(30) 사이에 구성되는 부위로, 좁은 중간전극(130)의 구멍을 통해 방전통로를 구성함으로써 플라즈마를 공간적으로 제한하여 고밀도 플라즈마를 얻는다.
여기에 전자석 코일(20)을 가동하여 중간전극(130)과 양극인 인출전극(30) 사이에 3~4,000 Gauss 정도 크기의 축 방향 자기장을 형성시켜 주면, 강한 자기장에 의하여 양극인 인출전극(30) 부근에서 직경 1~2 mm 정도로 압축된 매우 높은 밀도의 플라즈마가 형성되고, 이를 양극인 인출전극(30) 중심축에 위치한 양극 핀 홀(310)을 통해 플라즈마 확장컵(50)으로 전달하게 된다.
이와 같이 고밀도 플라즈마가 형성되는 과정에서 중간전극(130)의 중심축과 양극인 인출전극(30)의 중심축에 위치한 양극 핀 홀(310) 사이의 정렬이 제대로 되지 않는다면, 직경이 매우 작은 고밀도의 플라즈마 기둥이, 예컨대 일 실시예에서는 직경 1 mm 이하인, 양극 핀 홀(310)을 통과하지 못하게 되어 고밀도의 플라즈마가 플라즈마 확장컵(50)에 전달되기 어렵다.
따라서 고밀도의 플라즈마를 얻기 위해서는 기구적으로 횡 방향의 미세 위치 조종이 가능한 이동식 중간전극(130)를 고안하여 중간전극(130)의 중심축을 미세하게 이동해가며 가는 플라즈마 기둥의 중심축과 양극 핀 홀(310)의 중심축을 맞추는 방법을 개시한다.
이러한 문제를 해결하기 위해 이온원 진공을 유지하면서 중간전극(130)을 미세하게 이동하여 조정할 수 있도록 이온원과 중간전극(130)을 결합시켜주는 환형의 절연물에 도 5와 같이 90도 간격으로 4곳에 관통된 나사구멍(420)과 나사결합하는 미세위치 조정나사(410)를 설치한다.
일 실시예에 따른 중간전극 정밀조정기구(40)는 하우징(70)과 플라즈마 챔버(10) 사이에 배치된다. 또한, 중간전극 정밀조정기구(40)는 조립 플렌지(150)를 닫는 플라즈마 챔버 커버(160); 플라즈마 챔버 커버(160)와 하우징(70)을 전기적으로 절연인 상태로 연결하는 복수의 조립 볼트(430); 플라즈마 챔버 커버(160)와 하우징(70) 사이에 배치되는 환형의 제1절연링(440); 하우징(70)과 조립 플렌지(150) 사이에 배치되는 환형의 제2절연링(450); 제2절연링(450) 양측면에 구비되는 진공씰 조립부(460); 및 제1절연링(440)의 외주면으로부터 관통되어 형성된 복수의 나사구멍(420)에 나사결합하고 조립 플렌지(150)의 외주면에 맞닿도록 배치되어, 플라즈마 챔버(10)의 반경 방향의 위치 조정을 수행하는 복수의 미세위치 조정나사(410);를 포함한다.
여기서 조립 볼트(430)가 체결됨으로써 진공은 유지되되, 플라즈마 챔버(10)는 반경 방향으로 소정 범위 내의 미끄러짐이 가능하고, 복수의 미세위치 조정나사(410)를 조정함으로써 플라즈마 챔버(10)의 반경 방향 위치가 조정되고, 생성된 원기둥 형태의 플라즈마의 중심축과 양극 핀 홀(310)을 정렬할 수 있다. 이온원의 중간전극(130)의 중심축과 양극의 중심축을 먼저 기구적으로 정렬하고, 중간전극(130)이 움직이지 않도록 체결한 후 진공 상태로 만들면, 외부의 대기압에 의해 중간전극(130)이 고정된다. 이 상태에서 제1절연링(440) 외주면에 형성된 복수의 나사구멍(420)에 나사결합된 미세위치 조정나사(410)를 돌려주면 미세위치 조정나사(410)의 전진에 의해 그 방향으로 중간전극(130)이 이동한다. 이온원의 중간전극(130)을 해체, 이동, 재결합 및 진공을 재형성하는 과정을 반복하지 않으면서 자기장의 중심축과 양극 핀 홀(310)의 중심을 맞출 수 있어, 정렬 작업 시간을 크게 단축할 수 있다.
도 7은 다양한 벽 재질의 재결합 계수를 나타내는 표이다.
도 7은 벽 재질에 따라 이온과 자유전자가 재결합하여 중성 원자 또는 분자로 되돌아가는 단위 시간(여기서는 초) 당 비율을 나타낸다.
양극 핀 홀(310)로부터 전달된 플라즈마는 플라즈마 확장컵(50)에서 빔이 가속 전압에 의해 인출되기 전까지 플라즈마가 전달 및 확산되어 유지된다. 이온빔은 플라즈마 확장컵(50)에 형성된 플라즈마에 고전압을 걸어 플라즈마 중 양이온을 인출하게 된다. 따라서 플라즈마 확장컵(50)에 형성된 플라즈마의 밀도에 따라 인출되는 양이온 빔의 양과 질이 결정되며, 대전류 이온빔을 인출하기 위해 플라즈마 확장컵(50)에 형성된 플라즈마를 높은 밀도로 유지하는 것이 중요하다.
플라즈마 확장컵(50)에 형성된 플라즈마는 양이온과 전자가 약 1:1의 비율로 존재하게 되며 플라즈마 확장컵(50)의 재질을 적절히 선정함으로써 플라즈마의 보전 및 장기간 유지를 기대할 수 있다. 플라즈마 확장컵(50)이 도체일 경우, 도체의 벽면으로부터 자유전자와 플라즈마의 양이온이 반응하여 중성화가 되는 재결합이 일어나고, 이는 곧 플라즈마 밀도의 손실을 가져오고 양이온 빔의 양이 감소할 수 있다.
본 발명의 일 실시예에서는 플라즈마 확장컵(50) 내벽을 전기적으로 부도체인 재료로 구성하여 이러한 손실을 방지한다. 도 7을 참조하면, 세라믹 등 부도체 재질은 초당 0.0001개 이하의 재결합율을 가지므로 플라즈마 확장컵(50)에 형성된 플라즈마의 손실을 작게 하여 플라즈마 밀도를 높게 유지할 수 있다. 일 실시예에서는 재반응에 의해 플라즈마가 소실되지 않도록 내벽을 덮는 형태로 절연체인 세라믹으로 이루어진 플라즈마 확장컵(50) 절연체를 배치한다. 또 다른 실시예로서 플라즈마 확장컵(50) 표면이 부도체인 세라믹 소재로 코팅된 구조도 포함될 수 있다.
도 8은 플라즈마 표면 모양에 따른 양이온 빔의 인출 방향 특성을 나타내는 개념도이다.
도 8은 플라즈마 확장컵(50) 내의 플라즈마로부터 이온빔이 인출될 때, 빔 출구의 플라즈마 표면의 모양에 따른 양이온 빔의 인출 방향 변화에 대해 설명한다. 플라즈마 확장컵(50)에 형성된 플라즈마는 이온과 전자의 흐름이 같아지는 위치에서 경계면을 생성하는데, 이를 플라즈마 표면(plasma surface or Debye sheath)이라고 한다.
플라즈마 표면은 플라즈마 확장컵(50)의 출구 구경이 클수록, 빔 인출 전극과의 길이가 짧을수록 평면 형태에서 벗어나기 쉽다. 플라즈마 표면 형상의 요철(meniscus)은 플라즈마의 전하 밀도 및 인출 전기장의 강도에 의해 결정된다. 플라즈마의 전하 밀도가 높거나 인출 전기장의 강도가 낮으면 플라즈마 표면은 볼록하게 부풀어오르며, 그 반대의 조건인 경우 플라즈마의 표면은 옴폭하게 들어간다. 대전류 이온빔을 얻기 위해서는 플라즈마 인출 표면의 형상은 편평하거나 최소한 오목한 것이 바람직하다.
플라즈마 인출 표면이 볼록한 경우, 빔 인출계통에 이온과 전자가 확산되어 빔 인출을 위한 고전압이 인가될 때 의도치 않은 방전이 발생되거나, 인출되는 빔이 불안정하게 될 수 있다. 특히 펄스 빔 인출의 경우 심각한 방전 문제를 야기할 수 있다.
본 발명의 일 실시예에서는 플라즈마 표면 제어전극(60)을 플라즈마 확장컵(50) 출구와 인접한 위치에 배치하여, 인출 방향의 플라즈마 표면의 형상이 편평하거나 최소한 오목한 형태가 되도록 전기장을 제어한다. 플라즈마 표면 제어전극(60)을 설치하여 양극 대비 음극의 전위를 조절하면 극간에 발생된 전기장에 의해 플라즈마 표면이 영향을 받아 예컨대 도 8의 중간 그림과 같이 표면을 편평하게 만들 수 있고, 이온빔 인출 시 발생할 수 있는 빔 손실을 방지할 수 있다.
또한 플라즈마 표면 제어전극(60)으로 인한 전기장은 플라즈마 표면에서 여기 되는 이온과 전자를 억제하는 효과가 있기 때문에 빔 인출 시 의도치 않은 방전이 발생되는 현상을 최소화 할 수 있다.
도 2를 다시 참조하면, 플라즈마 표면 제어전극(60) 다음에는 감속전극(64) 및 가속전극(62)이 배치되고, 이들 전극의 외주면 바깥으로는 등전위전극(66)이 배치된다.
플라즈마 확장컵(50)에 수용된 플라즈마가 인출될 때, 플라즈마 내에 포함된 수소 양이온 외에 전자도 같이 인출되는데, 이 전자가 방출되는 것을 최소화하기 위해 감속전극(64)은 가속전극(62)과는 반대되는 극성으로 보다 작은 전압, 예컨대 -5 kV의 전압을 공급하여 전자가 수소 양이온과 같이 인출되는 것을 최소화한다.
가속전극(62)은 예컨대 50 kV의 고전압이 인가되는 양극이며 플라즈마 확장컵(50)에 수용된 플라즈마로부터 대전류의 이온빔을 인출한다. 가속전극(62)은 이온빔이 인출되는 방향의 하우징(70)에 연결되는 고전압 절연지지대(710)에 지지되어 고전압 절연이 유지될 수 있도록 설치된다.
도 9는 본 발명의 일 실시예에 따른 듀오플라즈마트론 이온원에 적용된 절연물 내부의 등전위전극의 구성을 나타내는 부분 단면도이다.
등전위전극(66)은 빔 인출을 위한 고전압 50 kV를 공급하였을 때 의도하지 않은 방전이 발생하지 않도록 균일한 등전위 형성을 위해 고전압 절연지지대(710) 안쪽이 고정된 전극이다. 도 9는 이온원에 절연물을 적용하여 고전압 50 kV의 전위차를 견딜 수 있도록 구성된 빔 인출계이며, 절연물 내부의 등전위전극(66) 구성을 나타낸다. 절연물 내부의 등전위전극(66)의 재질은 도체로 구성하며 일정한 간격으로 배치하여 빔 인출 시, 빔 인출계 내부에 형성되는 전기장이 균일하게 분산될 수 있도록 한다.
등전위전극(66)의 간격은 약 8 mm 정도이며, 일 실시예에서는 10-4 torr 이하의 진공도에서 실험적으로 확인된 전기적인 절연 거리가 52 kV/10mm이라는 결과를 감안하여 선정된 간격이다.
플라즈마 확장컵(50)에서 형성된 고밀도 플라즈마는 양의 값을 가지는 고전압에 의해 인출됨으로써 이온빔이 인출된다. 여기서 고전압은 예컨대 50 kV 수준으로, 이온원의 접지 전위가 되는 빔 인출계 종단과 전위차를 유지하기 위한 절연 확보가 필요하다. 또한, 플라즈마 확장컵(50)으로부터 이온빔이 인출되면서 같이 발생되는 공간전하에 의하여 전자가 절연체 표면에 누적되고, 이는 고전압에 의한 강한 전기장에 의해 표면 방전을 야기할 수 있다. 특히 절연체, 도체 및 진공이 교차하는 삼중 접합점(triple junction point)에 전자기장에 집중되면 쉽게 방전이 발생하고 이로 인해 빔 안정성이 저하될 수 있다.
일 실시예에 따른 등전위전극(66)의 구성은 특히 절연물 내부의 등전위전극(66)의 형상을 삼중 접합점에 전기장이 최소한으로 걸려 전자가 방출 가속되지 않도록 함으로서 절연체 표면을 통한 방전 현상을 최소화 할 수 있도록 구성한다. 또한, 일 실시예의 등전위전극(66)은 대전류 빔 인출시 같이 방출되는 다량의 공간전하로부터 절연체 벽면을 효과적으로 차폐하여 고전압 안정성이 향상된다.
도 10은 본 발명의 일 실시예에 따른 듀오플라즈마트론 이온원을 나타내는 사진이다.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (7)

  1. 붕소 중성자 포획 치료(BNCT: Boron Neutron Capture Therapy)용 양성자 가속기에 있어서,
    이온화될 가스를 공급하는 가스 공급관;
    열전자를 발생시켜 상기 가스로부터 양이온을 발생시키는 산화물 음극;
    아크 방전으로 상기 양이온으로부터 플라즈마를 발생시키는 중간전극;
    플라즈마 방출구; 및
    상기 플라즈마 방출구의 반대편에 형성되는 환형의 조립 플렌지;
    를 포함하는 플라즈마 챔버;
    상기 플라즈마 챔버를 원통형으로 감싸고 배치되어, 상기 플라즈마를 원기둥 형태로 압축하여 밀도를 높이는 전자석 코일;
    회전축 중심에 양극 핀 홀(anode pin hole)을 포함하되, 상기 플라즈마 방출구로부터 상기 플라즈마를 인출하는 인출전극;
    상기 플라즈마 챔버의 진공은 유지된 상태에서 상기 플라즈마 챔버의 반경 방향 위치를 조정함으로써, 생성된 상기 원기둥 형태의 플라즈마의 중심축과 상기 양극 핀 홀을 정렬하는 중간전극 정밀조정기구;
    상기 양극 핀 홀로부터 인출된 고밀도의 상기 플라즈마가 수용되되, 이온 및 전자로 구성된 상기 플라즈마가 수용되는 내벽을 전기 부도체로 구성하여, 상기 이온 또는 전자가 상기 내벽과 전하 교환을 통해 재결합 후 소멸하는 것 때문에 플라즈마 밀도가 저하되는 것을 방지하도록 구성되는 플라즈마 확장컵;
    상기 플라즈마 확장컵에 유지된 상기 플라즈마의 인출 부위 표면 형상을 제어하는 플라즈마 표면 제어전극;
    상기 플라즈마 확장컵에 유지된 상기 플라즈마로부터 대전류 빔을 인출하는 가속전극;
    상기 플라즈마 확장컵과 상기 가속전극 사이에 배치되고, 상기 플라즈마 확장컵으로부터 대전류 빔을 인출할 때 양이온 이외의 전자의 방출을 억제하는 감속전극;
    상기 가속전극 및 상기 감속전극의 반경 방향 외측에 배치되되, 빔 진행 방향으로 복수로 배치되어 가속 전압에 의한 방전을 방지하는 등전위전극(equipotential electrode); 및
    상기 전자석 코일, 상기 인출전극 및 상기 플라즈마 확장컵이 고정되는 하우징;
    을 포함하는 것을 특징으로 하는 듀오플라즈마트론 이온원(duoplasmatron ion source).
  2. 제 1항에 있어서,
    상기 산화물 음극은,
    메쉬(mesh) 형태로 형성되고,
    열전자를 생성하기 위해 전압이 인가되지만 플라즈마 발생 이후에는 전압 공급이 없이 방전에 의한 자가 가열(self-heating)에 플라즈마 발생이 유지되는 것
    을 특징으로 하는 듀오플라즈마트론 이온원.
  3. 붕소 중성자 포획 치료(BNCT: Boron Neutron Capture Therapy)용 양성자 가속기에 있어서,
    이온화될 가스를 공급하는 가스 공급관;
    열전자를 발생시켜 상기 가스로부터 양이온을 발생시키는 산화물 음극;
    아크 방전으로 상기 양이온으로부터 플라즈마를 발생시키는 중간전극;
    플라즈마 방출구; 및
    상기 플라즈마 방출구의 반대편에 형성되는 환형의 조립 플렌지;
    를 포함하는 플라즈마 챔버;
    상기 플라즈마 챔버를 원통형으로 감싸고 배치되어, 상기 플라즈마를 원기둥 형태로 압축하여 밀도를 높이는 전자석 코일;
    회전축 중심에 양극 핀 홀(anode pin hole)을 포함하되, 상기 플라즈마 방출구로부터 상기 플라즈마를 인출하는 인출전극;
    상기 플라즈마 챔버의 진공은 유지된 상태에서 상기 플라즈마 챔버의 반경 방향 위치를 조정함으로써, 생성된 상기 원기둥 형태의 플라즈마의 중심축과 상기 양극 핀 홀을 정렬하는 중간전극 정밀조정기구;
    상기 양극 핀 홀로부터 인출된 고밀도의 상기 플라즈마가 수용되는 플라즈마 확장컵;
    상기 플라즈마 확장컵에 유지된 상기 플라즈마의 인출 부위 표면 형상을 제어하는 플라즈마 표면 제어전극;
    상기 플라즈마 확장컵에 유지된 상기 플라즈마로부터 대전류 빔을 인출하는 가속전극;
    상기 플라즈마 확장컵과 상기 가속전극 사이에 배치되고, 상기 플라즈마 확장컵으로부터 대전류 빔을 인출할 때 양이온 이외의 전자의 방출을 억제하는 감속전극;
    상기 가속전극 및 상기 감속전극의 반경 방향 외측에 배치되되, 빔 진행 방향으로 복수로 배치되어 가속 전압에 의한 방전을 방지하는 등전위전극(equipotential electrode); 및
    상기 전자석 코일, 상기 인출전극 및 상기 플라즈마 확장컵이 고정되는 하우징;
    을 포함하되,
    상기 중간전극 정밀조정기구는,
    상기 하우징과 상기 플라즈마 챔버 사이에 배치되고,
    상기 조립 플렌지를 닫는 플라즈마 챔버 커버;
    상기 플라즈마 챔버 커버와 상기 하우징을 전기적으로 절연인 상태로 연결하는 복수의 조립 볼트;
    상기 플라즈마 챔버 커버와 상기 하우징 사이에 배치되는 환형의 제1절연링;
    상기 하우징과 상기 조립 플렌지 사이에 배치되는 환형의 제2절연링;
    상기 환형의 절연 링 양측면에 구비되는 진공씰 조립부; 및
    상기 제1절연링의 외주면으로부터 관통되어 형성된 복수의 나사구멍에 나사결합하고 상기 조립 플렌지의 외주면에 맞닿도록 배치되어, 상기 플라즈마 챔버의 반경 방향의 위치 조정을 수행하는 복수의 미세위치 조정나사;
    를 포함하되,
    상기 조립 볼트가 체결됨으로써 상기 플라즈마 챔버는 진공이 유지된 상태에서 반경 방향으로 소정 범위 내의 미끄러짐이 가능하고,
    상기 복수의 미세위치 조정나사를 조정함으로써 상기 플라즈마 챔버의 반경 방향 위치가 조정되고, 생성된 상기 원기둥 형태의 플라즈마의 중심축과 상기 양극 핀 홀을 정렬하는 것
    을 특징으로 하는 듀오플라즈마트론 이온원.
  4. 삭제
  5. 제 1항에 있어서,
    상기 플라즈마 확장컵은,
    내벽에 밀착되고, 내벽의 형상을 따라 형성되는 세라믹 소재의 전기 부도체인 플라즈마 확장컵 절연체가 조립되는 구조를 포함하는 것
    을 특징으로 하는 듀오플라즈마트론 이온원.
  6. 제 1항에 있어서,
    상기 플라즈마 표면 제어전극은,
    상기 플라즈마 확장컵의 외측에 배치되어 상기 플라즈마 확장컵에 수용된 상기 플라즈마의 표면 형상을 제어함으로써 상기 가속전극에 의해 상기 플라즈마로부터 인출되는 빔의 확산을 방지하고 직진성 혹은 수렴성을 확보하는 것
    을 특징으로 하는 듀오플라즈마트론 이온원.
  7. 제 6항에 있어서,
    상기 플라즈마 표면 제어전극은,
    상기 플라즈마 확장컵의 외측에 배치되어 상기 플라즈마 확장컵에 수용된 상기 플라즈마의 표면 형상을 상기 듀오플라즈마트론 이온원의 광축 방향에 수직인 평면 형상이 되도록 제어하는 것
    을 특징으로 하는 듀오플라즈마트론 이온원.
KR1020170171387A 2017-03-13 2017-12-13 Bnct 가속기용 대전류 듀오플라즈마트론 이온원의 전극 구성과 그 장치 KR101983294B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170031146 2017-03-13
KR1020170031146 2017-03-13

Publications (2)

Publication Number Publication Date
KR20180104546A KR20180104546A (ko) 2018-09-21
KR101983294B1 true KR101983294B1 (ko) 2019-05-28

Family

ID=63720908

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170171387A KR101983294B1 (ko) 2017-03-13 2017-12-13 Bnct 가속기용 대전류 듀오플라즈마트론 이온원의 전극 구성과 그 장치

Country Status (1)

Country Link
KR (1) KR101983294B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210056143A (ko) 2019-11-08 2021-05-18 주식회사 다원시스 양성자 가속기용 대전류 듀오플라즈마트론 이온원

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928002B (zh) * 2021-01-26 2024-04-05 中科石金(安徽)中子技术有限公司 一种基于网状阳极结构的小型化真空弧离子源

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130249400A1 (en) * 2012-03-22 2013-09-26 Sen Corporation Ion source device and ion beam generating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119895A (ja) * 1992-03-19 1994-04-28 Ulvac Japan Ltd 磁場制御型負イオン源
KR100347971B1 (ko) * 2000-03-06 2002-08-09 한국전력공사 낮은 에너지 이온빔조사에 의한 폴리머 표면의 전기 전도성 및 기계적 물성향상 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130249400A1 (en) * 2012-03-22 2013-09-26 Sen Corporation Ion source device and ion beam generating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210056143A (ko) 2019-11-08 2021-05-18 주식회사 다원시스 양성자 가속기용 대전류 듀오플라즈마트론 이온원

Also Published As

Publication number Publication date
KR20180104546A (ko) 2018-09-21

Similar Documents

Publication Publication Date Title
JP2828247B2 (ja) イオンビーム発生装置
KR100261007B1 (ko) 이온주입실에 이용되는 이온발생 소오스
KR100346863B1 (ko) 이온소오스의간접가열캐소우드용엔드캡
JP5212760B2 (ja) イオン注入装置用のイオン源およびそのためのリペラ
KR100346862B1 (ko) 간접가열된캐소우드를지닌이온소오스용캐소우드설치장치
US4714860A (en) Ion beam generating apparatus
EP0184812A2 (en) High frequency plasma generation apparatus
US8796649B2 (en) Ion implanter
JPH0132627B2 (ko)
US3218431A (en) Self-focusing electron beam apparatus
KR101983294B1 (ko) Bnct 가속기용 대전류 듀오플라즈마트론 이온원의 전극 구성과 그 장치
US10468220B1 (en) Indirectly heated cathode ion source assembly
US10217600B1 (en) Indirectly heated cathode ion source assembly
US3326769A (en) Energetic electron plasma blanket
Dudnikov et al. Surface plasma source to generate high‐brightness H− beams for ion projection lithographya
US11961696B1 (en) Ion source cathode
RU2082255C1 (ru) Способ получения пучка ионов и устройство для его осуществления
JPS5820090B2 (ja) 電子衝撃加熱方式によるマグネトロン型イオン発生装置
Burdovitsin et al. Plasma Electron Sources
JP2023046984A (ja) 円形加速器、粒子線治療システム、およびイオン源
Taylor et al. High‐current solid‐feed ion source
JP2002289106A (ja) イオン注入装置
Lee et al. Lifetime enhancement of a multicusp ion source for lithography
JPH0160888B2 (ko)
KR20210056143A (ko) 양성자 가속기용 대전류 듀오플라즈마트론 이온원

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant