JPH0159006B2 - - Google Patents
Info
- Publication number
- JPH0159006B2 JPH0159006B2 JP60212801A JP21280185A JPH0159006B2 JP H0159006 B2 JPH0159006 B2 JP H0159006B2 JP 60212801 A JP60212801 A JP 60212801A JP 21280185 A JP21280185 A JP 21280185A JP H0159006 B2 JPH0159006 B2 JP H0159006B2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- alloy
- maintaining
- chemical formula
- jacket
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000956 alloy Substances 0.000 claims description 22
- 229910045601 alloy Inorganic materials 0.000 claims description 22
- 239000000126 substance Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J41/00—Thermally-insulated vessels, e.g. flasks, jugs, jars
- A47J41/02—Vacuum-jacket vessels, e.g. vacuum bottles
- A47J41/022—Constructional details of the elements forming vacuum space
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/006—Processes utilising sub-atmospheric pressure; Apparatus therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Thermally Insulated Containers For Foods (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は断熱容器の真空ジヤケツト内に真空を
維持する手段に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to means for maintaining a vacuum within a vacuum jacket of an insulated container.
従来の技術
壁の間の空間を真空にした二重壁容器は断熱が
最良の容器である。比較的小さい容器は通常ガラ
スでつくられる(魔法びん)が、より大きい容器
は鋼の壁だけでつくることができる。しかしなが
ら、鋼でできた断熱容器の真空ジヤケツト中の真
空は長時間のうちに低下する、特に真空空間内に
放射反射シールドを設けたときにも低下すること
がわかつた。この真空の低下はまず壁および放射
シールドに吸収されたガスが放出されること、次
に鋼壁を通してガス、たとえば水素が拡散できる
ことによる。しかしながら真空による断熱は真空
ジヤケツト中の圧力が10-4ミリバール以上に高く
なると急速に低下する。したがつて真空ジヤケツ
ト中に真空を維持する媒質、たとえば活性炭を入
れることは既に知られている。BACKGROUND OF THE INVENTION A double-walled container with a vacuum in the space between the walls is the best insulated container. Relatively small containers are usually made of glass (thermos), while larger containers can be made with only steel walls. However, it has been found that the vacuum in the vacuum jacket of an insulated steel container decreases over time, especially when a radiation-reflecting shield is provided within the vacuum space. This vacuum reduction is due firstly to the release of gases absorbed in the walls and radiation shields, and secondly to the ability of gases, such as hydrogen, to diffuse through the steel walls. However, the vacuum insulation decreases rapidly when the pressure in the vacuum jacket increases above 10 -4 mbar. It is therefore already known to include a vacuum-maintaining medium, such as activated carbon, in a vacuum jacket.
発明が解決しようとする問題点
本発明の課題は、真空ジヤケツト内に入れられ
たとき、そこに現われるガスを吸収して10-4ミリ
バールより低い真空を維持する安価で高効率の媒
質を得ることである。Problem to be Solved by the Invention The object of the invention is to obtain an inexpensive and highly efficient medium which, when introduced into a vacuum jacket, absorbs the gases present therein and maintains a vacuum below 10 -4 mbar. It is.
問題点を解決するための手段
この課題は、本発明によれば、断熱容器の真空
ジヤケツト内に真空を維持する媒質として化学式
Ti(V1-a-bFeaAlb)xCryMnz
ただし
x=1より大きく、2まで、
y=0から0.2まで、
x+y=最大限2まで、
a=0から0.4まで、
b=0から0.2まで、
a+b=最大限0.5まで、
(1−a−b)・x=最小限1、
z=0から(2−x−y)まで
で表わされる合金を用いることにより解決され
る。Means for Solving the Problem This problem is solved according to the invention by using the chemical formula T i (V 1-ab Fe a Al b ) x Cr y Mn z as a medium for maintaining a vacuum in the vacuum jacket of an insulated container. x=greater than 1 up to 2, y=0 to 0.2, x+y=up to 2, a=0 to 0.4, b=0 to 0.2, a+b=up to 0.5, (1-a-b )・x=minimum 1, z=0 to (2-x-y) is solved by using an alloy.
実施例
この合金はここでは粉末状で、真空空間の体積
1リツトルにつき2〜4グラム用いる。この合金
を真空空間に入れ、真空にした後、合金を300℃
までの温度において真空ジヤケツトを真空にしな
がら(ガスをポンプで引く)自動的に活性化す
る。EXAMPLE The alloy is here used in powder form, from 2 to 4 grams per liter of vacuum space volume. This alloy is placed in a vacuum space, and after being evacuated, the alloy is heated to 300°C.
Automatically activates while applying a vacuum (pumping gas) to the vacuum jacket at temperatures up to
前記合金を2グラム用いた結果、真空ジヤケツ
ト内で10-4ミリバールの真空が10年間保たれるこ
とが保証された。また、前記合金を4グラム用い
たとき、前記の真空が20年間保たれることが保証
された。 Using 2 grams of said alloy, it was guaranteed that a vacuum of 10 -4 mbar could be maintained in the vacuum jacket for 10 years. Also, when using 4 grams of the alloy, it was guaranteed that the vacuum could be maintained for 20 years.
他方、前記合金を1グラム加えたときには、前
記の真空はほヾ5年間保たれる保証しか得られな
かつた。 On the other hand, when one gram of the alloy was added, the vacuum was only guaranteed to last for about five years.
合金の製造は公知のように合金の成分を溶解す
るか、または適当に選択された主要合金を保護ガ
スの下に溶解し、まず公知のように高温溶融成分
の融成物をつくり、気化量を最小にするためにそ
れからそれに低温溶融成分を入れて行なう。合金
の酸素含有量を減少させるために通常のように融
成物をそれからそれに公知の還元剤(ランタン、
ミツシユ・メタル、その他)を添加して還元す
る。 The alloy is manufactured by melting the components of the alloy as is known, or by melting an appropriately selected main alloy under a protective gas, first creating a melt of the high-temperature melting components as is known, and then determining the amount of vaporization. It is then carried out with a low melting component in order to minimize the The melt is then treated with known reducing agents (lanthanum, lanthanum, etc.) as usual to reduce the oxygen content of the alloy.
Mitsushi metal, etc.) is added to reduce the amount.
固化した融成物をそれから保護ガスの下に細か
く砕く。得られた材料は水素の吸収および放出を
繰り返すことによりさらに細かく砕くことができ
るので、合金に水素を何回も吸収および放出させ
ることにより合金の粒径を1ミクロン以下にする
ことができる。放出は約100〜150℃の温度で起こ
る。しかし、真空ジヤケツト中の真空の低下はき
わめて長時間で起こり、したがつて合金によるガ
スの高い吸収速度は必要ないので、合金を真空ジ
ヤケツト中の真空の維持媒質として用いるのに特
別に細かく砕かれた粉末が絶対に必要というわけ
ではない。(このことはとりわけ水素に当てはま
る。)
この合金は酸素、水素、水蒸気、一酸化炭素、
その他のような真空ジヤケツト内に通常現われる
ガスを確実に吸収するので、10-6ミリバール以
下、しばしば10-7〜10-8ミリバールすらの真空を
維持することができる。TiV1.5Fe0.4Mn0.1、Ti
V1.6Fe0.4またはTiV1.6Fe0.2Cr0.1Mn0.1の組成の合
金が特に適当であることがわかつた。 The solidified melt is then comminuted under protective gas. The resulting material can be further pulverized by repeatedly absorbing and releasing hydrogen, so that by repeatedly absorbing and releasing hydrogen into the alloy, the grain size of the alloy can be reduced to 1 micron or less. Release occurs at temperatures of approximately 100-150°C. However, since the reduction of the vacuum in the vacuum jacket occurs over a very long period of time, and therefore a high absorption rate of gas by the alloy is not required, the alloy may be specially comminuted for use as a vacuum maintenance medium in the vacuum jacket. It is not absolutely necessary to use powdered powder. (This is especially true for hydrogen.) This alloy can contain oxygen, hydrogen, water vapor, carbon monoxide,
Since it reliably absorbs gases normally present in vacuum jackets such as others, vacuums of less than 10 -6 mbar, often even 10 -7 to 10 -8 mbar can be maintained. T i V 1.5 Fe 0.4 Mn 0.1 , T i
Alloys with the composition V 1.6 Fe 0.4 or T i V 1.6 Fe 0.2 Cr 0.1 Mn 0.1 have been found to be particularly suitable.
Claims (1)
維持する方法。 2 化学式TiV1.5Fe0.4Mn0.1の組成の合金を使用
することを特徴とする特許請求の範囲第1項記載
の真空を維持する方法。 3 化学式TiV1.6Fe0.4の組成の合金を使用するこ
とを特徴とする特許請求の範囲第1項記載の真空
を維持する方法。 4 化学式TiV1.6Fe0.2Cr0.1Mn0.1の組成の合金を
使用することを特徴とする特許請求の範囲第1項
記載の真空を維持する方法。 5 真空空間1リツトルにつき2〜4グラムの化
学式TiV1.5Fe0.4Mn0.1の組成の合金を使用するこ
とを特徴とする特許請求の範囲第1項ないし第4
項のいずれかに記載の真空を維持する方法。[Claims] 1. The chemical formula T i (V 1-ab Fe a Al b ) x Cr y Mn z is contained in a vacuum jacket of a heat-insulating container, where x=greater than 1 and up to 2, y=0 to 0.2, x+y = maximum 2, a = 0 to 0.4, b = 0 to 0.2, a+b = maximum 0.5, (1-a-b) x = minimum 1, z = 0 to (2-x- A method for maintaining a vacuum, characterized in that an alloy having a composition up to y) is used. 2. A method for maintaining a vacuum according to claim 1, characterized in that an alloy having a composition of the chemical formula T i V 1.5 Fe 0.4 Mn 0.1 is used. 3. A method for maintaining a vacuum according to claim 1, characterized in that an alloy having a composition of the chemical formula T i V 1.6 Fe 0.4 is used. 4. A method for maintaining a vacuum according to claim 1, characterized in that an alloy having a chemical formula of T i V 1.6 Fe 0.2 Cr 0.1 Mn 0.1 is used. 5. Claims 1 to 4 characterized in that 2 to 4 grams of the alloy having the chemical formula T i V 1.5 Fe 0.4 Mn 0.1 is used per liter of vacuum space.
A method of maintaining a vacuum as described in any of paragraphs.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3436754.3 | 1984-10-06 | ||
DE3436754A DE3436754C1 (en) | 1984-10-06 | 1984-10-06 | Means for maintaining the vacuum in the vacuum jacket of thermal insulating containers |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6190621A JPS6190621A (en) | 1986-05-08 |
JPH0159006B2 true JPH0159006B2 (en) | 1989-12-14 |
Family
ID=6247301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60212801A Granted JPS6190621A (en) | 1984-10-06 | 1985-09-27 | Means for keeping vacuum in vacuum jacket of heat insulatingcontainer |
Country Status (6)
Country | Link |
---|---|
JP (1) | JPS6190621A (en) |
CA (1) | CA1253361A (en) |
DE (1) | DE3436754C1 (en) |
FR (1) | FR2571385B1 (en) |
GB (1) | GB2165262B (en) |
IT (1) | IT1184652B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3775639B2 (en) * | 2000-02-22 | 2006-05-17 | 株式会社日本製鋼所 | Method for producing hydrogen storage alloy |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4358316A (en) * | 1980-12-29 | 1982-11-09 | University Patents, Inc. | Alloys for hydrogen storage |
US4360445A (en) * | 1981-06-16 | 1982-11-23 | The United States Of America As Represented By The United States Department Of Energy | Oxygen stabilized zirconium-vanadium-iron alloy |
DE3210381C1 (en) * | 1982-03-20 | 1983-05-19 | Daimler-Benz Ag, 7000 Stuttgart | Alloy for storing hydrogen |
DE3425055C1 (en) * | 1984-07-07 | 1985-07-25 | Daimler-Benz Ag, 7000 Stuttgart | Getter substance |
-
1984
- 1984-10-06 DE DE3436754A patent/DE3436754C1/en not_active Expired
-
1985
- 1985-09-25 CA CA000491494A patent/CA1253361A/en not_active Expired
- 1985-09-27 JP JP60212801A patent/JPS6190621A/en active Granted
- 1985-10-02 GB GB8524342A patent/GB2165262B/en not_active Expired
- 1985-10-03 IT IT48627/85A patent/IT1184652B/en active
- 1985-10-04 FR FR8514745A patent/FR2571385B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE3436754C1 (en) | 1985-08-14 |
GB2165262B (en) | 1989-05-24 |
IT1184652B (en) | 1987-10-28 |
GB8524342D0 (en) | 1985-11-06 |
CA1253361A (en) | 1989-05-02 |
FR2571385B1 (en) | 1992-12-31 |
GB2165262A (en) | 1986-04-09 |
IT8548627A1 (en) | 1987-04-03 |
FR2571385A1 (en) | 1986-04-11 |
IT8548627A0 (en) | 1985-10-03 |
JPS6190621A (en) | 1986-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4079523A (en) | Iron-titanium-mischmetal alloys for hydrogen storage | |
Fruehan | The rate of carburization of iron in CO-H 2 atmospheres: Part I. Effect of temperature and CO and H 2-pressures | |
CN105779848A (en) | Ferrotitanium-based hydrogen storage alloy | |
GB1593764A (en) | Nickel mischmetal calcium alloys for hydrogen storage | |
CN105568110A (en) | AB type hydrogen storage alloy used for storing tritium and preparation method of AB type hydrogen storage alloy | |
US4096641A (en) | Method for storing hydrogen in nickel-calcium | |
US4717551A (en) | Titanium-based alloy used as a gettering material | |
JP3843459B2 (en) | Method for producing titanium-based hydrogen storage alloy powder | |
Schnizlein et al. | The Kinetics of Oxidation of Plutonium Metal and a Plutonium‐3.4 a/o Aluminum Alloy at Temperatures from 140° to 550° C | |
JPH0159006B2 (en) | ||
CN108300960B (en) | Surface diffusion agent without metal powder and application thereof | |
JPS55114469A (en) | Mig arc welding method | |
Meli et al. | XPS analysis of the getter mechanism and getter activation process | |
GB2030693A (en) | Heat exchanger store | |
Dantzer et al. | High-temperature thermodynamics of dilute solutions of hydrogen and deuterium in tantalum and in dilute tantalum-oxygen solid solutions | |
Schulze et al. | Reactions of Nb-Al powder mixtures during sintering | |
JPS55149101A (en) | Novel hydrogen absorbent | |
US4576639A (en) | Hydrogen storage metal material | |
JPH0713274B2 (en) | Reversible storage / release material for hydrogen | |
RU1750256C (en) | Getteric alloy | |
JP3244332B2 (en) | Method and apparatus for producing rare earth metal spherical particles | |
JP3882114B2 (en) | Neutron multiplier for fusion reactor | |
Ryabtsev | Thermodynamic analysis of the processes taking place in gaps of multi-layer hermetic packets during roll welding | |
JPS648063B2 (en) | ||
CA1095879A (en) | Iron-titanium-mischmetal alloys for hydrogen storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |