JPS6190621A - Means for keeping vacuum in vacuum jacket of heat insulatingcontainer - Google Patents

Means for keeping vacuum in vacuum jacket of heat insulatingcontainer

Info

Publication number
JPS6190621A
JPS6190621A JP60212801A JP21280185A JPS6190621A JP S6190621 A JPS6190621 A JP S6190621A JP 60212801 A JP60212801 A JP 60212801A JP 21280185 A JP21280185 A JP 21280185A JP S6190621 A JPS6190621 A JP S6190621A
Authority
JP
Japan
Prior art keywords
vacuum
alloy
insulatingcontainer
heat
jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60212801A
Other languages
Japanese (ja)
Other versions
JPH0159006B2 (en
Inventor
オツトー ベルナウアー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler Benz AG
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Publication of JPS6190621A publication Critical patent/JPS6190621A/en
Publication of JPH0159006B2 publication Critical patent/JPH0159006B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J41/00Thermally-insulated vessels, e.g. flasks, jugs, jars
    • A47J41/02Vacuum-jacket vessels, e.g. vacuum bottles
    • A47J41/022Constructional details of the elements forming vacuum space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は断熱容器の真空ジャケット内に真空を維持する
手段に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to means for maintaining a vacuum within the vacuum jacket of an insulated container.

従来の技術 壁の間の空間馨真空にした二重壁容器は断熱が最良の容
器である。比較的小さい容器は通常ガラスでつ(られる
(魔法びん)が、より大ぎい容器は鋼の壁だけでつくる
ことができる。しかしながら、蛸でできた断熱容器の真
空マントル中の真空は長時間のうちに低下する、特に真
空空間内に放射反射シールドを設げ1こときにも低下す
ることがわかつ1こ。この真空の低下はまず壁および放
射シールドに吸収され1こガスが放出されること、次に
鋼壁を通してガス、たとえば水素が拡散できることによ
る。しかしながら真空による断熱は真空マントル中の圧
力が10−4ミlJバ一ル以上に高(なると急速に低下
する。したがって真空マントル中に真空乞維持する媒質
、1ことえば活性炭ビ入れることは既に知られている。
BACKGROUND OF THE INVENTION Double-walled containers with a vacuum evacuated between the walls are the best insulated containers. Relatively small containers are usually made of glass (thermos), but larger containers can be made with only steel walls. However, the vacuum in the vacuum mantle of an insulated container made of octopus can In particular, it was found that when a radiation-reflecting shield is installed in a vacuum space, it also decreases.This decrease in vacuum is first absorbed by the walls and the radiation shield, and gas is released. Second, gases, such as hydrogen, can diffuse through the steel walls. However, the insulation provided by the vacuum decreases rapidly when the pressure in the vacuum mantle is high (above 10-4 mlJ). It is already known to include a maintaining medium, such as activated carbon.

明が解決しようとする問題点 本発明の課題は、真空マントル内に入れも、れた−4 
゛、 とぎ、そこに現われるガス乞吸収して10 (リバール
より低い真空を維持する安価で高効率の媒質を得ること
である。
Problems to be Solved by Akira Akira The problem of the present invention is to
The goal is to obtain an inexpensive and highly efficient medium that absorbs the gases that appear there and maintains a vacuum lower than 10 (Livar).

問題点を解決するための手段 この課題は、本発明によれば、断熱容器の真空マントル
内に真空乞維持する媒質として化学式%式% ただし x = lより太き(,2まで。
Means for Solving the ProblemThis problem, according to the invention, is achieved by maintaining a vacuum in the vacuum mantle of an insulated container as a medium with the chemical formula %, where x = thicker than l (up to , 2).

y=Qから0.2まで、 x+y =最大限2まで、 a = Qから084まで、 b=oから0.2まで、 a+b =最大限0.5まで、 (l’ −a −b )・X=最小限1、z = Qか
ら(2−x−y)まで で表わされ″る合金を用いることにより解決される。
y=Q to 0.2, x+y = up to 2, a=Q to 084, b=o to 0.2, a+b = up to 0.5, (l' −a −b)・This is solved by using an alloy in which X=minimum 1 and z=Q to (2-x-y).

実施例 この合金はここでは粉末状で、真空空間の体積1リット
ルにつぎ2〜4グラム用いる。この合金?真空空間に入
れ、真空にし1こ後、合金乞300℃までの温度におい
て真空マントルを真空にしながら(ガスをポンプで引(
)自・JrJu’>に励起させる。
EXAMPLE The alloy is here used in powder form in amounts of 2 to 4 grams per liter of vacuum space volume. This alloy? After placing the alloy in a vacuum space and evacuating it for a while, the alloy was heated to a temperature of up to 300°C while evacuating the vacuum mantle (gas was pumped in).
) to excite self/JrJu'>.

合金の製造は公知のよう和合金の成分を溶)’48する
か、または適当に選択された主要合金乞保獲ガスの下に
溶解し、まず公知のように筒温溶融成分の融成物をつ(
す、気化量を最小にする1こめにそれからそれに低温溶
融成分7入れて行なう。合金の酸¥含有量乞減少させる
ために通常のようにrム成物乞それからそれに公知の還
元剤(ランタン、ミツシュ・メタル、その他)を添加し
て還元する。
The alloy can be manufactured by melting the components of the alloy as is known in the art ('48), or by melting a suitably selected main alloy under a gas, and first forming a melt of the molten components at a temperature of 100 ml as is known in the art. (
To minimize the amount of vaporization, add 7 low-temperature melting components to the mixture. To reduce the acid content of the alloy, it is conventionally reduced by adding a known reducing agent (lanthanum, metal, etc.) to it.

固化したポ成物?それから保護ガスの下に、、、lBか
(砕(。得られた材料は水素の吸収および放出7繰り逗
子ことによりさらに細か(砕(ことができるので、合金
九水素ビ何回も吸収および放出させること忙より合金の
粒径’に1ミクロン以下にすることかできる。放出は約
100〜150℃の温度で起こる。しかし、真空マント
ル中の真空の低下はきわめて長時間で起こり、したがっ
て合金忙よるガスの高い吸収速度は必要ないの1で、合
金乞真仝マントル中の真空の維持媒質として用いるのに
特別に細か(砕かれた粉末が絶対に必要というわけでは
ない。(このことはとりわけ水素に当てはまる。) この合金は暇累、水素、水蒸気、 tel化炭紫、その
他のような真空マントル内に通常現われるガスを確実に
吸収するので、10 ζリバール以下、しばしば10〜
10 ζリバール丁らの真?’1維持することかできる
。T r V 1.s P e o 、、s L〜■n
 o 、 1、Ti vl、6 ”eO94またはT 
r V 1.s Fe 0.2 Cr o、sΔIn 
o、 tの組成の合金が特に適当であることがわカ・つ
1こ。
Solidified plastic? Then under a protective gas, the obtained material can be further finely crushed (by hydrogen absorption and release 7 cycles), so that the alloy 9 hydrogen absorption and release It is possible to reduce the particle size of the alloy to less than 1 micron during the process. Release occurs at temperatures of about 100-150°C. However, the reduction in vacuum in the vacuum mantle occurs over a very long period of time, and therefore the alloy particle size A particularly fine powder is not absolutely necessary for use as a vacuum maintenance medium in the alloy mantle, as a high rate of gas absorption is not required. (Applies to hydrogen.) This alloy reliably absorbs gases normally present in the vacuum mantle, such as hydrogen, water vapor, telogen, etc.
10 The truth about ζ Rivar Ding and others? '1 can be maintained. T r V 1. s P e o,, s L~■n
o, 1, Ti vl, 6” eO94 or T
r V 1. s Fe 0.2 Cr o, sΔIn
It has been found that alloys with compositions o and t are particularly suitable.

Claims (5)

【特許請求の範囲】[Claims] (1)断熱容器の真空ジャケット内に真空を維持する手
段としての化学式 T_i(V_1_−_a_−_bFe_aAl_b)_
xCr_yMn_zただし X=1より大きく、2まで、 y=0から0.2まで、 x+y=最大限2まで、 a=0から0.4まで、 b=0から0.2まで、 a+b=最大限0.5まで (1−a−b)・x=最小限1、 z=0から(2−x−y)まで の合金の使用。
(1) Chemical formula T_i(V_1_-_a_-_bFe_aAl_b)_ as a means of maintaining a vacuum within the vacuum jacket of the insulated container
xCr_yMn_z However, X=greater than 1 and up to 2, y=0 to 0.2, x+y=up to 2, a=0 to 0.4, b=0 to 0.2, a+b=up to 0 Use of alloys up to .5 (1-a-b) x = minimum 1, z = 0 to (2-x-y).
(2)真空空間1リットルにつき2〜4グラムの特許請
求の範囲第1項記載の合金の使用。
(2) Use of 2 to 4 grams of the alloy according to claim 1 per liter of vacuum space.
(3)T_iV_1_._5Fe_0_._4Mn_0
_._1の組成を特徴とする特許請求の範囲第1項また
は第2項記載の合金の使用。
(3) T_iV_1_. _5Fe_0_. _4Mn_0
_. Use of an alloy according to claim 1 or 2, characterized by the composition of _1.
(4)TiV_1_._6Fe_0_._4の組成を特
徴とする特許請求の範囲第1項または第2項記載の合金
の使用。
(4) TiV_1_. _6Fe_0_. Use of an alloy according to claim 1 or 2, characterized by the composition of _4.
(5)T_iV_1_._6Fe_0_._2Cr_0
_._1Mn_0_._1の組成を特徴とする特許請求
の範囲第1項または第2項記載の合金の使用。
(5) T_iV_1_. _6Fe_0_. _2Cr_0
_. _1Mn_0_. Use of an alloy according to claim 1 or 2, characterized by the composition of _1.
JP60212801A 1984-10-06 1985-09-27 Means for keeping vacuum in vacuum jacket of heat insulatingcontainer Granted JPS6190621A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3436754.3 1984-10-06
DE3436754A DE3436754C1 (en) 1984-10-06 1984-10-06 Means for maintaining the vacuum in the vacuum jacket of thermal insulating containers

Publications (2)

Publication Number Publication Date
JPS6190621A true JPS6190621A (en) 1986-05-08
JPH0159006B2 JPH0159006B2 (en) 1989-12-14

Family

ID=6247301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60212801A Granted JPS6190621A (en) 1984-10-06 1985-09-27 Means for keeping vacuum in vacuum jacket of heat insulatingcontainer

Country Status (6)

Country Link
JP (1) JPS6190621A (en)
CA (1) CA1253361A (en)
DE (1) DE3436754C1 (en)
FR (1) FR2571385B1 (en)
GB (1) GB2165262B (en)
IT (1) IT1184652B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3775639B2 (en) * 2000-02-22 2006-05-17 株式会社日本製鋼所 Method for producing hydrogen storage alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358316A (en) * 1980-12-29 1982-11-09 University Patents, Inc. Alloys for hydrogen storage
US4360445A (en) * 1981-06-16 1982-11-23 The United States Of America As Represented By The United States Department Of Energy Oxygen stabilized zirconium-vanadium-iron alloy
DE3210381C1 (en) * 1982-03-20 1983-05-19 Daimler-Benz Ag, 7000 Stuttgart Alloy for storing hydrogen
DE3425055C1 (en) * 1984-07-07 1985-07-25 Daimler-Benz Ag, 7000 Stuttgart Getter substance

Also Published As

Publication number Publication date
FR2571385A1 (en) 1986-04-11
GB2165262B (en) 1989-05-24
JPH0159006B2 (en) 1989-12-14
IT8548627A0 (en) 1985-10-03
CA1253361A (en) 1989-05-02
FR2571385B1 (en) 1992-12-31
GB8524342D0 (en) 1985-11-06
GB2165262A (en) 1986-04-09
DE3436754C1 (en) 1985-08-14
IT8548627A1 (en) 1987-04-03
IT1184652B (en) 1987-10-28

Similar Documents

Publication Publication Date Title
RU2146722C1 (en) Nonvaporizing getter alloy and device containing such alloy
US4079523A (en) Iron-titanium-mischmetal alloys for hydrogen storage
US20080028931A1 (en) Non-Evaporable Getter Alloys For Hydrogen Sorption
JPH059504B2 (en)
GB1593764A (en) Nickel mischmetal calcium alloys for hydrogen storage
CN108411182A (en) A kind of Zr-Ti-Cr-V complex phases hydrogen bearing alloy and preparation method thereof
US4556551A (en) Hydrogen storage materials of zirconium-chromium-iron and titanium alloys characterized by ZrCr2 stoichiometry
CN105779848A (en) Ferrotitanium-based hydrogen storage alloy
EP0004192B1 (en) Mischmetal-nickel-aluminium alloys
CN105695828A (en) Mg-based high-capacity hydrogen storage alloy and preparation method thereof
JPS6190621A (en) Means for keeping vacuum in vacuum jacket of heat insulatingcontainer
Tamura et al. Effects of protide structures on hysteresis in Ti-Cr-V protium absorption alloys
JPH05247568A (en) Hydrogen storage alloy electrode and battery using them
US4576639A (en) Hydrogen storage metal material
Dantzer et al. High-temperature thermodynamics of dilute solutions of hydrogen and deuterium in tantalum and in dilute tantalum-oxygen solid solutions
Sands et al. Sintered Stainless Steel. I.—THE Influence of Alloy Composition upon Compacting and Sintering Behaviour
JPS581040A (en) Quaternary alloy of rare earth metals for occlusion of hydrogen
JP3000680B2 (en) Materials for hydrogen storage
Sinha et al. Zr0. 7Ti0. 3Mn2Fe0. 8 as a material for hydrogen storage
JPS6347345A (en) Hydrogen storage material
JPS5970743A (en) Metallic material for occluding hydrogen
JPH04337045A (en) Hydrogen storage material
CA1095879A (en) Iron-titanium-mischmetal alloys for hydrogen storage
JPS63282226A (en) Hydrogen occlusion alloy
Gruen et al. Oxygen stabilized zirconium-vanadium-iron alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term