JPH0154310B2 - - Google Patents

Info

Publication number
JPH0154310B2
JPH0154310B2 JP60158845A JP15884585A JPH0154310B2 JP H0154310 B2 JPH0154310 B2 JP H0154310B2 JP 60158845 A JP60158845 A JP 60158845A JP 15884585 A JP15884585 A JP 15884585A JP H0154310 B2 JPH0154310 B2 JP H0154310B2
Authority
JP
Japan
Prior art keywords
aggregate
particle size
fine particle
firing
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60158845A
Other languages
Japanese (ja)
Other versions
JPS6221770A (en
Inventor
Masao Myashiro
Masami Yokoikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIGAKEN
Original Assignee
SHIGAKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIGAKEN filed Critical SHIGAKEN
Priority to JP15884585A priority Critical patent/JPS6221770A/en
Publication of JPS6221770A publication Critical patent/JPS6221770A/en
Publication of JPH0154310B2 publication Critical patent/JPH0154310B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 発明の目的 産業上の利用分野 本発明は透水性タイルの製造方法に関するもの
である。 従来の技術 透水性タイルの製造方法つまり連通孔を形成し
たタイルを作る手段として、従来より、有機物を
混入させて焼成時にこれを焼失させる方法、焼成
収縮の大きな原料を混入する方法、発泡性原料を
使う方法、及び粒度構成を調整して連通孔を形成
させる方法などが存在した。 発明が解決しようとする問題点 本発明は上記の様な種々なる連通孔形成手段の
うち、粒度構成を調整する方法に関するものであ
る。 この粒度構成調整手段は、粗粒骨材にバインダ
ーとなる微粉末をコーテイングして成形し、つい
で焼成する方法であり、この方法は骨材間の隙間
を埋める中間粒子がないため連通孔が形成され
て、透水性タイルになるというものである。 この中間粒子のない混合物の成形で問題になる
点は保形性であり、特に生強度を付与することが
困難となるのである。この生強度が弱いと角にあ
る粗粒が欠落しやすいことや成形体を型から脱出
させたり移動させたりする際に形が崩れやすいな
どの問題が発生するのである。 一方、この生強度つまり保形性を上げるために
成形圧を高くすると粗粒の骨材が壊れて粒度構成
が崩れ連通孔が失われると共に割れ目にはバイン
ダーがないため焼成物の強度が弱くなるおそれが
生じるのである。 この様に粒度構成の調整による連通孔形成手段
は、その成形に際して種々なる問題点が存在し、
決して満足できる透水性タイルの製造方法とは言
えないものであつた。 本発明は上記問題点を解決することを目的とす
るもので、生強度が高くすぐれた保形性を有し、
しかも得られたタイルは強度も大きく、低圧のプ
レスで成形しているためその透水性も良好である
という透水性タイルの製造方法を提供しようとす
るものである。 ロ 発明の構成及び作用 本発明の構成は、粒度を狭い範囲に揃えた骨材
に、前記骨材のバインダーとなる微粒子粉末を液
状糊剤を介してコーテイングし、ついで成形型に
給材して振動を掛けながら前記骨材を割らない圧
力範囲でプレス成形し、しかる後焼成することを
特徴とする透水性タイルの製造方法、を要旨とす
るものである。 問題点を解決するための手段 生強度つまり焼成前の保形性を上げるために、
糊剤を介在させてバインダーとなる微粒子粉末を
骨材にコーテイングし、糊剤によつて微粒子粉末
の接着性を向上させながら骨材同志が仮固着しや
すいものとし、さらにプレス成形時に振動を掛け
ることにより骨材の充填を促進させ、このプレス
圧が骨材を割らない範囲の低圧であつても充分高
い保形性と生強度が得られる様にしたのである。 本発明における骨材とは、例えば天然の陶石、
陶磁器を砕いて得られるセルベンやシヤモツトな
どであり、これらをロールクラツシヤーで粗砕
し、振動篩で分級して狭い範囲の粒度に揃えるの
である。 この狭い範囲の粒度すなわち大きさのほぼ一定
の骨材を選別して原料とするのであるが、その粒
度は目的により、大・中・小と任意に決めてやれ
ば良いものである。 例えば透水性を大きくする粗大な粒子を骨材と
する場合は粒径が5800〜3400μの範囲のものを選
んでやれば良いし、また中程度の骨材としては粒
径が3400〜1700μの範囲が好ましく、小さい骨材
の場合は粒径が1700〜800μの範囲のものが好適
なものである。 本発明製造方法は、その粒度を狭い範囲に揃え
た骨材をまず液状糊剤で濡らしてやるのである。 この液状糊剤とは、例えばデンプン、イソバ
ン、CMC等の糊剤を水に溶かしたものであり、
デンプンであれば10〜15%の水溶液が好ましく、
イソバンでは5〜15%、CMCでは1〜3%の水
溶液が望ましいものである。 つまり骨材をこれら液状糊剤の粘液で濡らして
その粘着力によつて次に述べる微粒子粉末の骨材
への接着性を向上させるのである。 また、この液状糊剤はプレス成形時に骨材同志
の仮固着を促進させ全体の保形性を向上させる作
用も有するものである。 この液状糊剤で骨材を濡らす手段としては、浸
漬法、スプレー法などでも良いが、通常骨材をミ
キサーに投入しその上から低粘度の液状糊剤を注
入して撹拌する方法が最も簡便である。 次に本発明における微粒子粉末とは、焼成時に
溶融してガラス化し骨材間を固着させる微粉末で
あり、この粒径は骨材と比べて極端に小さく、例
えば数10μ以下の平均粒径の粉末よりなるもので
ある。 この骨材間のバインダーとなる微粒子粉末の具
体的な実例としては、信楽アプライト、阿山アプ
ライト、長石廃泥、ロー石、セメント、クロライ
ト系粘土、廃釉、青粘土、炭酸カルシウム等があ
げられ、これらを単独で用いてもよいし適宜に併
用してもよいものである。 粘度がかなり大でかつほぼ大きさの揃つた骨材
に粒度の非常に小さい微粒子粉末をまぶして成形
すると骨材間に出来る間隙を埋める中間粒子がな
いためこの間隙が焼成後も連通孔となつて残り透
水性を発揮するのである。 しかしながら微粒子粉末があまり多くなるとこ
の微粒子粉末のガラス化したものが上記間隙を埋
める危険性もあり、したがつてこの微粒子粉末の
配合量は以下の様に好ましい範囲が存在するので
ある。 つまり、骨材の重量に対して0.2〜0.4倍量の微
粒子粉末を骨材にコーテイングして成形すること
が望ましいのである。 この微粒子粉末のコーテイング量が骨材の量の
0.2倍量より少ない場合は、コーテイング層の厚
みが骨材の半径に対して6%以下の薄いものとな
り、焼成による骨材間の固着力が小さくなつて得
られたタイルの強度が低下するのである。一方、
この微粒子粉末のコーテイング量が骨材の0.4倍
量をこえるときは、コーテイング層の厚さは骨材
の半径に対して12%以上の厚いものになり、焼成
によつて骨材間の固着は強くなるものの、連通孔
がガラス化した微粒子粉末によつて閉塞される率
が高くなり透水性が低下する危険性が生じるので
ある。 したがつてこの微粒子粉末のコーテイング量は
骨材に対して0.2〜0.4倍量とすることが最も望ま
しいのである。 この微粒子粉末を骨材にコーテイングする手段
つまりまぶし方としては、例えば前記した液状糊
剤をミキサー中で骨材に塗布したのちに、そのミ
キサーの中へ所定量の微粒子粉末を加えて撹拌し
てほぼ均一な付着となるまで混合してやれば良い
ものである。 なお、このバインダーである微粒子粉末の選定
にあたつては、焼成時に骨材とその膨張係数がで
きるだけ適合するものを使用することが望まし
く、この膨張係数が骨材のそれと大きな差を有す
る場合はクラツクが入つて強度低下の原因となる
のである。 この様にして骨材の周りにほぼ均一に所定量の
微粒子粉末をコーテイングして、これを成形型に
給材して加圧しプレス成形するのであるが、本発
明においてはこの加圧と同時に振動を与えるもの
となつている。 この場合、骨材間を密にする方が保形性を向上
させ生強度も上がるので、加圧を高めることが望
まれるのであるが、加圧をあまり高くすると骨材
に割れが発生しやすく、骨材が割れると骨材の大
きさが不揃いになり中間粒度のものが連通孔を閉
塞したり、また割れ目の間にはバインダーとして
の微粒子粉末が存在しないので焼成後の強度が低
下することになる、などの問題が発生するのであ
る。 したがつてプレス成形の加圧を骨材の割れない
範囲に限定する必要が生じるのである。 つまりプレス成形に際してはその加圧力を骨材
が割れない範囲に制限し、この低圧の加圧力でも
骨材ができるだけ密になる様に振動を与えながら
プレス成形するのである。 例えば、振幅が2〜8mmで振動数が1分間に
4000〜8000回の強力な振動を与えながらプレス成
形を行なうと、骨材が密充填され、ただ単に上方
から高圧でプレスするよりも、低圧にもかかわら
ず保形性のすぐれた締つた成形体が得られるので
ある。 このプレス成形によつて、骨材間に仮固着力が
働いて目的とする所定の形状の成形体が得られる
のであるが、前述した糊剤がこの仮固着を促進さ
せ上記の振動と加圧による密充填と相乗的に作用
して、より安定な保形性が達成されるのである。 このプレス成形における加圧力としては、骨材
の種類やその大きさによつても異なるが、通常、
0.5〜1.5Kg/cm2の範囲が好ましいものである。 この加圧力は後述する実施例の様に振動させな
い場合の約1/10以下の非常に小さいものであり、
この振動による効果は予想外に大きなものである
ことが判明したのである。 また、この振動により低い加圧力ですぐれた保
形性と焼成後強度が得られ、骨材の破壊率が大幅
に減少して透水性も非常にすぐれたものとなるの
である。 この振動させながら加圧して成形するというこ
とが、本発明の最大の特徴であり、予想をはるか
に上まわるすぐれた効果が達成されるのである。 この様にして成形を完了した成形体を焼成装置
へ移動させて、常法により焼成してやれば、本発
明の目的とする透水性タイルが得られるのであ
る。 実施例 タイルシヤモツト白の骨材であつて、その粒径
が3400〜1700μ(中程度骨材)の範囲のものを選
別し、この骨材をコンクリート用のミキサー機に
投入し、そこへ10%のデンプン水溶液を少しづつ
添加しながら撹拌した。骨材表面全体に均一に糊
剤が付着した時点で、骨材量の30%の信楽アプラ
イトを微粉末バインダーとして投入し、この微粉
末バインダーが均一に骨材の全表面に付着する様
に撹拌した。 ついでこの微粉末バインダー付着骨材を成形型
に給材して、振動プレス成形と単なるプレス成形
とで比較しながら第1表の様な各種の条件で成形
加工した。
A. Field of Industrial Application of the Invention The present invention relates to a method for producing water-permeable tiles. Conventional Techniques Conventional methods for manufacturing water-permeable tiles, i.e., tiles with communicating holes, include methods of mixing organic matter and burning it out during firing, methods of mixing raw materials with large shrinkage during firing, and foaming raw materials. There were two methods, including a method of using pores, and a method of forming communicating pores by adjusting the particle size structure. Problems to be Solved by the Invention The present invention relates to a method for adjusting the particle size structure among the various means for forming communicating holes as described above. This particle size structure adjustment method is a method in which coarse aggregate is coated with fine powder that serves as a binder, molded, and then fired.In this method, there are no intermediate particles that fill the gaps between the aggregates, so communicating pores are formed. This means that the tiles will be made into water-permeable tiles. A problem in molding a mixture without intermediate particles is shape retention, and it is particularly difficult to impart green strength to the mixture. If this green strength is weak, problems such as coarse grains at the corners are likely to break off and the shape of the molded product tends to collapse when it is removed from the mold or moved. On the other hand, if the molding pressure is increased to increase this green strength, or shape retention, the coarse aggregate will break, the particle size structure will collapse, communicating pores will be lost, and there will be no binder in the cracks, which will weaken the strength of the fired product. There is a risk of this happening. In this way, the means for forming communicating holes by adjusting the particle size structure has various problems when molding.
This cannot be said to be a satisfactory method for producing water-permeable tiles. The present invention aims to solve the above problems, and has high green strength and excellent shape retention.
Furthermore, the present invention aims to provide a method for manufacturing water-permeable tiles in which the obtained tiles have high strength and have good water permeability because they are molded using a low-pressure press. B. Structure and operation of the invention The structure of the present invention is such that fine particle powder, which becomes a binder for the aggregate, is coated on aggregate whose particle size is arranged in a narrow range through a liquid glue, and then the material is fed into a mold. The gist of the present invention is a method for producing a water-permeable tile, which is characterized in that the aggregate is press-formed under a pressure range that does not break the aggregate while being vibrated, and then fired. Means to solve the problem In order to increase green strength, that is, shape retention before firing,
The aggregate is coated with fine particle powder that acts as a binder with a sizing agent interposed, and the sizing agent improves the adhesion of the fine particle powder and makes it easier for the aggregates to temporarily stick together.Furthermore, vibration is applied during press forming. This facilitates the filling of aggregate, and enables sufficiently high shape retention and green strength to be obtained even when the press pressure is low enough not to break the aggregate. The aggregate in the present invention is, for example, natural pottery stone,
These are products such as Cerben and Shamotsu obtained by crushing ceramics, and these are coarsely crushed using a roll crusher and classified using a vibrating sieve to obtain particles with a narrow range of particle size. This narrow range of particle size, that is, aggregate with a substantially constant size, is selected and used as the raw material, but the particle size can be arbitrarily determined as large, medium, or small depending on the purpose. For example, if the aggregate is coarse particles that increase water permeability, choose one with a particle size in the range of 5,800 to 3,400μ, and as a medium-sized aggregate, choose one with a particle size in the range of 3,400 to 1,700μ. is preferable, and in the case of small aggregates, those with a particle size in the range of 1700 to 800μ are suitable. In the manufacturing method of the present invention, aggregate whose particle size is arranged within a narrow range is first wetted with a liquid sizing agent. This liquid sizing agent is, for example, a sizing agent such as starch, isobane, CMC, etc. dissolved in water.
For starch, a 10-15% aqueous solution is preferable;
A 5-15% aqueous solution is preferred for Isoban and a 1-3% aqueous solution for CMC. In other words, the aggregate is wetted with the mucus of these liquid sizing agents, and its adhesive strength improves the adhesion of the fine particle powder to the aggregate, which will be described below. In addition, this liquid glue also has the effect of promoting temporary fixation of aggregates to each other during press molding and improving the overall shape retention. Methods for wetting the aggregate with this liquid sizing agent include dipping, spraying, etc., but the simplest method is usually to throw the aggregate into a mixer, pour a low-viscosity liquid sizing agent over it, and stir. It is. Next, the fine particle powder in the present invention is a fine powder that melts and vitrifies during firing and sticks between aggregates, and this particle size is extremely small compared to the aggregate, for example, an average particle size of several tens of microns or less. It is made of powder. Specific examples of fine particle powder that acts as a binder between aggregates include Shigaraki aplite, Ayama aplite, feldspar waste mud, low stone, cement, chlorite clay, waste glaze, blue clay, and calcium carbonate. , these may be used alone or in combination as appropriate. When aggregate with a fairly high viscosity and almost uniform size is sprinkled with fine powder of very small particle size and molded, there are no intermediate particles to fill in the gaps between the aggregates, so these gaps remain as communicating pores even after firing. The remaining water permeability remains. However, if the amount of fine particle powder is too large, there is a risk that the vitrified fine particle powder will fill the above-mentioned gaps.Therefore, there is a preferable range for the amount of fine particle powder to be blended as shown below. In other words, it is desirable to coat the aggregate with fine particle powder in an amount 0.2 to 0.4 times the weight of the aggregate before molding. The amount of coating of this fine powder is equal to the amount of aggregate.
If the amount is less than 0.2 times, the thickness of the coating layer will be less than 6% of the radius of the aggregate, and the strength of the resulting tile will decrease as the adhesion force between the aggregates due to firing becomes smaller. be. on the other hand,
When the coating amount of this fine particle powder exceeds 0.4 times the amount of aggregate, the thickness of the coating layer will be 12% or more thicker than the radius of the aggregate, and the adhesion between the aggregates will be reduced by firing. Although the strength is increased, there is a risk that the communicating pores are more likely to be blocked by the vitrified fine particles, resulting in a decrease in water permeability. Therefore, it is most desirable that the coating amount of this fine particle powder be 0.2 to 0.4 times the amount of the aggregate. The method of coating the aggregate with this fine particle powder is, for example, by applying the above-mentioned liquid sizing agent to the aggregate in a mixer, and then adding a predetermined amount of the fine particle powder into the mixer and stirring. It is sufficient to mix until almost uniform adhesion is obtained. In addition, when selecting the fine particle powder that is this binder, it is desirable to use one whose expansion coefficient matches that of the aggregate as much as possible during firing.If this expansion coefficient has a large difference from that of the aggregate, Cracks occur and cause a decrease in strength. In this way, a predetermined amount of fine powder is coated almost uniformly around the aggregate, and this is then fed into a mold and pressurized to form the material.In the present invention, at the same time as this application, vibration is applied. It has become a way of giving. In this case, it is desirable to increase the pressure, as increasing the density between the aggregates improves shape retention and green strength, but if the pressure is too high, cracks may easily occur in the aggregate. When the aggregate is cracked, the size of the aggregate becomes irregular, and particles of intermediate particle size may clog the communicating holes, and since there is no fine powder as a binder between the cracks, the strength after firing will decrease. This causes problems such as . Therefore, it is necessary to limit the pressure applied during press molding to a range that does not cause the aggregate to crack. In other words, during press forming, the pressure is limited to a range that does not cause the aggregate to crack, and the press forming is performed while applying vibrations so that the aggregate becomes as dense as possible even with this low pressure. For example, the amplitude is 2 to 8 mm and the frequency is 1 minute.
When press forming is performed while applying strong vibrations of 4,000 to 8,000 times, the aggregate is densely packed, resulting in a compact molded product that retains its shape better than simply pressing from above at high pressure, even at a lower pressure. is obtained. Through this press forming, a temporary fixing force acts between the aggregates to obtain a molded product in the desired shape, but the above-mentioned glue accelerates this temporary fixing, and the vibration and pressure mentioned above promotes this temporary fixation. By working synergistically with the close packing, more stable shape retention is achieved. The pressure applied during press forming varies depending on the type and size of the aggregate, but usually
A range of 0.5 to 1.5 Kg/cm 2 is preferred. This pressing force is very small, about 1/10 or less of that in the case of no vibration as in the example described later.
It turned out that the effect of this vibration was unexpectedly large. In addition, this vibration provides excellent shape retention and strength after firing with low pressing force, and the fracture rate of the aggregate is greatly reduced, resulting in extremely high water permeability. Molding by applying pressure while vibrating is the greatest feature of the present invention, and achieves excellent effects that far exceed expectations. The molded body that has been molded in this manner is transferred to a firing device and fired in a conventional manner to obtain the water-permeable tile that is the object of the present invention. Example Tile Shamotsu white aggregate with a particle size in the range of 3400 to 1700μ (medium aggregate) is selected, and this aggregate is put into a mixer for concrete, and 10% The aqueous starch solution was added little by little while stirring. When the sizing agent is uniformly adhered to the entire aggregate surface, 30% of the aggregate amount of Shigaraki aplite is added as a fine powder binder, and stirred so that the fine powder binder is uniformly adhered to the entire aggregate surface. did. Next, this fine powder binder-adhered aggregate was fed into a mold and molded under various conditions as shown in Table 1, comparing vibration press molding and simple press molding.

【表】 この試験No.1が本発明の実施例であり、他の試
験は振動なしの比較例となつている。 この成形条件による骨材の破壊率と成形体嵩密
度を測定したところ、第2表の様な結果が得られ
た。 なお、この破壊率とは840μ以下の粒子の増加
率で示したものである。 また保形性についての判定をこの第2表に示し
たが、これは成形後に成形体を手で持つて移動で
きるかどうかで判断したものである。
[Table] This test No. 1 is an example of the present invention, and the other tests are comparative examples without vibration. When the fracture rate of the aggregate and the bulk density of the molded body were measured under these molding conditions, the results shown in Table 2 were obtained. Note that this destruction rate is expressed as an increase rate of particles of 840μ or less. Table 2 shows the evaluation of shape retention, which was determined based on whether the molded product could be held and moved after molding.

【表】 この表より本発明の実施例である試験No.1は、
プレス成形の加圧が小さいため破壊率は非常に低
く、しかも得られた成形体はかなり高い嵩密度が
得られており、振動なしでプレス成形した場合に
は15〜20倍の加圧力を必要とする程の嵩密度とな
つているのである。 したがつてまた、その保形性つまり生強度もす
ぐれており、手で持つて焼成装置等へ移動させた
りしても形状が崩れる様なことは全くないのであ
る。 次にこれらの成形体を1250℃で1時間焼成し、
その焼成体の曲げ強度と透水性を測定した。その
結果を第3表に示す。 なお、曲げ強度の測定には30mm×100mm×20mm
のピースを用いた。
[Table] From this table, Test No. 1, which is an example of the present invention,
Since the pressure applied during press forming is small, the fracture rate is extremely low, and the resulting molded product has a considerably high bulk density, requiring 15 to 20 times the press force when press forming without vibration. The bulk density is such that Therefore, it also has excellent shape retention, that is, green strength, and will not lose its shape even if it is held in the hand and moved to a baking device or the like. Next, these molded bodies were fired at 1250℃ for 1 hour,
The bending strength and water permeability of the fired body were measured. The results are shown in Table 3. In addition, 30mm x 100mm x 20mm is used for measuring bending strength.
pieces were used.

【表】 この表より本発明の実施例である試験No.1は15
〜20倍の加圧力でプレスだけしたものに匹敵する
曲げ強度を有し、しかもその透水性は骨材がほと
んど破壊されていないため、きわめてすぐれた値
を示し、試験No.2〜5では破壊率が大きくなるに
つれて透水性が極端に悪くなつていることが判断
されるのである。 ハ 発明の効果 以上、詳細に説明した様に本発明は、骨材の周
囲にバインダーとなる微粉子粉末をコーテイング
するに際して液状糊剤を介在させるとうことと、
プレス成形に際して振動を掛けることにより低い
加圧力で成形させるということと、に大きな特徴
を持つた透水性タイルの製造方法である。 したがつてこの糊剤によりプレス成形時に骨材
間が仮固着しやすく、しかも振動によつて密に充
填されるので保形性つまり生強度が強く、焼成へ
の移動に際して崩れる等のトラブルはほとんどな
く、かつ振動なしの加圧力に比べると1/10以下の
加圧力で成形できるので骨材の破壊はほとんどな
く、焼成後の透水性は非常にすぐれたものとなつ
ているのである。 また振動加圧により嵩密度も高く焼成によつて
得られたタイルの強度も充分に高いので、その用
途も広いものである。など種々なるすぐれた効果
を奏するものである。
[Table] From this table, test No. 1, which is an example of the present invention, is 15
It has a bending strength comparable to that obtained by pressing only with ~20 times the pressure, and its water permeability is extremely good because the aggregate is hardly destroyed, and in Test Nos. 2 to 5, it did not break. It is judged that as the ratio increases, the water permeability becomes extremely poor. C. Effects of the Invention As explained in detail above, the present invention includes interposing a liquid sizing agent when coating fine powder serving as a binder around aggregate;
This is a method for producing water-permeable tiles that has the major feature of being able to form with low pressure by applying vibration during press forming. Therefore, this adhesive makes it easy to temporarily bond between the aggregates during press molding, and since the aggregates are densely packed by vibration, they have strong shape retention, that is, green strength, and there are almost no problems such as collapse during transfer to firing. Since it can be formed with a pressure less than 1/10 of the pressure without vibration, there is almost no destruction of the aggregate, and the water permeability after firing is extremely high. In addition, the bulk density is high due to the vibration pressurization, and the strength of the tiles obtained by firing is also sufficiently high, so that the tiles have a wide range of uses. It has various excellent effects such as.

Claims (1)

【特許請求の範囲】 1 粒度を狭い範囲に揃えた骨材に、前記骨材の
バインダーとなる微粒子粉末を液状糊剤を介して
コーテイングし、ついで成形型に給材して振動を
掛けながら前記骨材を割らない圧力範囲でプレス
成形し、しかる後焼成することを特徴とする透水
性タイルの製造方法。 2 微粒子粉末のコーテイング量が、骨材に対し
て0.2〜0.4倍の重量比である特許請求の範囲第1
項記載の透水性タイルの製造方法。
[Scope of Claims] 1. Fine particle powder, which will become the binder of the aggregate, is coated on aggregate whose particle size is arranged in a narrow range through a liquid adhesive, and then the material is fed into a mold and the above-mentioned A method for producing a water-permeable tile, which is characterized by press-forming under a pressure range that does not break the aggregate, and then firing. 2. Claim 1, wherein the coating amount of the fine particle powder is 0.2 to 0.4 times the weight ratio of the aggregate.
2. Method for manufacturing water permeable tiles as described in Section 1.
JP15884585A 1985-07-18 1985-07-18 Manufacture of water-permeable tile Granted JPS6221770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15884585A JPS6221770A (en) 1985-07-18 1985-07-18 Manufacture of water-permeable tile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15884585A JPS6221770A (en) 1985-07-18 1985-07-18 Manufacture of water-permeable tile

Publications (2)

Publication Number Publication Date
JPS6221770A JPS6221770A (en) 1987-01-30
JPH0154310B2 true JPH0154310B2 (en) 1989-11-17

Family

ID=15680663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15884585A Granted JPS6221770A (en) 1985-07-18 1985-07-18 Manufacture of water-permeable tile

Country Status (1)

Country Link
JP (1) JPS6221770A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3088644B2 (en) * 1995-09-27 2000-09-18 太平洋セメント株式会社 Immediately deporous concrete molding and method for producing the same
KR102347575B1 (en) * 2019-09-09 2022-01-06 대동산업 주식회사 Manufacturing method of high fluidity granule powder for ceramic tile and manufacturing method of ceramic tile
CN111217588A (en) * 2018-11-27 2020-06-02 大东产业株式会社 Method for producing high-fluidity granular powder for ceramic tiles and method for producing ceramic tiles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145816A (en) * 1977-05-26 1978-12-19 Mitsui Mining & Smelting Co Sound absorbing ceramics
JPS54163001A (en) * 1978-06-15 1979-12-25 Ngk Insulators Ltd High strength flame resisting sound absorber
JPS5559204A (en) * 1978-10-24 1980-05-02 Sadoshima Metal Waterrpermeable pavement board and making method thereof
JPS59156953A (en) * 1983-02-25 1984-09-06 日本碍子株式会社 Manufacture of inorganic porous body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145816A (en) * 1977-05-26 1978-12-19 Mitsui Mining & Smelting Co Sound absorbing ceramics
JPS54163001A (en) * 1978-06-15 1979-12-25 Ngk Insulators Ltd High strength flame resisting sound absorber
JPS5559204A (en) * 1978-10-24 1980-05-02 Sadoshima Metal Waterrpermeable pavement board and making method thereof
JPS59156953A (en) * 1983-02-25 1984-09-06 日本碍子株式会社 Manufacture of inorganic porous body

Also Published As

Publication number Publication date
JPS6221770A (en) 1987-01-30

Similar Documents

Publication Publication Date Title
EP0461821B1 (en) Sprayable fireproofing composition
US5015606A (en) Lightweight ceramic material for building purposes
JP2777246B2 (en) Ceramic plate material product and method of manufacturing the same
GB2213141B (en) Porous ceramic shapes and process for producing same
US2425151A (en) Method of preparing air-setting refractory mortars
JPH0154310B2 (en)
US2905566A (en) Plaster composition
RU2365561C1 (en) Mass for manufacturing of fire-proof heat-insulating materials and products
CA1143755A (en) Refractory composition
KR20040043174A (en) Factory mortar
WO2007049136A2 (en) Method of making constructional elements
EP0067183A1 (en) Cementitious article
JP4471326B2 (en) Cement paving material
RU2124484C1 (en) Hydroinsulation composition
EP0395743B1 (en) Method of making filler for a building material
JPH0212901B2 (en)
JP3215733B2 (en) Method for producing concrete or mortar molding
SU1183374A1 (en) Method of manufacturing decorative reinforced concrete articles
JP2557065B2 (en) Method for producing steam curing light weight air bubble concrete
SU1011590A1 (en) Method for making construction products
SU1622351A1 (en) Method of producing concrete
JPH0258083B2 (en)
JP3262037B2 (en) Building material and structural material, and method of manufacturing the same
JP2004175636A (en) Mortar coating material
RU2062770C1 (en) Ceramoconcrete mix and method of manufacture of building products from it