JPH0212901B2 - - Google Patents

Info

Publication number
JPH0212901B2
JPH0212901B2 JP6262686A JP6262686A JPH0212901B2 JP H0212901 B2 JPH0212901 B2 JP H0212901B2 JP 6262686 A JP6262686 A JP 6262686A JP 6262686 A JP6262686 A JP 6262686A JP H0212901 B2 JPH0212901 B2 JP H0212901B2
Authority
JP
Japan
Prior art keywords
ceramic
particle size
range
flow value
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6262686A
Other languages
Japanese (ja)
Other versions
JPS62223072A (en
Inventor
Hideaki Suzuki
Fumio Abe
Junichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP6262686A priority Critical patent/JPS62223072A/en
Publication of JPS62223072A publication Critical patent/JPS62223072A/en
Publication of JPH0212901B2 publication Critical patent/JPH0212901B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えば下水処理場の曝気槽において泡
を噴出するために使用される散気板や、セラミツ
クフイルター、吸音材、セラミツクバーナのよう
な高強度と均一な通気性が要求されるセラミツク
多孔体を安定して製造することができるセラミツ
ク多孔体の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to air diffusers used for blowing out bubbles in aeration tanks of sewage treatment plants, ceramic filters, sound absorbing materials, ceramic burners, etc. The present invention relates to a method for producing porous ceramic bodies that can stably produce porous ceramic bodies that require high strength and uniform air permeability.

(従来の技術) 従来、散気板のような高強度と均一な通気性が
要求されるセラミツク多孔体を製造するには、骨
材となるセラミツク粒子と各種結合剤とを一定の
条件で撹拌混合し、調合物の手触り等の触感で調
合物の特性を判断しながら水分調節を行つたう
え、成形を行つていた。ところがこのような人の
感覚に頼る方法では調合物の諸特性のばらつきが
大きく、得られた散気板の発泡特性が不均一とな
るなど歩留りが極めて悪かつた。このため、調合
物の水分、グリーン強度等の定量的に把握できる
値により調合物の諸特性のばらつきを少なくしよ
うとする試みがなされているが、これまでのとこ
ろは失敗に終わつていた。
(Prior art) Conventionally, in order to manufacture ceramic porous bodies that require high strength and uniform air permeability, such as air diffusers, ceramic particles that serve as aggregate and various binders are stirred under certain conditions. After mixing, the moisture content was adjusted while judging the characteristics of the mixture based on its texture, and then molding was performed. However, this method, which relies on human sense, resulted in extremely poor yields, such as large variations in the properties of the formulation and non-uniform foaming properties of the resulting air diffuser plate. For this reason, attempts have been made to reduce variations in the various properties of formulations using quantitatively ascertainable values such as water content and green strength of the formulation, but these efforts have so far ended in failure.

(発明が解決しようとする問題点) 本発明は上記のような従来の問題点を解決し
て、従来は不可能とされていた調合物の特性を科
学的な手法により管理することにより、発泡特性
のような製品の特性値のばらつきを極めて小さく
抑えることができ、かつ高強度のセラミツク多孔
体の製造方法を目的として完成されたものであ
る。
(Problems to be Solved by the Invention) The present invention solves the conventional problems as described above, and achieves foaming by managing the properties of the formulation using scientific methods, which was previously considered impossible. This method was completed with the aim of producing a high-strength ceramic porous body that can suppress variations in product characteristic values to an extremely small level.

(問題点を解決するための手段) 本発明は予め粒径を10μm〜3000μmの範囲内
の特定領域に揃えたセラミツク質の粒子に少なく
とも無機質の結合剤を添加し、得られた調合物の
フロー値を160〜220の範囲に調整したうえ圧縮成
形し、その後焼成することを特徴とするものであ
る。
(Means for Solving the Problems) The present invention involves adding at least an inorganic binder to ceramic particles whose particle size has been aligned in a specific region within the range of 10 μm to 3000 μm, and the flow of the resulting mixture. It is characterized by adjusting the value to a range of 160 to 220, compression molding, and then firing.

ここでフロー値とはJIS R5201「セメントの物
理試験方法」において未硬化のモルタル、セメン
トペースト、コンクリート等の流動性を測定する
尺度として規定されている値であつて、第1図に
示すように調合物をテーブル1上に型枠2により
円錐形の成形し、テーブル1を所定回数だけ上下
振動させたうえ円錐体3の拡がつた裾部の直径を
第2図に示すように最大径の方向とこれに直角な
方向とについて測定し、その平均値をmmを単位と
する無名数の整数で表わしたものである。このフ
ロー値はモルタル等の軟度に差異があつても常に
均質な組織が得られるようにセメント成形時の突
き数を決定するために土木及び建築の産業分野に
おいて用いられているが、セラミツクスの成形分
野においてはこれまで用いられた例は知られてい
ない。本発明者は均質な調合物を得るために研究
課程においてこのフロー値がセラミツク質の粒子
と結合材との均一な分散を示す尺度として利用で
きるのではないかと考え、更に研究を重ねた結
果、散気板のような高強度と均一な通気性が要求
されるセラミツク多孔体の製造のためには、フロ
ー値の範囲を160〜220の範囲とすることが必要で
あることを究明し、本発明を完成したものであ
る。
The flow value here is a value specified as a scale for measuring the fluidity of unhardened mortar, cement paste, concrete, etc. in JIS R5201 "Physical Test Methods for Cement", and as shown in Figure 1. The mixture was molded into a conical shape on a table 1 using a mold 2, the table 1 was vibrated up and down a predetermined number of times, and the diameter of the widened base of the cone 3 was adjusted to the maximum diameter as shown in Figure 2. It is measured in the direction and the direction perpendicular to this, and the average value is expressed as an anonymous integer in mm. This flow value is used in the civil engineering and construction industries to determine the number of protrusions during cement molding so that a homogeneous structure is always obtained even if there are differences in the softness of mortar, etc. There are no known examples of its use in the molding field. In order to obtain a homogeneous formulation, the present inventor thought that this flow value could be used as a measure of uniform dispersion of ceramic particles and binder, and as a result of further research, In order to manufacture porous ceramic materials that require high strength and uniform air permeability, such as air diffusers, we found that it is necessary to have a flow value in the range of 160 to 220, and we developed this book. It is a completed invention.

ここでフロー値を制御するにはセラミツク質の
粒子及び無機質結合剤の粒径、混合比、混練方
法、水分の添加量等の多くのフアクターがある
が、有機結合剤のような水溶性結合剤を20%を超
えない範囲で添加することが有効である。有機結
合剤は、セラミツク粒子の表面を被覆して、無機
結合剤とセラミツク粒子を高分散の状態で接着さ
せる効果を有するが20%を超えると、セラミツク
粒子表面の有機結合剤のコート厚が厚くなりす
ぎ、良好なる接着効果は得られない。またセラミ
ツク質の粒子の粒径を予め10μm〜3000μmの範
囲内のあまりばらつきの大きくない特定領域に揃
えることも有効である。もつとも粒径の絶対値は
目的とするセラミツク多孔体の通気性の大小によ
つて上記の範囲内で自由に設定することができ
る。本発明においてフロー値を160〜220の範囲に
調整するようにしたのは、160未満では流動性が
不十分でセラミツク質の粒子と結合剤との分散が
不足し、高強度かつ均質な通気性を持つセラミツ
ク多孔体が得られないためであり、また220を越
えるセラミツク質の粒子と結合剤の粒子との相互
間の結合が不十分となり、成形後のグリーン強度
が低下して後工程の乾燥や焼成工程において粒子
の脱落が起こり、良好なセラミツク多孔体が得ら
れないためである。なお、フロー値を180〜200の
範囲にすることがより均一な発泡性を得るのにさ
らに好ましい。また本発明においてセラミツク質
の粒径を10μm〜3000μmの範囲としたのは、10μ
m未満では組織がとなりすぎて散気板等に用いる
ことができるほどの通気性が得られず、逆に
3000μmを超えるとフロー値を制御しても、組織
が粗となりすぎてやはり散気板として用いること
ができるような均一な通気性を得ることが困難化
するためである。また、本発明において用いられ
る調合物は、50〜95重量%のセラミツク質の粒子
と、5〜50%の無機質の結合剤と、0〜20%の有
機結合剤とを固形分として含むものである。無機
質の結合剤は、5%未満ではセラミツク粒子間の
結合力が不足する為、セラミツク多孔体の強度が
低下し50%を超えると組織が密となりすぎる為、
所望の通気性が得られない。さらに、無機質の結
合剤としては、粒径100μm以下の釉薬を用いる
こと好ましいが粒径100μmを超えるとセラミツ
ク粒子と結合剤の分散が不十分となり、セラミツ
ク多孔体の変形、強度のばらつき等を招くので好
ましくない。本発明においてはこのような範囲と
なるようフロー値の調整を行つた調合物を圧縮成
形により所望の形状に成形する。通常の板状物を
成形するには一般的なプレス成形法を用いれば良
いが、後の実施例にも示すようにピン型を用いて
規則的な貫通孔付きのセラミツク多孔体を製造す
る場合には、ピンとピンとの間隙に調合物を均一
に充填することができるように加振機を用いて上
下方向さらには左右方向の振動を加えたうえで、
あるいは振動を加えつつ加圧して圧縮成形するこ
とが好ましい。なお、この場合にもフロー値が
160〜220の範囲を外れると、充填むらを生じたり
粒子がピンとピンとの間隙にうまらなく入らない
等の問題を生じ易い。次に本発明の実施例を示
す。
There are many factors to control the flow value, such as the particle size of the ceramic particles and the inorganic binder, the mixing ratio, the kneading method, the amount of water added, etc. It is effective to add in a range not exceeding 20%. The organic binder has the effect of coating the surface of the ceramic particles and adhering the inorganic binder and the ceramic particles in a highly dispersed state, but if it exceeds 20%, the coating thickness of the organic binder on the surface of the ceramic particles becomes thick. If it becomes too thick, a good adhesion effect cannot be obtained. It is also effective to adjust the particle size of the ceramic particles in advance to a specific range within the range of 10 .mu.m to 3000 .mu.m where the variation is not too large. However, the absolute value of the particle size can be freely set within the above range depending on the degree of air permeability of the intended ceramic porous body. In the present invention, the flow value is adjusted to a range of 160 to 220 because if it is less than 160, the fluidity is insufficient and the dispersion of the ceramic particles and the binder is insufficient. This is because a ceramic porous body with a 220-degree diameter cannot be obtained, and the bonding between the ceramic particles exceeding 220 and the binder particles is insufficient, resulting in a decrease in green strength after molding and drying in the subsequent process. This is because particles fall off during the firing process and a good ceramic porous body cannot be obtained. In addition, it is more preferable to set the flow value in the range of 180 to 200 in order to obtain more uniform foamability. In addition, in the present invention, the particle size of the ceramic material is set in the range of 10 μm to 3000 μm.
If it is less than m, the structure will become too dense and it will not be possible to obtain sufficient air permeability to use it for air diffusers, etc.
This is because if the thickness exceeds 3000 μm, even if the flow value is controlled, the structure will become too coarse, making it difficult to obtain uniform air permeability that can be used as a diffuser plate. The formulation used in the present invention has a solid content of 50-95% by weight of ceramic particles, 5-50% of an inorganic binder, and 0-20% of an organic binder. If the inorganic binder is less than 5%, the bonding force between ceramic particles will be insufficient, and the strength of the porous ceramic will decrease, and if it exceeds 50%, the structure will become too dense.
Desired air permeability cannot be obtained. Furthermore, as the inorganic binder, it is preferable to use a glaze with a particle size of 100 μm or less, but if the particle size exceeds 100 μm, the ceramic particles and binder will not be sufficiently dispersed, leading to deformation of the ceramic porous body and variations in strength. So I don't like it. In the present invention, a composition whose flow value has been adjusted to fall within such a range is molded into a desired shape by compression molding. A general press forming method can be used to form a normal plate-shaped object, but as shown in the examples below, a pin mold is used to manufacture a ceramic porous body with regular through holes. In order to uniformly fill the gap between the pins with the mixture, a vibrator is used to apply vibrations in the vertical and horizontal directions.
Alternatively, compression molding is preferably performed by applying pressure while applying vibration. In addition, in this case as well, the flow value is
If it is out of the range of 160 to 220, problems such as uneven filling and particles not being able to properly fit into the gaps between the pins are likely to occur. Next, examples of the present invention will be shown.

(実施例) 実施例 1 平均粒径が50μmであり90%以上が40〜60μm
の範囲に入るよう粒度調整されたアルミナ粒子80
%(重量%、以下同じ)と、平均粒径が8μmで
ある釉薬15%と、有機結合剤であるカルボキシメ
チルセルローズの10%水溶液5%とを100Kgにな
るよう調合し、混練機で5分間混合したうえでフ
ロー値を測定したところ145であつた。そこで更
に外配合で2%のカルボキシメチルセルローズ粉
末を添加して5分間混練し、フロー値を195とし
た。この調合物を第3図に示すように下パンチ6
と、上パンチ7と、枠8とによつて構成される成
形キヤビテイの内部に振動を加えながら充填した
うえ、下パンチ6に向つて上パンチ7を下降させ
ることにより圧縮成形し、第4図のように下パン
チ6を上昇させて取り出した。その後得られた成
形体10を常法により乾燥及び焼成してセラミツ
ク多孔体を得た。得られた多孔体の外寸法は300
mm×300mmであり、厚さは30mmである。またこれ
と比較のためにフロー値を145のままとした調合
物を用いて同様にセラミツク多孔体を得た。
(Example) Example 1 Average particle size is 50 μm and 90% or more is 40 to 60 μm
Alumina particles sized to fall within the range of 80
% (weight %, same hereinafter), 15% glaze with an average particle size of 8 μm, and 5% 10% aqueous solution of carboxymethyl cellulose, an organic binder, to a total weight of 100 kg, and mixed with a kneader for 5 minutes. After mixing, the flow value was measured and found to be 145. Therefore, 2% carboxymethyl cellulose powder was added externally and kneaded for 5 minutes to obtain a flow value of 195. This mixture is applied to the lower punch 6 as shown in FIG.
Then, the inside of the molding cavity constituted by the upper punch 7 and the frame 8 was filled while applying vibration, and compression molding was performed by lowering the upper punch 7 toward the lower punch 6. Raise the lower punch 6 and take it out. Thereafter, the obtained molded body 10 was dried and fired by a conventional method to obtain a ceramic porous body. The outer dimensions of the obtained porous body are 300
The size is mm×300mm and the thickness is 30mm. For comparison, a ceramic porous body was similarly obtained using a formulation in which the flow value was kept at 145.

次にこのようにして得られたセラミツク多孔体
の通気性を測定するため、製品表面を均一な断面
積を有する9個のブロツクに区画し、下面から吹
込んだ空気が上面から気泡となつて表わされる装
置に組込んで各ブロツクから出る気泡の量を夫々
流量計で測定した。各測定値をV1〜V9とし、平
均値をM、標準偏差をσとし、σ/Mを均一発泡
度を表わす値としたところ、本実施例のものは
σ/Mが0.3となつたのに対し比較例のものは
σ/Mが0.9となり、従来市販されている一般の
散気板についてはσ/Mの値が0.6〜1.0程度であ
るのに対し本実施例の方法によつて製造されたセ
ラミツク多孔体の通気性はσ/Mの値が0.3であ
り、極めて優れた均一性を示した。
Next, in order to measure the air permeability of the ceramic porous body obtained in this way, the product surface was divided into nine blocks with uniform cross-sectional areas, and the air blown from the bottom surface became bubbles from the top surface. The amount of air bubbles coming out of each block was measured using a flow meter when the blocks were assembled into the apparatus shown above. When each measured value was set as V 1 to V 9 , the average value was set as M, the standard deviation as σ, and σ/M as a value representing the degree of uniform foaming, σ/M was 0.3 in this example. On the other hand, the comparison example has a σ/M value of 0.9, and while conventional commercially available general diffuser plates have a σ/M value of about 0.6 to 1.0, the method of this example The air permeability of the produced ceramic porous body had a value of σ/M of 0.3, showing extremely excellent uniformity.

さらに、三点曲げ試験による抗析強度を測定し
たところ本実施例のものは300Kg/cm2となつたの
に対し比較例のものは45Kg/cm2であり、本実施例
の方法によつて製造されたセラミツク多孔体の強
度は向上した。
Furthermore, when the anti-destructive strength was measured by a three-point bending test, it was 300Kg/cm 2 in this example, whereas it was 45Kg/cm 2 in the comparative example. The strength of the produced ceramic porous body was improved.

実施例 2 平均粒径が800μmでその80%以上が600〜
1200μmの範囲に入るよう粒度調整された磁器質
粒子75%と、平均粒径が5μmの釉薬15%と、ポ
リビニルアルコールの10%水溶液10%とを100Kg
となるように調合し、混練機で4分間混合したう
えフロー値を測定したところ210であつた。この
調合物を実施例1と同一の方法で成形し、得られ
たセラミツク多孔体のσ/Mの値を測定したとこ
ろ0.15であり、抗折強度は100Kg/cm2であつた。
Example 2 The average particle size is 800 μm and more than 80% of it is 600 μm or more
100 kg of 75% porcelain particles whose particle size has been adjusted to fall within the range of 1200 μm, 15% glaze with an average particle size of 5 μm, and 10% aqueous solution of 10% polyvinyl alcohol.
After mixing in a kneader for 4 minutes, the flow value was measured and found to be 210. This mixture was molded in the same manner as in Example 1, and the value of σ/M of the resulting ceramic porous body was measured to be 0.15, and the bending strength was 100 Kg/cm 2 .

実施例 3 平均粒径が100μmであり、その95%以上が50
〜150μmの範囲に入るよう粒度調整されたシヤ
モツト質粒子85%と、平均粒径10μmの釉薬10%
と、5%の水ガラス(1号)を100Kgとなるよう
に調合し、混練機で6分間混合してフロー値を計
測したところ170であつた。この調合物を実施例
1と同一方法で成形し得られたセラミツク多孔体
のσ/Mの値を測定したところ0.45であり、また
抗析強度は210Kg/cm2であつた。
Example 3 The average particle size is 100 μm, and more than 95% of it is 50 μm.
85% chamomile particles whose particle size is adjusted to fall within the range of ~150μm and 10% glaze with an average particle size of 10μm.
Then, 5% water glass (No. 1) was mixed to a total weight of 100 kg, mixed in a kneader for 6 minutes, and the flow value was measured and found to be 170. This mixture was molded in the same manner as in Example 1, and the σ/M value of the resulting ceramic porous body was measured to be 0.45, and the anti-destructive strength was 210 Kg/cm 2 .

実施例 4 平均粒径が50μmでありその90%以上が40〜
660μmの範囲に入るような粒度調整されたアル
ミナ粒子80%(重量%、以下同じ)と、平均粒径
が8μmである釉薬15%と、有機結合剤であるカ
ルボキシメチルセルローズの10%水溶液5%とを
100Kgとなるよう調合し、混練機で5分間混合し
たうえでフロー値を測定したところ145であつた。
そこで更に外配合で2%のカルボキシメチルセル
ローズ粉末を添加して5分間混練し、フロー値を
195とした。この調合物を第5図に示すように多
数のピン4を備えたピン型5と、ピン貫通孔を備
えた下パンチ6と、上パンチ7と、枠8とによつ
て構成される成形キヤビテイの内部に振動を加え
ながら充填したうえ、下パンチ6に向つて上パン
チ7を下降させることにより圧縮成形し、第6図
のように下パンチ6を上昇させて取出した。その
後この貫通孔9付きの成形体10を常法により乾
燥及び焼成して6mmピツチの貫通孔9を持つセラ
ミツク多孔体を得た。得られた多孔体の外寸法は
100mm×100mmであり、厚さは15mmである。またこ
れと比較のためにフロー値を145のままとした調
合物を用いて同様にセラミツク多孔体を得た。こ
れらのセラミツク多孔体の抗折強度を測定したと
ころ実施例のものは180Kg/cm2、比較例のものは
20Kg/cm2であつた。
Example 4 The average particle size is 50μm, and more than 90% of it is 40~
80% alumina particles whose particle size has been adjusted to fall within the range of 660 μm (wt%, same hereinafter), 15% glaze with an average particle size of 8 μm, and 5% aqueous 10% carboxymethyl cellulose solution as an organic binder. and
The mixture was mixed to a weight of 100 kg, mixed for 5 minutes using a kneader, and the flow value was measured to be 145.
Therefore, 2% carboxymethyl cellulose powder was added externally and kneaded for 5 minutes to adjust the flow value.
It was set at 195. As shown in FIG. The inside of the container was filled with vibration, and compression molding was performed by lowering the upper punch 7 toward the lower punch 6, and the lower punch 6 was lifted and taken out as shown in FIG. Thereafter, this molded body 10 with through-holes 9 was dried and fired by a conventional method to obtain a ceramic porous body having through-holes 9 with a pitch of 6 mm. The outer dimensions of the obtained porous body are
The size is 100mm x 100mm and the thickness is 15mm. For comparison, a ceramic porous body was similarly obtained using a formulation in which the flow value was kept at 145. When the bending strength of these ceramic porous bodies was measured, it was 180Kg/cm 2 for the example and 180Kg/cm 2 for the comparative example.
It was 20Kg/ cm2 .

(発明の効果) 本発明は以上の説明からも明らかなように、セ
メントの分野で用いられていたフロー値をセラミ
ツク多孔体の製造技術に取入れ、このフロー値が
160〜220の範囲となるように調合物の特性を調整
することによつて発泡特性に代表される製品の通
気性のばらつきを従来品よりも小さく抑えること
に成功し、かつ飛躍的な強度の向上が認められた
ものである。そして本発明は従来適当な管理手段
がなかつたために高々70%の歩留りしかあげるこ
とができなかつたセラミツク多孔体の製造工程
を、一挙に歩留り95%以上のレベルにまで向上さ
せることができたもので、産業の発展に寄与する
ところは極めて大である。
(Effects of the Invention) As is clear from the above description, the present invention incorporates the flow value used in the field of cement into the manufacturing technology of ceramic porous bodies, and this flow value is
By adjusting the properties of the formulation to be in the range of 160 to 220, we succeeded in suppressing the variation in the air permeability of the product, represented by the foaming properties, to a smaller level than conventional products, and at the same time achieved a dramatic increase in strength. Improvement was recognized. The present invention is capable of improving the production process of ceramic porous bodies, which in the past could only achieve a yield of 70% at most due to the lack of appropriate control means, to a level of 95% or more. Therefore, the contribution to industrial development is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はフロー値の測定方法を示す側
面図、第3図、第4図は実施例1のセラミツク多
孔体の成形工程を示す断面図、第5図、第6図は
実施例4の貫通孔付きのセラミツク多孔体の成形
工程を示す断面図である。
Figures 1 and 2 are side views showing the flow value measurement method, Figures 3 and 4 are cross-sectional views showing the process of molding the ceramic porous body of Example 1, and Figures 5 and 6 are the actual results. FIG. 7 is a cross-sectional view showing the process of forming a ceramic porous body with through holes in Example 4.

Claims (1)

【特許請求の範囲】 1 予め粒径を10μm〜3000μmの範囲内の特定
領域に揃えたセラミツク質の粒子に少なくとも無
機質の結合剤を添加し、得られた調合物のフロー
値を160〜220の範囲に調整したうえ圧縮成形し、
その後焼成することを特徴とするセラミツク多孔
体の製造方法。 2 調合物が50〜95重量%のセラミツク質の粒子
と、5〜50重量%の無機質の結合剤と、0〜20重
量%の有機結合剤とを固形分として含むものであ
る特許請求の範囲第1項記載のセラミツク多孔体
の製造方法。 3 無機質の結合剤が粒径100μm以下の釉薬で
ある特許請求の範囲第1項または第2項記載のセ
ラミツク多孔体の製造方法。 4 圧縮成形が振動を伴う圧縮成形であり、セラ
ミツク多孔体が貫通孔付きのものである特許請求
の範囲第1項または第2項または第3項記載のセ
ラミツク多孔体の製造方法。
[Claims] 1. At least an inorganic binder is added to ceramic particles whose particle size has been adjusted in advance in a specific region within the range of 10 μm to 3000 μm, and the flow value of the resulting mixture is adjusted to a range of 160 to 220. After adjustment to the desired range, compression molding is performed,
1. A method for producing a porous ceramic body, which comprises firing the porous ceramic body. 2. Claim 1, wherein the formulation contains 50 to 95% by weight of ceramic particles, 5 to 50% by weight of an inorganic binder, and 0 to 20% by weight of an organic binder. A method for producing a ceramic porous body as described in 2. 3. The method for producing a ceramic porous body according to claim 1 or 2, wherein the inorganic binder is a glaze with a particle size of 100 μm or less. 4. The method for producing a porous ceramic body according to claim 1, 2, or 3, wherein the compression molding is compression molding accompanied by vibration, and the porous ceramic body has through holes.
JP6262686A 1986-03-19 1986-03-19 Manufacture of ceramic porous body Granted JPS62223072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6262686A JPS62223072A (en) 1986-03-19 1986-03-19 Manufacture of ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6262686A JPS62223072A (en) 1986-03-19 1986-03-19 Manufacture of ceramic porous body

Publications (2)

Publication Number Publication Date
JPS62223072A JPS62223072A (en) 1987-10-01
JPH0212901B2 true JPH0212901B2 (en) 1990-03-29

Family

ID=13205714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6262686A Granted JPS62223072A (en) 1986-03-19 1986-03-19 Manufacture of ceramic porous body

Country Status (1)

Country Link
JP (1) JPS62223072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655990U (en) * 1991-04-24 1994-08-02 国立環境研究所長 Bicycle with solar cells

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201073A (en) * 1987-02-16 1988-08-19 三菱重工業株式会社 Manufacture of porous ceramic body
JPH0780714B2 (en) * 1987-10-07 1995-08-30 三菱重工業株式会社 Ceramic sound absorbing plate and method of manufacturing the same
JP3986001B2 (en) * 2002-03-14 2007-10-03 日本碍子株式会社 Renewable diffuser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655990U (en) * 1991-04-24 1994-08-02 国立環境研究所長 Bicycle with solar cells

Also Published As

Publication number Publication date
JPS62223072A (en) 1987-10-01

Similar Documents

Publication Publication Date Title
US4935178A (en) Method of making refractory fiber products
US4824811A (en) Lightweight ceramic material for building purposes, process for the production thereof and the use thereof
EP1594818B1 (en) Cementitious products
DE69026519T2 (en) Flat product made of ceramic material and process for its production
KR101260909B1 (en) Process for manufacturing sound absorbing cement tile
CN108117312A (en) A kind of decoration acoustic absorption and preparation method thereof
KR101052602B1 (en) High performance floor mortar composition using fluidizing compound and method for preparing same
JPH0212901B2 (en)
JP2015199634A (en) Manufacturing method of silicate polymer molded body and silicate polymer molded body
DE1964000C3 (en) Process for the production of a ceramic lightweight molded body
JP2004536016A (en) Factory mortar
WO2017085667A2 (en) Lightweight concrete with a high elastic modulus and use thereof
SU1096248A1 (en) Method for preparing light-weight concrete mix
JP3606828B2 (en) Ceramic mold and its manufacturing method
JPS6221770A (en) Manufacture of water-permeable tile
JPH0725683A (en) Pottery having microvoid and production thereof
TWI808455B (en) Establishment method of quantitative model of water consumption and admixture consumption in concrete proportioning
RU2796118C1 (en) Method for making gypsum moulds for casting ceramic products
JPH0319804A (en) Manufacture of inorganic hardened body
JPH02307852A (en) Production of inorganic platy body
JP2000301525A (en) Manufacture of inorganic plate
CN116409968A (en) Preparation method of activated water recycled concrete and recycled concrete
JPH0148224B2 (en)
JPH0867577A (en) Production of lightweight concrete
CN117090359A (en) Plastering technology of high-fiber-content plastering mortar