JPH0153574B2 - - Google Patents

Info

Publication number
JPH0153574B2
JPH0153574B2 JP58234543A JP23454383A JPH0153574B2 JP H0153574 B2 JPH0153574 B2 JP H0153574B2 JP 58234543 A JP58234543 A JP 58234543A JP 23454383 A JP23454383 A JP 23454383A JP H0153574 B2 JPH0153574 B2 JP H0153574B2
Authority
JP
Japan
Prior art keywords
oil
emulsion
phase
oil phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58234543A
Other languages
Japanese (ja)
Other versions
JPS60125244A (en
Inventor
Mototaka Kishita
Norimichi Suzuki
Shoji Konishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP23454383A priority Critical patent/JPS60125244A/en
Publication of JPS60125244A publication Critical patent/JPS60125244A/en
Publication of JPH0153574B2 publication Critical patent/JPH0153574B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)

Description

【発明の詳細な説明】 本発明は、微粒子の安定した水中油型エマルジ
ヨンの製造方法に関し、さらに詳しくは、エマル
ジヨン粒子の大きさが極めて均一で微細であり、
且つ粘度の経時安定性の良い水中油型エマルジヨ
ンの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a stable oil-in-water emulsion of fine particles, and more particularly, the present invention relates to a method for producing a stable oil-in-water emulsion of fine particles, and more particularly, the emulsion particles are extremely uniform in size and fine;
The present invention also relates to a method for producing an oil-in-water emulsion with good viscosity stability over time.

従来、この種水中油型エマルジヨンの製造方法
としては、油相の転移温度以上の水相に転移温度
以上の油相をホモジナイザーなどを用いて高剪断
力で分散乳化した後、それを徐冷するという方法
が一般的であつた。また一部では、上記方法とは
逆に、転移温度以上の油相の転移温度以上の水相
を同様に高剪断力で分散乳化し、その後それを徐
冷する転相乳化法が実施されていた。
Conventionally, the method for producing this type of oil-in-water emulsion involves dispersing and emulsifying an oil phase at a temperature above the transition temperature into an aqueous phase at a temperature above the transition temperature of the oil phase using a homogenizer or the like under high shear force, and then slowly cooling the resultant mixture. This method was common. In some cases, contrary to the above method, a phase inversion emulsification method is used in which an oil phase with a temperature higher than the transition temperature is dispersed and emulsified with a high shear force, and then slowly cooled. Ta.

しかしながら、これらの方法は、通常、油相の
微粒子が60℃以上という油相の転移温度以上の高
温に長時間置かれるため、乳化粒子の一部が合一
現象を起こして均一な粒子を得るのが難しく、し
かも、分散質及び連続相との物質移動に時間的遅
れが生じ、平衡な系に達するのに数日〜数ケ月を
要する結果、経時粘度安定性があまり良好ではな
いという欠点があつた。
However, in these methods, the fine particles of the oil phase are usually kept at a high temperature of 60°C or higher, which is higher than the transition temperature of the oil phase, for a long time, so some of the emulsified particles cause a coalescence phenomenon to obtain uniform particles. Moreover, there is a time delay in mass transfer between the dispersoid and the continuous phase, and it takes several days to several months to reach an equilibrium system, resulting in poor viscosity stability over time. It was hot.

しかも、上記エマルジヨンの製造方法は、組成
の大部分を占める水相の高温加熱及び長時間を必
要とする冷却を伴うので、プロセス的に効率の良
い方法とは言えない。
Furthermore, the method for producing the emulsion described above involves heating the aqueous phase, which makes up the majority of the composition, at high temperatures and cooling, which requires a long period of time, so it cannot be said to be an efficient method in terms of process.

そこで、これらの問題を解決するための種々の
プロセスが提案されている。例えば、特公昭57−
29213号公報の記載の方法においては、第1段階
として親水性非イオン界面活性剤を水溶性溶媒中
に添加し、次にこれに油相を添加して水溶性溶媒
中油型エマルジヨンを調製し、第2段階として該
エマルジヨンに水を添加するようにしている。し
かしながらこの方法は、親水性非イオン界面活性
剤系のみのエマルジヨンに限られているため用途
範囲が狭いばかりか、油相の転移温度以上という
高温での乳化であるため、分散乳化後に冷却操作
を必要とし、プロセス的に効率の良いエマルジヨ
ンの製造方法とは言えない。
Therefore, various processes have been proposed to solve these problems. For example, special public relations
In the method described in Publication No. 29213, as a first step, a hydrophilic nonionic surfactant is added to a water-soluble solvent, and then an oil phase is added thereto to prepare an oil-in-water-soluble solvent emulsion. As a second step, water is added to the emulsion. However, this method is limited to emulsions based only on hydrophilic nonionic surfactants, so its range of applications is narrow, and since emulsification is carried out at a high temperature above the transition temperature of the oil phase, a cooling operation is required after dispersion and emulsification. However, it cannot be said to be an efficient emulsion manufacturing method in terms of process.

本発明は、これらの問題を解決した均一微粒子
で安定性の良い水中油型エマルジヨンの製造方法
を提供することを目的とするもので、第1段階と
して、油相の転移温度以上の水溶性溶媒中に転移
温度以上の油相を5m/sec以上の剪断力で分散さ
せて水溶性溶媒中油型エマルジヨンを調整し、第
2段階として、油相の転移温度より低温であり且
つ常温に近い温度に保持せしめた水相に上記エマ
ルジヨンを添加して分散させることにより乳化及
び冷却を同時に行うことを特徴とするものであ
る。
The purpose of the present invention is to provide a method for producing a highly stable oil-in-water emulsion with uniform fine particles that solves these problems. An oil-in-aqueous solvent emulsion is prepared by dispersing the oil phase at a temperature higher than the transition temperature in the oil with a shear force of 5 m/sec or higher, and in the second step, the oil phase is heated to a temperature lower than the transition temperature of the oil phase and close to room temperature. It is characterized in that emulsification and cooling are performed simultaneously by adding and dispersing the emulsion to the retained aqueous phase.

而して、本発明の方法によれば、はじめに油相
を水よりも表面張力の小さい水溶性溶媒中に分散
するので、通常よりも均一で微細な乳化粒子が得
られ、さらに、上記の水溶性溶媒中油型エマルジ
ヨンを低温且つ常温に近い温度に保持せしめた水
相に分散するので、油相の微粒子が油相の転移温
度以上の高温に長時間置かれることがなく、その
ため乳化粒子の合一現象が起らず、乳化粒子の大
きさが極めて均一且つ微細であると共に粘度の経
時安定性の良い水中油型エマルジヨンを容易に得
ることができる。
According to the method of the present invention, since the oil phase is first dispersed in a water-soluble solvent having a lower surface tension than water, it is possible to obtain emulsified particles that are more uniform and finer than usual. Since the oil-in-neutral solvent emulsion is dispersed in an aqueous phase that is kept at a low temperature close to room temperature, the fine particles of the oil phase are not kept at a high temperature above the transition temperature of the oil phase for a long time, and as a result, the combination of emulsified particles is prevented. It is possible to easily obtain an oil-in-water emulsion in which no phenomenon occurs, the emulsion particles are extremely uniform and fine in size, and the viscosity is stable over time.

特に、本発明のように油相成分としてカチオン
界面活性剤と高級アルコールとを含む場合には、
これらのカチオン界面活性剤と高級アルコールと
の一部が会合体し、液晶構造をとるため、本発明
とは逆に、油相の転移温度以上に保持せしめた水
溶性溶媒中油型エマルジヨンの中に油相の転移温
度より低温で且つ常温に近い温度の水を添加した
場合には、前述の液晶構造の中に水が急激に取込
まれ、ゲル化増粘すると同時に分散粒子が凝集し
てダマ化し易いが、本発明においては、連続相の
水の中に水溶性溶媒中油型エマルジヨンを添加す
るようにしているため、急激な増粘もなく、油粒
子は凝集することなく均一に分散されることにな
る。
In particular, when a cationic surfactant and a higher alcohol are included as oil phase components as in the present invention,
Since a portion of these cationic surfactants and higher alcohols aggregate to form a liquid crystal structure, contrary to the present invention, they are mixed in an oil-in-aqueous solvent emulsion maintained at a temperature higher than the transition temperature of the oil phase. When water at a temperature lower than the transition temperature of the oil phase and close to room temperature is added, the water is rapidly incorporated into the liquid crystal structure described above, causing gelling and thickening, and at the same time, the dispersed particles aggregate and form lumps. However, in the present invention, an oil-in-water emulsion is added to the continuous phase of water, so there is no rapid thickening and the oil particles are uniformly dispersed without agglomeration. It turns out.

ここで、上記カチオン界面活性剤と高級アルコ
ールとを含む油相の転移温度とは、通常の単一油
相(実際にはアルキル鎖長の異なる油相成分の混
合体の場合が多い)の転移温度、即ち、この油相
が固相と液相との間の相変化を生ずる点の温度を
意味し、この相転移温度は、カチオン界面活性剤
及び高級アルコールの混合比率によつて異なる値
を示す。
Here, the transition temperature of the oil phase containing the above-mentioned cationic surfactant and higher alcohol is the transition temperature of a normal single oil phase (actually, it is often a mixture of oil phase components with different alkyl chain lengths). temperature, that is, the temperature at which the oil phase undergoes a phase change between a solid phase and a liquid phase, and this phase transition temperature has different values depending on the mixing ratio of the cationic surfactant and the higher alcohol. show.

以下、本発明の方法についてさらに詳細に説明
する。
The method of the present invention will be explained in more detail below.

本発明においては、第1段階として、油相の転
移温度以上の水溶性溶媒中に転移温度以上の油相
を添加し、水溶性溶媒中油型エマルジヨンを調製
するが、上記水溶性溶媒としては、以下に示すも
のがあげられる。つまり、メタノール、エタノー
ル、プロパノール、イソプロパノール、ベンジル
アルコール等の低級一価アルコール類、グリセリ
ン、エチレングリコール、ジエチレングリコー
ル、トリエチレングリコール、2,3ブチレング
リコール、ヘプタンジオール、プロピレングリコ
ール、1,3ブチレングリコール、ジプロピレン
グリコール等の低級多価アルコール類、アセト
ン、アセトニルアセトン、ジアセトンアルコール
等のケトン類、ホルムアルデヒド等のアルデヒド
類、エチレンオキサイド、ジオキサン、エチレン
グリコールモノメチルエーテル、エチレングリコ
ールモノエチルエーテル、エチレングリコールモ
ノプロピルエーテル、エチレングリコールモノブ
チルエーテル、ジメチレングリコールモノエチル
エーテル、モノプロピレングリコールメチルエー
テル、酢酸エチレングリコールモノメチルエーテ
ル等のエーテル類、モノエタノールアミン、ジエ
タノールアミン、トリエタノールアミン、エチレ
ンジアミン、プロピレンジアミン、エチルアミ
ン、ピリジン等のアミン類、ギ酸、酢酸、酪酸、
乳酸等の低級脂肪酸類などである。
In the present invention, as a first step, an oil phase having a temperature higher than the transition temperature of the oil phase is added to a water soluble solvent having a temperature higher than the transition temperature of the oil phase to prepare an oil-in-water emulsion. The following can be mentioned. In other words, lower monohydric alcohols such as methanol, ethanol, propanol, isopropanol, and benzyl alcohol, glycerin, ethylene glycol, diethylene glycol, triethylene glycol, 2,3-butylene glycol, heptanediol, propylene glycol, 1,3-butylene glycol, and Lower polyhydric alcohols such as propylene glycol, ketones such as acetone, acetonyl acetone, diacetone alcohol, aldehydes such as formaldehyde, ethylene oxide, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl Ethers such as ether, ethylene glycol monobutyl ether, dimethylene glycol monoethyl ether, monopropylene glycol methyl ether, acetic acid ethylene glycol monomethyl ether, monoethanolamine, diethanolamine, triethanolamine, ethylene diamine, propylene diamine, ethylamine, pyridine, etc. Amines, formic acid, acetic acid, butyric acid,
These include lower fatty acids such as lactic acid.

一方、油相の組成物としては以下に示すものが
あげられる。つまり、カチオン界面活性剤、高級
アルコール、乳化剤、油性成分及び水などであり
具体的には、塩化ステアリルトリメチルアンモニ
ウム、塩化ベヘニルトリメチルアンモニウム、塩
化ジステアリルジメチルアンモニウム等のカチオ
ン界面活性剤類、セチルアルコール、ステアリル
アルコール、セトステアリルアルコール、ベヘニ
ルアルコール等の高級アルコール類、ポリオキシ
エチレンステアリルエーテル、ポリオキシエチレ
ンソルビツトテトラオレート、モノピログルタミ
ン酸、モノイソステアリン酸ポリオキシエチレン
グリセリン、ポリオキシエチレン、グリセリルト
リイソステアレート、モノステアリン酸プロピレ
ングリコール、モノステアリン酸ソルビタン、ジ
グリセリンモノステアレート、ソルビタンセスキ
オレート等の乳化剤類、ジメチルポリシロキサン
メチルフエニルポリシロキサン、ジフエニルポリ
シロキサン等のシリコーン油類及び流動パラフイ
ン、スクワラン等の炭化水素類の油性成分などで
ある。
On the other hand, examples of the composition of the oil phase include those shown below. That is, cationic surfactants, higher alcohols, emulsifiers, oily components, water, etc. Specifically, cationic surfactants such as stearyltrimethylammonium chloride, behenyltrimethylammonium chloride, distearyldimethylammonium chloride, cetyl alcohol, Higher alcohols such as stearyl alcohol, cetostearyl alcohol, behenyl alcohol, polyoxyethylene stearyl ether, polyoxyethylene sorbitate tetraoleate, monopyroglutamic acid, polyoxyethylene glyceryl monoisostearate, polyoxyethylene, glyceryl triisostearate, Emulsifiers such as propylene glycol monostearate, sorbitan monostearate, diglycerin monostearate, sorbitan sesquiolate, silicone oils such as dimethylpolysiloxane, methylphenylpolysiloxane, diphenylpolysiloxane, liquid paraffin, squalane, etc. These include oily components of hydrocarbons.

ここで、本発明の重要な条件の一つとして、油
相を水溶性溶媒中に添加する場合、その分散時の
剪断力を5m/sec以上とすることである。5m/
sec以上であれば、現在の機械能力の限界である
20m/secまでの如何なる大きさであつても良い。
なお、5m/sec以下では、分散不良を生じて均一
な微粒子が得られない。
Here, one of the important conditions of the present invention is that when the oil phase is added to a water-soluble solvent, the shear force during dispersion is 5 m/sec or more. 5m/
If it is more than sec, it is the limit of the current machine ability.
It can be of any size up to 20m/sec.
Note that if the speed is less than 5 m/sec, poor dispersion occurs and uniform fine particles cannot be obtained.

次に、第2段階として、油相の転移温度より低
温であり且つ常温に近い温度に保持せしめた水相
に上記第1段階で得られた水溶性溶媒中油型エマ
ルジヨンを添加し、その乳化と油相微粒子の冷却
とを同時に行いながら水中油型エマルジヨンを形
成する。ここで、上記水相は次のような組成物で
構成される。つまり、水、有機塩、無機塩、香料
及び色素などであり、これに、本発明の効果をそ
こなわない範囲内で、低温安定化剤、非イオン界
面活性剤等を添加することができる。
Next, in the second step, the oil-in-water emulsion obtained in the first step is added to the aqueous phase, which is maintained at a temperature lower than the transition temperature of the oil phase and close to room temperature, and the emulsion is An oil-in-water emulsion is formed while simultaneously cooling the oil phase particles. Here, the aqueous phase is composed of the following composition. That is, they include water, organic salts, inorganic salts, fragrances, pigments, and the like, and to these, a low-temperature stabilizer, a nonionic surfactant, etc. can be added within a range that does not impair the effects of the present invention.

而して、上記の如く、水溶性溶媒中油型エマル
ジヨンを添加するに当つて水相の温度を油相の転
移温度より低温且つ常温に近い温度に保持してお
くことは、油相の微粒子の冷却を促進してそれが
長時間高温状態に置かれるのを防止し、乳化粒子
が微細且つ均一で粘度の経時安定性の良い水中油
型エマルジヨンを得る上で極めて有効である。即
ち、水相が油相の転移温度以上であると、分散後
乳化の一部が合一現象を起こし、均一な粒子が得
られなくなると共に、分散質及び連続相との間の
物質移動に時間的遅れが生じて平衡な系に達する
のに長時間を要し、粘度の経時安定性も悪くな
る。また、プロセス的に冷却工程を必要とする。
なお、水溶性溶媒中油型エマルジヨンを油相の転
移温度以下にした場合には、当然のことであるが
該エマルジヨンの添加が難しく、分散不良とな
る。
Therefore, as mentioned above, maintaining the temperature of the aqueous phase at a temperature lower than the transition temperature of the oil phase and close to room temperature when adding an oil-in-water emulsion is important in preventing the formation of fine particles in the oil phase. It is extremely effective in accelerating cooling and preventing it from being left in a high temperature state for a long time, and in obtaining an oil-in-water emulsion with fine and uniform emulsified particles and good stability over time in viscosity. That is, if the temperature of the aqueous phase is higher than the transition temperature of the oil phase, part of the emulsification after dispersion will coalesce, making it impossible to obtain uniform particles, and it will take time for mass transfer between the dispersoids and the continuous phase. A lag occurs, and it takes a long time to reach an equilibrium system, and the stability of the viscosity over time also deteriorates. Furthermore, a cooling step is required in terms of process.
It should be noted that if the temperature of the oil-in-aqueous solvent emulsion is lower than the transition temperature of the oil phase, it is of course difficult to add the emulsion, resulting in poor dispersion.

そして、上記水溶性溶媒中油型エマルジヨンの
添加に際しての剪断力は、第1段階において既に
油相粒子を微分散しており、しかも連続相が水溶
性溶媒であるので、該エマルジヨンを水相に添加
した場合にはそれが容易に分散されることにな
り、従つて強力な剪断力は必要としない。
The shearing force applied when adding the above-mentioned oil-in-aqueous solvent emulsion has already finely dispersed the oil phase particles in the first step, and since the continuous phase is a water-soluble solvent, the emulsion is added to the aqueous phase. If it does, it will be easily dispersed and therefore strong shearing forces are not required.

次に、本発明の効果を実施例を挙げて具体的に
説明する。
Next, the effects of the present invention will be specifically explained with reference to Examples.

実施例 1 溶媒乳化槽 (第1段階) 槽容積:2.5 撹拌翼:ホモミキサー 翼先端周速 5m/sec(剪断力) 本乳化槽 (第2段階) 槽容積:25 撹拌翼:ホモミキサー 翼先端周速 5m/sec(剪断力) まず、第1段階として、上記溶媒乳化槽に、水
溶性溶媒である65℃のグリセリン(5%)を収容
し、これに塩化ステアリルトリメチルアンモニウ
ム(1.0%)、セトステアリルアルコール(3.5
%)、ジグリセリンモノステアレート(0.6%)、
ソルビタンセスキオレート(0.4%)、流動パラフ
イン(0.3%)を含む転移温度60℃の油相を65℃
に加熱して徐々に供給し、その供給と共に撹拌翼
による分散処理を10分間施すことによりその乳化
を行い、65℃の水溶性溶媒中油型エマルジヨンを
調整する。
Example 1 Solvent emulsification tank (1st stage) Tank volume: 2.5 Stirring blade: Homo mixer Blade tip circumferential speed 5 m/sec (shear force) Main emulsification tank (2nd stage) Tank volume: 25 Stirring blade: Homo mixer Blade tip Peripheral speed: 5 m/sec (shear force) First, as a first step, a water-soluble solvent, glycerin (5%) at 65°C, is placed in the solvent emulsification tank, and stearyltrimethylammonium chloride (1.0%), Cetostearyl alcohol (3.5
%), diglycerin monostearate (0.6%),
An oil phase with a transition temperature of 60°C containing sorbitan sesquiolate (0.4%) and liquid paraffin (0.3%) was heated to 65°C.
The mixture is heated to and gradually supplied, and at the same time as the supply, a dispersion treatment using a stirring blade is performed for 10 minutes to emulsify the mixture, thereby preparing an oil-in-aqueous solvent emulsion at 65°C.

次に、第2段階として、本乳化槽に非イオン界
面活性剤であるポリオキシエチレンノルニフエニ
ルエーテル(0.3%)と香料(0.5%)及び微量の
色素を含む30℃の水相を収容し、この水相中に上
記第1段階で得られた65℃の水溶性溶媒中油型エ
マルジヨンを徐々に供給し、その供給と共に撹拌
翼による分散処理を20分間施すことによりその乳
化を行い、これによつて35℃、20の水中油型エ
マルジヨンを得た。その時のエマルジヨンの粒子
径は第1図のaに示すように極めて微細で均一で
あることが確認された。また、その時のエマルジ
ヨンの粘度は1600cpであり、この粘度は極めて
安定しており、1年後の粘度も製造直後の粘度と
ほぼ同一の1640cpであつた。
Next, in the second step, an aqueous phase at 30°C containing a nonionic surfactant, polyoxyethylene noriphenyl ether (0.3%), a fragrance (0.5%), and a trace amount of pigment, was placed in the main emulsification tank. The 65°C oil-in-aqueous solvent emulsion obtained in the first step above was gradually fed into this aqueous phase, and at the same time as it was fed, a dispersion treatment using a stirring blade was performed for 20 minutes to emulsify it. Thus, 20 oil-in-water emulsions were obtained at 35°C. It was confirmed that the particle size of the emulsion at that time was extremely fine and uniform as shown in Figure 1a. The viscosity of the emulsion at that time was 1600 cp, which was extremely stable, and the viscosity one year later was 1640 cp, which was almost the same as the viscosity immediately after production.

比較例 1A 実施例1と同一組成において、水溶性溶媒であ
るグリセリンを実施例1の30℃水相に予め添加
し、この水相に実施例1と同一の65℃油相を徐々
に供給し、その供給と共に撹拌翼による分散処理
を20分間施すことによりその乳化を行い、これに
よつて35℃、20のエマルジヨンを得た。その時
のエマルジヨンの粒子径は第1図のbに示すよう
に、平均粒子径が大きく且つ粘度分布の広い不均
一な粒子径であることが確認された。またエマル
ジヨンの製造直後の粘度は1200cpであつたが、
1年後の粘度は3200cpと激しい増粘がみられ、
粘度安定性は極めて不安定であつた。
Comparative Example 1A With the same composition as Example 1, glycerin, which is a water-soluble solvent, was added in advance to the 30°C water phase of Example 1, and the same 65°C oil phase as in Example 1 was gradually supplied to this water phase. , was supplied and emulsified by performing a dispersion treatment using a stirring blade for 20 minutes, thereby obtaining an emulsion of 20 at 35°C. The particle size of the emulsion at that time was confirmed to be non-uniform, with a large average particle size and a wide viscosity distribution, as shown in Figure 1b. Also, the viscosity of the emulsion immediately after production was 1200 cp,
After one year, the viscosity was 3200 cp, showing severe thickening.
The viscosity stability was extremely unstable.

比較例 1B 実施例1と同様にして調整した65℃の水溶性溶
媒中油型エマルジヨンの中に、30℃の水相を撹拌
翼による分散処理を施しながら20分間かけて徐々
に添加し、35℃、20のエマルジヨンを得た。こ
のときの添加時間とエマルジヨンの粘度との関係
を第3図に示す。
Comparative Example 1B A 30°C aqueous phase was gradually added over 20 minutes to an oil-in-aqueous solvent emulsion at 65°C prepared in the same manner as in Example 1 while performing a dispersion treatment using a stirring blade. , yielded 20 emulsions. The relationship between the addition time and the viscosity of the emulsion at this time is shown in FIG.

この図からも分るように、水相の添加と共に急
激に粘度が上昇してゲル化し、それと同時に分散
粒子が凝集してダマ化(0.5〜2mm)した。
As can be seen from this figure, the viscosity rapidly increased with the addition of the aqueous phase, resulting in gelation, and at the same time, the dispersed particles agglomerated to form lumps (0.5 to 2 mm).

この現象は、油相成分としてカチオン界面活性
剤と高級アルコールとを含む場合には、これらの
カチオン界面活性剤と高級アルコールとの一部が
会合体を形成し、液晶構造をとるため、この液晶
構造の中に添加した水相が急激に取込まれること
により生じるものである。
This phenomenon occurs because when a cationic surfactant and a higher alcohol are included as oil phase components, a portion of these cationic surfactants and higher alcohols form an aggregate and take on a liquid crystal structure. This is caused by the rapid incorporation of the added aqueous phase into the structure.

これに対して、本発明の場合には、急激な増粘
もなく、油粒子は凝集することなく均一に分散し
ている(平均粒子径:0.55μ)ことがわかる。
In contrast, in the case of the present invention, there was no rapid thickening and the oil particles were uniformly dispersed without agglomeration (average particle size: 0.55μ).

実施例 2 溶媒乳化槽 (第1段階) 槽容積:2.5 撹拌翼:ジエツトアジター 翼先端周速 10m/sec(剪断力) 本乳化槽 (第2段階) 槽容積:25 撹拌翼:ジエツトアジター 翼先端周速 10m/sec(剪断力) まず、上記溶媒乳化槽に、水溶性溶媒である70
℃のプロピレングリコール(8.0%)を収容し、
これに塩化ジステアリルジメチルアンモニウム
(1.5%)、ステアリルアルコール(3.2%)、ポリ
オキシエチレン硬化ヒマシ油トリイソステアレー
ト(0.1%)、ポリオキシエチレンアルキルフエニ
ルエーテルリン酸(0.5%)を含む転移温度61℃
の油相を70℃に加熱して徐々に供給し、その供給
と共に撹拌翼による分散処理を20分間施すことに
よりその乳化を行い、第1段階として70℃の水溶
性溶媒中油型エマルジヨンを調整する。
Example 2 Solvent emulsification tank (1st stage) Tank volume: 2.5 Stirring blade: Jet agitator Blade tip circumferential speed 10 m/sec (shear force) Main emulsification tank (2nd stage) Tank volume: 25 Stirring blade: Jet agitator Blade tip circumferential speed 10 m/sec (shear force) First, add 70 m/sec (shear force), a water-soluble solvent, to the solvent emulsification tank
Accommodate propylene glycol (8.0%) at °C.
This includes distearyldimethylammonium chloride (1.5%), stearyl alcohol (3.2%), polyoxyethylene hydrogenated castor oil triisostearate (0.1%), and polyoxyethylene alkyl phenyl ether phosphate (0.5%). Temperature 61℃
The oil phase is heated to 70°C and gradually supplied, and at the same time the oil phase is fed, a dispersion treatment using a stirring blade is performed for 20 minutes to emulsify it, and as a first step, an oil-in-aqueous solvent emulsion at 70°C is prepared. .

次に、本乳化槽に、非イオン界面活性剤である
ポリオキシエチレンノニルフエニルエーテル
(0.2%)と香料(0.5%)及び微小の色素を含む
27℃の水相を収容し、この水相中に上記第1段階
で得られた70℃の水溶性溶媒中油型エマルジヨン
を徐々に供給し、その供給と共に撹拌翼による分
散処理を30分間施すことによりその乳化を行い、
これによつて35℃、20のエマルジヨンを得た。
その時のエマルジヨンの粒子径は第2図のaに示
すように極めて微細で均一であることが確認され
た。また、その時のエマルジヨンの粘度は
1200cpであり、この粘度は極めて安定しており、
1年後の粘度も製造直後の粘度とほぼ同一の
1200cpであつた。
Next, the main emulsification tank contains polyoxyethylene nonyl phenyl ether (0.2%), a nonionic surfactant, fragrance (0.5%), and minute pigments.
Contain an aqueous phase at 27°C, and gradually feed the 70°C oil-in-aqueous solvent emulsion obtained in the first step above into this aqueous phase, and at the same time perform a dispersion treatment using a stirring blade for 30 minutes. emulsify it by
This gave 20 emulsions at 35°C.
It was confirmed that the particle size of the emulsion at that time was extremely fine and uniform as shown in Figure 2a. Also, the viscosity of the emulsion at that time is
1200cp, this viscosity is extremely stable,
The viscosity after one year is almost the same as the viscosity immediately after production.
It was 1200 cp.

比較例 2 実施例2と同一組成において、水溶性溶媒であ
るプロピレングリコールを実施例2の27℃水相に
予め添加して、この水相に実施例2と同一の70℃
油相を徐々に供給し、その供給と共に撹拌翼によ
る分散処理を30分間施すことによりその乳化を行
い、これによつて35℃、20のエマルジヨンを得
た。その時のエマルジヨンの粒子径は第2図のb
に示すように、平均粒子径が大きく且つ粘度分布
の広い不均一な粒子径であることが確認された。
またエマルジヨンの製造直後の粘度は1400cpで
あつたが、1年後の粘度は2500cpとは激しい増
粘がみられ、粘度安定性は極めて不安定であつ
た。
Comparative Example 2 With the same composition as Example 2, propylene glycol, which is a water-soluble solvent, was added in advance to the 27°C aqueous phase of Example 2, and this aqueous phase was heated to 70°C, the same as Example 2.
The oil phase was gradually supplied and emulsified by performing a dispersion treatment using a stirring blade for 30 minutes while supplying the oil phase, thereby obtaining an emulsion of 20 at 35°C. The particle size of the emulsion at that time is b in Figure 2.
As shown in , it was confirmed that the average particle size was large and the particle size was non-uniform with a wide viscosity distribution.
Further, the viscosity of the emulsion immediately after production was 1400 cp, but after one year, the viscosity was 2500 cp, which showed a severe increase in viscosity and the viscosity stability was extremely unstable.

比較例 3 実施例1と同一組成において、剪断力(翼先端
周速)を3m/secとした以外は全てこの実施例1
と同一条件で水中油形エマルジヨンを得た。
Comparative Example 3 Same composition as Example 1, except that the shear force (blade tip peripheral speed) was 3 m/sec.
An oil-in-water emulsion was obtained under the same conditions.

この水中油形エマルジヨンの分散状態を調べた
ところ、部分的に粒子が0.5〜1.0mm程度に凝集し
たものが認められた。これは、剪断力が弱いこと
により、水溶性溶媒中油型エマルジヨンの水相へ
の分散が不良となつたためと考えられる。また、
エマルジヨンの製造直後の粘度は1300cpであつ
たが、1年後には粘度が2400cpと増粘しており、
不安定であつた。
When the dispersion state of this oil-in-water emulsion was examined, it was found that the particles were partially agglomerated to a size of about 0.5 to 1.0 mm. This is thought to be due to poor dispersion of the water-soluble oil-in-solvent emulsion into the aqueous phase due to the weak shearing force. Also,
Immediately after the emulsion was produced, the viscosity was 1300 cp, but one year later, the viscosity had increased to 2400 cp.
It was unstable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の方法によ
り得られたエマルジヨンの粒子径分布を示す説明
図、第3図は水相中に水溶性溶媒中油型エマルジ
ヨンを添加する場合と水溶性溶媒中油型エマルジ
ヨン中に水相を添加する場合との添加時間と粘度
との関係を示す特性図である。
Figures 1 and 2 are explanatory diagrams showing the particle size distribution of emulsions obtained by the method of the present invention, respectively, and Figure 3 shows the case where an oil-in-water emulsion is added to the aqueous phase and the oil-in-aqueous solvent emulsion. FIG. 2 is a characteristic diagram showing the relationship between addition time and viscosity when an aqueous phase is added to a mold emulsion.

Claims (1)

【特許請求の範囲】[Claims] 1 カチオン界面活性剤と高級アルコールとを含
む油相の水中油型エマルジヨンの製造において、
第1段階として、油相の転移温度以上の水溶性溶
媒中に転移温度以上の油相を5〜20m/sec以上
の剪断力で分散させて水溶性溶媒中油型エマルジ
ヨンを調整し、第2段階として、油相の転移温度
より低温であり且つ常温に近い温度に保持せしめ
た水相に上記エマルジヨンを添加して分散させる
ことにより乳化及び冷却を同時に行うことを特徴
とする安定した水中油型エマルジヨンの製造方
法。
1. In the production of an oil-in-water emulsion of an oil phase containing a cationic surfactant and a higher alcohol,
In the first step, the oil phase having a temperature higher than the transition temperature of the oil phase is dispersed in a water soluble solvent having a temperature higher than the transition temperature of the oil phase with a shear force of 5 to 20 m/sec or more to prepare an oil-in-water emulsion. A stable oil-in-water emulsion characterized by simultaneously performing emulsification and cooling by adding and dispersing the emulsion to an aqueous phase maintained at a temperature lower than the transition temperature of the oil phase and close to room temperature. manufacturing method.
JP23454383A 1983-12-13 1983-12-13 Preparation of stable oil-in-water type emulsion Granted JPS60125244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23454383A JPS60125244A (en) 1983-12-13 1983-12-13 Preparation of stable oil-in-water type emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23454383A JPS60125244A (en) 1983-12-13 1983-12-13 Preparation of stable oil-in-water type emulsion

Publications (2)

Publication Number Publication Date
JPS60125244A JPS60125244A (en) 1985-07-04
JPH0153574B2 true JPH0153574B2 (en) 1989-11-14

Family

ID=16972670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23454383A Granted JPS60125244A (en) 1983-12-13 1983-12-13 Preparation of stable oil-in-water type emulsion

Country Status (1)

Country Link
JP (1) JPS60125244A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014866A (en) * 2005-07-06 2007-01-25 Shiseido Co Ltd Method for preparing oil in water microemulsion composition
ES2607713T5 (en) * 2009-09-04 2020-05-21 Shiseido Co Ltd Method for producing an oil / water emulsion composition
JP5887112B2 (en) * 2011-11-28 2016-03-16 花王株式会社 Method for producing plate-like α-gel composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655306A (en) * 1979-06-07 1981-05-15 Shiseido Co Ltd Oil-in-polyhydric alcohol type emulsion composition
JPS577235A (en) * 1980-06-17 1982-01-14 Nippon Saafuakutanto Kogyo Kk Preparation of emulsion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655306A (en) * 1979-06-07 1981-05-15 Shiseido Co Ltd Oil-in-polyhydric alcohol type emulsion composition
JPS577235A (en) * 1980-06-17 1982-01-14 Nippon Saafuakutanto Kogyo Kk Preparation of emulsion

Also Published As

Publication number Publication date
JPS60125244A (en) 1985-07-04

Similar Documents

Publication Publication Date Title
DE3237630C2 (en)
EP1011854B1 (en) Method for producing aqueous emulsions or suspensions
JPH0770327A (en) Preparation of polysiloxane emulsion
DE69308664T2 (en) Process for the production of silicone emulsions
JP3771547B2 (en) Making stable emulsions using dynamic or static mixers
EP0279641B1 (en) Cosmetic compositions
JPS61230734A (en) Silicone emulsifying method and two mode submerged silicone type suspension composition
DD299621A5 (en) PREPARATION OF BALLEN-FOUND DISPERSIONS BY CRYSTALLIZATION OF EMULSIONS
JP3778237B2 (en) Method for producing O / W emulsion
EP0162591B1 (en) Bituminous emulsions
DE3878475T2 (en) ORGANOPOLYSILOXANEMULSION AND METHOD FOR THE PRODUCTION THEREOF.
DE69609462T2 (en) Process for the continuous production of organopolysiloxane emulsions
JPH0153574B2 (en)
US5670087A (en) Method of preparing HIPR bituminous emulsions
JP2007161683A (en) Method for producing emulsified liquid
KR100684668B1 (en) Method for preparing silicone emulsions
JP2002053671A (en) Method for producing emulsified and dispersed composition and emulsified and dispersed composition obtained by the production method
JPS63143935A (en) Manufacturing of emulsion
JPS61153134A (en) Manufacture of oil-in-water type emulsion
JPS63258638A (en) Preparation of oil-in-water type emulsion
JP2019026708A (en) O/w type emulsion and method for producing the same
WO2011162093A1 (en) Process for producing emulsion-producing hydrophilic nanoparticles
US1707809A (en) Emulsion and process of making the same
JP2002030225A (en) Aqueous mold release agent composition for molding polyurethane foam
JP2023127132A (en) Wax fine particle and method for producing the same, and cosmetics