JPH0152704B2 - - Google Patents

Info

Publication number
JPH0152704B2
JPH0152704B2 JP56067650A JP6765081A JPH0152704B2 JP H0152704 B2 JPH0152704 B2 JP H0152704B2 JP 56067650 A JP56067650 A JP 56067650A JP 6765081 A JP6765081 A JP 6765081A JP H0152704 B2 JPH0152704 B2 JP H0152704B2
Authority
JP
Japan
Prior art keywords
gas
oil
electrical equipment
dissolved gas
piston device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56067650A
Other languages
Japanese (ja)
Other versions
JPS57183225A (en
Inventor
Hideo Oonuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56067650A priority Critical patent/JPS57183225A/en
Publication of JPS57183225A publication Critical patent/JPS57183225A/en
Publication of JPH0152704B2 publication Critical patent/JPH0152704B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は絶縁油を使用している変圧器あるいは
リアクトル等の電力用油入電気機器等における異
常を連続して監視する装置に係り、特に絶縁油中
から溶存ガスの抽出並びにガス分析を自動的に行
ない得ることを特徴とする油入電気機器の異常監
視装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that continuously monitors abnormalities in oil-filled electric power equipment such as transformers and reactors that use insulating oil, and in particular, the present invention relates to a device that continuously monitors abnormalities in oil-filled electric power equipment such as transformers and reactors that use insulating oil. The present invention relates to an abnormality monitoring device for oil-filled electrical equipment, which is characterized by being able to automatically perform extraction and gas analysis.

油入電気機器例えば変圧器などの異常を監視す
る方法の一例として変圧器から試料としての絶縁
油を採油して研究所または試験室に持帰りこの絶
縁油中から溶存ガスを抽出してガラス製のガス試
料管に採取し、これをガス分析装置によつて分析
して絶縁油中の溶存ガスの種類および溶存ガスの
溶存量を検出し、この分析結果から油入電気機器
内の異常の有無を判定する方法などが行なわれて
いる。しかしこの方法は初期の不具合が発生して
から油入電気機器の異常の有無が判定されるまで
時間的に可成りの遅れを期たすなどの欠点があ
る。
One example of a method for monitoring abnormalities in oil-filled electrical equipment, such as transformers, is to collect a sample of insulating oil from a transformer, take it to a laboratory or testing room, and extract the dissolved gas from this insulating oil to make glass. The gas is collected in a gas sample tube and analyzed by a gas analyzer to detect the type and amount of dissolved gas in the insulating oil. Based on the analysis results, it is possible to determine whether or not there is an abnormality in the oil-filled electrical equipment. Various methods are being used to determine this. However, this method has the disadvantage that there is a considerable time delay after the initial failure occurs until it is determined whether or not there is an abnormality in the oil-filled electrical equipment.

一方絶縁油から溶存ガスを抽出する場合につい
て述べると、一般に絶縁油中の溶存ガスのガス抽
出装置としてはトリチエリー真空によるガス抽出
装置、水銀拡散ポンプとテプラーポンプの併用に
よるガス抽出装置および真空ポンプと移動弁を用
いるガス抽出装置等があるが上記トリチエリー真
空によるガス抽出装置は水銀の入つたガラス製水
準びんを用いて、いわゆるトリチエリー真空を作
りその真空状態のガラス製の容器の中に絶縁油中
の溶存ガスを放出させる方法であり、水銀とガラ
ス製容器を用いるために水銀蒸気の逸散とガラス
製容器の破損の危険性が伴なうなどの欠点があ
る。また水銀拡散ポンプとテプラーポンプの併用
によるガス抽出装置は油回転ポンプと水銀拡散ポ
ンプおよびテプラーポンプを用いてガラス製の脱
気容器を真空状態に保ちその脱気容器内に絶縁油
を注入して溶存するガスを放出させてガス溜容器
に蓄積する方法であるが、前述のトリチエリー真
空と同様に水銀蒸気の逸散とガラス製容器の破損
の危険性がある。さらに真空ポンプと移動弁を用
いるガス抽出装置は真空ポンプによつてシリンダ
内を真空状態に保ち該シリンダ内に溶存ガスを放
出させ絶縁油中から脱ガスが完了した時点で移動
弁を作動させて抽出した溶存ガスをガス試料管に
装入する方式であるが、同一試料について溶存ガ
スの抽出操作が一回しか行ない得ないので溶解度
の高い溶存ガスは十分に抽出し得ないため精度良
く溶存ガス量の測定を行なうことが困難である等
の欠点がある。またこれらの装置以外にキヤリヤ
ガスによつて絶縁油中の溶存ガスと置換させて溶
存ガスを抽出するキヤリヤガス置換方式のガス抽
出装置もあるが、この場合溶存ガスの濃度が低い
場合には測定が困難であり試料としての絶縁油の
量が少量のために測定値に誤差が生じ易い欠点が
ある。
On the other hand, when discussing the case of extracting dissolved gas from insulating oil, gas extraction devices for dissolved gas in insulating oil generally include a gas extraction device using a Trithier vacuum, a gas extraction device using a combination of a mercury diffusion pump and a Teppler pump, and a vacuum pump. There are gas extraction devices that use moving valves, etc., but the gas extraction device using the Trithierly vacuum described above uses a glass leveling bottle containing mercury to create a so-called Trithierly vacuum, and the gas is submerged in insulating oil in a vacuumed glass container. This method uses mercury and a glass container, so there are drawbacks such as the risk of mercury vapor escaping and the glass container being damaged. In addition, a gas extraction device that uses a combination of a mercury diffusion pump and a Teppler pump uses an oil rotary pump, a mercury diffusion pump, and a Teppler pump to maintain a glass deaeration container in a vacuum state and inject insulating oil into the deaeration container. Although this is a method of releasing dissolved gas and accumulating it in a gas storage container, there is a risk of mercury vapor escaping and breakage of the glass container, similar to the aforementioned Trithierly vacuum. Furthermore, a gas extraction device using a vacuum pump and a moving valve uses a vacuum pump to keep the inside of the cylinder in a vacuum state, releases dissolved gas into the cylinder, and operates the moving valve when the degassing from the insulating oil is completed. This method involves charging the extracted dissolved gas into a gas sample tube, but since the dissolved gas extraction operation can only be performed once for the same sample, highly soluble dissolved gases cannot be extracted sufficiently. There are drawbacks such as difficulty in measuring the amount. In addition to these devices, there is also a gas extraction device that uses a carrier gas replacement method to extract the dissolved gas by replacing it with the dissolved gas in the insulating oil using a carrier gas, but in this case, it is difficult to measure when the concentration of dissolved gas is low. However, since the amount of insulating oil used as a sample is small, errors tend to occur in the measured values.

本発明はこのような点に鑑み、破損の危険性の
あるガラス製の装置を使用する必要がなくまた水
銀蒸気の逸散の危険性を排除することができ、し
かも溶解度の高い溶存ガスも効率よく十分に脱気
し得るガス抽出装置により溶存ガスを抽出してガ
ス分析装置に移送装入し自動的に溶存ガスの分析
を行ない得る油入電気機器の異常監視装置を提供
することを目的とする。
In view of these points, the present invention eliminates the need to use a glass device that is at risk of breakage, eliminates the risk of mercury vapor escaping, and efficiently uses highly soluble dissolved gas. The object of the present invention is to provide an abnormality monitoring device for oil-filled electrical equipment that can automatically analyze dissolved gas by extracting dissolved gas using a gas extraction device that can sufficiently deaerate the gas and transferring it to a gas analyzer. do.

以下添付図面を参照して本発明の実施例につい
て説明する。第1図は本発明に係る油入電気機器
の異常監視装置の一実施例を示す構成図、第2図
は同実施例における異常監視装置の回路図であ
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a block diagram showing an embodiment of an abnormality monitoring device for oil-filled electrical equipment according to the present invention, and FIG. 2 is a circuit diagram of the abnormality monitoring device in the same embodiment.

第1図において、符号1は内部に電気機器中身
および絶縁油を収納した油入電気機器の本体、2
は本体1に連通された冷却装置、3は本体1と冷
却装置2との間の導油管の途中に設けられた異常
監視装置である。この異常監視装置を第2図を参
照して説明する。
In FIG. 1, reference numeral 1 denotes the main body of an oil-filled electrical device that houses the contents of the electrical device and insulating oil, and 2
3 is a cooling device connected to the main body 1, and 3 is an abnormality monitoring device provided in the middle of the oil guide pipe between the main body 1 and the cooling device 2. This abnormality monitoring device will be explained with reference to FIG.

第2図において、符号4は貯油槽、5は脱気
槽、6はガス抽出を行なう往復動式ピストン装
置、21はガス分析装置である。
In FIG. 2, reference numeral 4 is an oil storage tank, 5 is a degassing tank, 6 is a reciprocating piston device for extracting gas, and 21 is a gas analyzer.

本体1と冷却装置2との間の導油管8の途中に
導管9および10が配設されそれぞれ弁11,1
2を介して貯油槽4に連通される。この貯油槽4
は弁13を介して脱気槽5に連通されさらに弁1
4を介して往復動式ピストン装置6のシリンダ室
6aに接続されている。上記シリンダー室6aに
は弁7および三方弁15を介して真空ポンプ16
が接続されている。一方上記三方弁15は圧力セ
ンサ23、弁28a,28b、導管17a,17
bおよび切換弁18a,18bを介して1個また
は複数個(図においては2個)の試料管19a,
19bが接続されている。この切換弁18a,1
8bを所定角度回動すると、その切換弁18a,
18bに接続された供給管22からのキヤリアガ
スによつてガス試料管19a,19b内の溶存ガ
スが上記切換弁18a,18bを経て、さらに導
管20a,20bを介してガス分析装置21に供
給されるようになつている。なお、上記圧力セン
サ23は導管7a,17bを通つてガス試料管1
9a,19bに供給される溶存ガス量の測定が行
ない得る機能を有している。
Conduits 9 and 10 are disposed in the middle of the oil guide pipe 8 between the main body 1 and the cooling device 2, and valves 11 and 1 are provided, respectively.
It is communicated with the oil storage tank 4 via 2. This oil storage tank 4
is communicated with the degassing tank 5 via the valve 13 and further connected to the valve 1.
4 to the cylinder chamber 6a of the reciprocating piston device 6. A vacuum pump 16 is connected to the cylinder chamber 6a via a valve 7 and a three-way valve 15.
is connected. On the other hand, the three-way valve 15 includes a pressure sensor 23, valves 28a and 28b, and conduits 17a and 17.
b and one or more (two in the figure) sample tubes 19a,
19b is connected. This switching valve 18a, 1
When the switching valve 8b is rotated by a predetermined angle, the switching valve 18a,
The dissolved gas in the gas sample tubes 19a, 19b is supplied to the gas analyzer 21 via the switching valves 18a, 18b and further via the conduits 20a, 20b by the carrier gas from the supply tube 22 connected to the gas sample tube 18b. It's becoming like that. Note that the pressure sensor 23 is connected to the gas sample tube 1 through the conduits 7a and 17b.
It has a function of measuring the amount of dissolved gas supplied to 9a and 19b.

一方、前記の往復動式ピストン装置6は差動ピ
ストン装置24によつて駆動される。すなわち、
往復動式ピストン装置6のピストン6bにはピス
トンロツド25を介して差動ピストン装置24の
大径ピストン26が連結されている。大径ピスト
ン26のピストン6b側のシリンダ室24aには
切換弁27を介して真空ポンプ16が接続され、
また大径ピストン26の他方側のシリンダ室26
bも切換弁28を介して上記真空ポンプ16が接
続されている。従つて切換弁28を切換えてシリ
ンダ室26bを真空ポンプ16と接続するととも
に切換弁27によつて他方のシリンダ室24aを
大気側に開放することにより大径ピストン26は
その両側の差圧によつて図において右方に移動し
それに応じてピストン6bが後退する。一方切換
弁27を介してシリンダ室24aを真空ポンプ1
6に接続すると共に切換弁28を介してシリンダ
室26bを大気側に開放すると大径ピストン26
と共にピストン6bが左動し前述の溶存ガスをガ
ス試料管19a,19bへ移送装入することが可
能である。
On the other hand, the reciprocating piston device 6 is driven by a differential piston device 24. That is,
A large diameter piston 26 of a differential piston device 24 is connected to the piston 6b of the reciprocating piston device 6 via a piston rod 25. A vacuum pump 16 is connected to the cylinder chamber 24a on the piston 6b side of the large diameter piston 26 via a switching valve 27.
Also, the cylinder chamber 26 on the other side of the large diameter piston 26
b is also connected to the vacuum pump 16 via the switching valve 28. Therefore, by switching the switching valve 28 to connect the cylinder chamber 26b to the vacuum pump 16, and opening the other cylinder chamber 24a to the atmosphere using the switching valve 27, the large diameter piston 26 is moved by the differential pressure on both sides thereof. The piston 6b then moves to the right in the figure, and the piston 6b retreats accordingly. On the other hand, the cylinder chamber 24a is connected to the vacuum pump 1 via the switching valve 27.
6 and open the cylinder chamber 26b to the atmosphere via the switching valve 28, the large diameter piston 26
At the same time, the piston 6b moves to the left, making it possible to transfer and charge the above-mentioned dissolved gas to the gas sample tubes 19a and 19b.

しかして上記装置によつて絶縁油中の溶存ガス
を抽出するには差圧ピストン装置24によつて往
復動式ピストン装置6のピストン6bを図におい
て右方に移動させそのシリンダ室6aの容積を広
くする。そこで弁7,14を開くと共に三方切換
弁15を作動して上記シリンダ室6aおよびガス
試料管19a,19bを真空ポンプ16に連通せ
しめ上記真空ポンプ16を運転することにより、
シリンダ室6a、脱気槽5、およびガス試料管1
9a,19b等の内部を所定の真空状態とする。
このようにしてシリンダ室6a等の内部が所定の
真空状態になると、三方切換弁15を切換えてシ
リンダ室6aおよびガス試料管19a,19b等
と真空ポンプ16との連通を断つと共に、切換弁
13を開放して貯油槽4内の絶縁油中から溶存ガ
スを分離放出させて真空状態に保たれているシリ
ンダ室6aに流入させかつガス試料管19a,1
9bに蓄積させる。そこで弁13を閉じると共に
シリンダ室6aとガス試料管19a,19bとが
連通するような状態に三方切換弁15を維持させ
たまま差圧ピストン装置24が作動させ往復動式
ピストン装置6のピストン6bを左方に移動せし
める。従つて上記ピストン6bの移動によつてシ
リンダ室6a内の溶存ガスは強制的にガス試料管
19a,19bへと移送装入される。
However, in order to extract the dissolved gas in the insulating oil using the above device, the piston 6b of the reciprocating piston device 6 is moved to the right in the figure by the differential pressure piston device 24, and the volume of the cylinder chamber 6a is reduced. Make it wider. Therefore, by opening the valves 7 and 14 and operating the three-way switching valve 15 to connect the cylinder chamber 6a and the gas sample tubes 19a and 19b to the vacuum pump 16, and operating the vacuum pump 16,
Cylinder chamber 6a, degassing tank 5, and gas sample tube 1
The interiors of 9a, 19b, etc. are brought into a predetermined vacuum state.
When the inside of the cylinder chamber 6a etc. reaches a predetermined vacuum state in this way, the three-way switching valve 15 is switched to cut off the communication between the cylinder chamber 6a, gas sample tubes 19a, 19b, etc. and the vacuum pump 16, and the switching valve 13 is opened to separate and release the dissolved gas from the insulating oil in the oil storage tank 4, allowing it to flow into the cylinder chamber 6a maintained in a vacuum state, and the gas sample tubes 19a, 1
Accumulate in 9b. Therefore, while closing the valve 13 and maintaining the three-way switching valve 15 in a state where the cylinder chamber 6a and the gas sample tubes 19a, 19b communicate with each other, the differential pressure piston device 24 is operated to remove the piston 6b of the reciprocating piston device 6. move it to the left. Therefore, by the movement of the piston 6b, the dissolved gas in the cylinder chamber 6a is forcibly transferred and charged into the gas sample tubes 19a and 19b.

上述のようにしてガス試料管19a,19bへ
の移送装入が完了するとその時点で弁7を閉じ往
復動式ピストン装置6のピストン6bを再び右方
に移動させる。しかしてシリンダ室6aの内部は
再び高真空度化されるので弁14の開放によつて
脱気槽5内の絶縁油中の溶存ガスがその絶縁油中
から放出されてシリンダ室6a内に蓄積される。
蓄積された溶存ガスは前述の操作を繰返すことに
よつて順次ガス試料管19a,19b内へと移送
装入される。このようにして同一試料の絶縁油に
ついて溶存ガスの脱気抽出操作を繰返し行なうこ
とによつて溶解度の高い脱気し難い溶存ガスも効
率よく抽出される。
When the transfer and charging into the gas sample tubes 19a and 19b is completed as described above, at that point the valve 7 is closed and the piston 6b of the reciprocating piston device 6 is moved to the right again. As the inside of the cylinder chamber 6a is again brought to a high degree of vacuum, the dissolved gas in the insulating oil in the deaeration tank 5 is released from the insulating oil and accumulated in the cylinder chamber 6a by opening the valve 14. be done.
The accumulated dissolved gas is sequentially transferred and charged into the gas sample tubes 19a and 19b by repeating the above-described operation. In this way, by repeatedly performing the degassing and extraction operation for dissolved gases on the same sample of insulating oil, dissolved gases that have high solubility and are difficult to degas can also be efficiently extracted.

抽出された溶存ガスは予め校正された圧力セン
サ23により溶存ガス量の測定が行なわれる。一
方ガス試料管19a,19bに移送装入された溶
存ガスは切換弁18a,18bを切換えキヤリア
ガス供給管22からのキヤリアガスをガス試料管
19a,19bに供給することによつて切換弁1
8a,18bを介して導管20a,20bを経て
適宜ガス分析装置21に送られ、溶存ガス中の水
素または可燃性ガスが分析される。従つてこの分
析結果を監視すれば油入電気機器の異常を連続し
て監視することが可能である。
The amount of dissolved gas extracted is measured by a pressure sensor 23 that has been calibrated in advance. On the other hand, the dissolved gas transferred to the gas sample tubes 19a, 19b is transferred to the gas sample tubes 19a, 19b by switching the switching valves 18a, 18b and supplying the carrier gas from the carrier gas supply tube 22 to the gas sample tubes 19a, 19b.
8a, 18b and conduits 20a, 20b to a gas analyzer 21, where hydrogen or combustible gas in the dissolved gas is analyzed. Therefore, by monitoring this analysis result, it is possible to continuously monitor abnormalities in oil-filled electrical equipment.

また、第3図に示すように、ガス分析装置21
に警報表示装置29を設ければ、適宜ガス分析装
置21に送られて分析された溶存ガス中の水素ま
たは可燃性ガスが規定濃度を超えた場合に速やか
に警報表示装置29によつて警報を表示し得る。
In addition, as shown in FIG. 3, the gas analyzer 21
If the alarm display device 29 is installed in the gas analyzer 21, the alarm display device 29 will immediately issue an alarm when hydrogen or combustible gas in the dissolved gas sent to and analyzed by the gas analyzer 21 exceeds a specified concentration. can be displayed.

本発明は上述のように構成したので、往復動式
ピストン装置のピストンの往復によつて絶縁油中
から繰返し溶存ガスの抽出を行なうことが出来
る。また溶解度の高い溶存ガスでも十分に抽出す
ることが出来得ると共に装置全体が非常に小形で
軽量である。一方溶存ガスの抽出に水銀を用いな
いため水銀蒸気の逸散の危険性が皆無となる。さ
らに真空と大気圧の圧力差によつて往復動式ピス
トン装置のピストンが往復動せしめられるので機
械的駆動装置或は上記往復動式ピストン装置の駆
動のために特別な加圧装置を設ける必要がなく、
脱気容器内などを真空にするための真空ポンプを
その駆動源としても利用することが出来るなどの
効果を奏すると共に絶縁油中の発生ガスが連続し
て分離され抽出されるので異常発生が迅速に把握
され監視することが可能である。
Since the present invention is configured as described above, dissolved gas can be repeatedly extracted from insulating oil by reciprocating the piston of the reciprocating piston device. Further, even dissolved gases with high solubility can be sufficiently extracted, and the entire apparatus is extremely small and lightweight. On the other hand, since mercury is not used to extract dissolved gas, there is no risk of mercury vapor escaping. Furthermore, since the piston of the reciprocating piston device is caused to reciprocate by the pressure difference between the vacuum and atmospheric pressure, it is necessary to provide a mechanical drive device or a special pressurizing device to drive the reciprocating piston device. Without,
It has the advantage that the vacuum pump used to create a vacuum inside the degassing container can also be used as its driving source, and the gas generated in the insulating oil is continuously separated and extracted, so abnormalities can be quickly detected. It is possible to understand and monitor the situation.

さらに電磁弁式と該電磁弁の開閉動作および真
空ポンプの作動等はリレーおよびタイマー組合せ
により作動時期、作動順序が自動的に行ない得る
ので、機器の保守管理者が作動開始を指令するの
みで発生ガスの抽出から分析まで全て自動的にそ
の場で行ない得ると共に迅速且つ確実に機器の異
常を監視し得る油入電気機器の異常監視装置を提
供することが出来る。
Furthermore, the solenoid valve type, the opening/closing operation of the solenoid valve, and the operation of the vacuum pump can be automatically controlled at the timing and order of operation by a combination of relays and timers, so the equipment maintenance manager can simply issue a command to start operation. It is possible to provide an abnormality monitoring device for oil-filled electrical equipment that can automatically perform everything from gas extraction to analysis on the spot and can quickly and reliably monitor equipment for abnormalities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の油入電気機器の異常監視装置
の一実施例を示す構成図、第2図は第1図の実施
例における異常監視装置の詳細を示す回路図、第
3図は本発明の他の実施例を示す回路図である。 1…電気機器本体、2…冷却装置、3…異常監
視装置、4…貯油槽、5…脱気槽、6…往復動式
ピストン装置、16…真空ポンプ、18…切換
弁、19…ガス試料管、21…ガス分析装置、2
3…圧力センサ、24…差動ピストン装置、29
…警報表示装置。
FIG. 1 is a configuration diagram showing an embodiment of the abnormality monitoring device for oil-filled electrical equipment of the present invention, FIG. 2 is a circuit diagram showing details of the abnormality monitoring device in the embodiment of FIG. 1, and FIG. FIG. 3 is a circuit diagram showing another embodiment of the invention. 1... Electric equipment body, 2... Cooling device, 3... Abnormality monitoring device, 4... Oil storage tank, 5... Deaeration tank, 6... Reciprocating piston device, 16... Vacuum pump, 18... Switching valve, 19... Gas sample Pipe, 21... Gas analyzer, 2
3...Pressure sensor, 24...Differential piston device, 29
...Alarm display device.

Claims (1)

【特許請求の範囲】 1 油入電気機器の異常を監視する装置におい
て、内部に電気機器中身および絶縁油を収納した
電気機器本体に接続された貯油槽と、この貯油槽
内に蓄積された絶縁油から溶存ガスを脱気するた
めの脱気槽と、この脱気槽から溶存ガスを抽出し
該溶存ガスをガス試料管に移送装入せしめる往復
動式ピストン装置と、真空と大気圧との差圧によ
つて往復動し、上記往復動式ピストン装置を駆動
する差圧ピストン装置と、上記脱気槽および往復
動式ピストン装置のシリンダ室並びにガス試料管
に切換弁を介して接続されガス抽出作動開始前に
上記脱気槽およびシリンダ室内を所定の真空状態
とする真空ポンプと、ガス試料管内に移送装入さ
れた溶存ガスを分析するガス分析装置とから成る
ことを特徴とする油入電気機器の異常監視装置。 2 油入電気機器の異常を監視する装置におい
て、内部に電気機器中身および絶縁油を収納した
電気機器本体に接続された貯油槽と、この貯油槽
内に蓄積された絶縁油から溶存ガスを脱気するた
めの脱気槽と、この脱気槽から溶存ガスを抽出し
該溶存ガスをガス試料管に移送装入せしめる往復
動式ピストン装置と、真空ポンプによる真空と大
気圧との差圧によつて往復動し、上記往復動式ピ
ストン装置を駆動する差圧ピストン装置と、上記
脱気槽および往復動式ピストン装置のシリンダ室
並びにガス試料管に切換弁を介して接続されガス
抽出作動開始前に上記脱気槽およびシリンダ室内
を所定の真空状態とする真空ポンプと、ガス試料
管内に移送装入された溶存ガスを分析するガス分
析装置と、上記ガス分析装置からの指令により警
報表示を行ない得る警報表示装置とから成ること
を特徴とする油入電気機器の異常監視装置。
[Scope of Claims] 1. A device for monitoring abnormalities in oil-filled electrical equipment, which includes an oil tank connected to the main body of the electrical equipment that stores the contents of the electrical equipment and insulating oil, and an insulating oil tank that stores the contents of the electrical equipment and insulating oil. A degassing tank for degassing dissolved gas from oil, a reciprocating piston device for extracting dissolved gas from the degassing tank and transferring the dissolved gas to a gas sample tube, and a combination of vacuum and atmospheric pressure. A differential pressure piston device that reciprocates based on differential pressure and drives the reciprocating piston device, and a gas pipe connected to the degassing tank, the cylinder chamber of the reciprocating piston device, and the gas sample tube via a switching valve. An oil container characterized by comprising a vacuum pump that brings the degassing tank and cylinder chamber to a predetermined vacuum state before the start of the extraction operation, and a gas analyzer that analyzes the dissolved gas transferred and charged into the gas sample tube. Abnormality monitoring device for electrical equipment. 2. A device that monitors abnormalities in oil-filled electrical equipment includes an oil tank connected to the main body of the electrical equipment that stores the contents of the electrical equipment and insulating oil, and removes dissolved gas from the insulating oil accumulated in this oil tank. A degassing tank for removing gas, a reciprocating piston device that extracts dissolved gas from the degassing tank and transfers the dissolved gas to a gas sample tube, and a vacuum pump to generate a differential pressure between the vacuum and atmospheric pressure. Therefore, the differential pressure piston device that reciprocates and drives the reciprocating piston device is connected to the degassing tank, the cylinder chamber of the reciprocating piston device, and the gas sample tube via a switching valve, and the gas extraction operation is started. A vacuum pump that brings the degassing tank and cylinder chamber to a predetermined vacuum state, a gas analyzer that analyzes the dissolved gas transferred into the gas sample tube, and an alarm display based on the command from the gas analyzer. 1. An abnormality monitoring device for oil-filled electrical equipment, characterized in that it comprises an alarm display device that can perform
JP56067650A 1981-05-07 1981-05-07 Malfunction monitor for oil-immersed electric equipment Granted JPS57183225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56067650A JPS57183225A (en) 1981-05-07 1981-05-07 Malfunction monitor for oil-immersed electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56067650A JPS57183225A (en) 1981-05-07 1981-05-07 Malfunction monitor for oil-immersed electric equipment

Publications (2)

Publication Number Publication Date
JPS57183225A JPS57183225A (en) 1982-11-11
JPH0152704B2 true JPH0152704B2 (en) 1989-11-09

Family

ID=13351103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56067650A Granted JPS57183225A (en) 1981-05-07 1981-05-07 Malfunction monitor for oil-immersed electric equipment

Country Status (1)

Country Link
JP (1) JPS57183225A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202675A (en) * 1988-02-09 1989-08-15 Fuji Electric Co Ltd Apparatus for detecting combustible gas in oil
JPH01203982A (en) * 1988-02-10 1989-08-16 Fuji Electric Co Ltd Detecting device for combustible gas in oil
JPH02139437U (en) * 1989-04-24 1990-11-21
JP4514535B2 (en) * 2004-07-14 2010-07-28 三菱電機プラントエンジニアリング株式会社 Dissolved gas monitoring equipment in oil

Also Published As

Publication number Publication date
JPS57183225A (en) 1982-11-11

Similar Documents

Publication Publication Date Title
CN103412014B (en) A kind of hydrogen fluoride gas on-line detector and method
US4409814A (en) Gas extracting device
CN103252113A (en) On-line degasser for transformer oil gas
CN109506844A (en) A kind of ring network cabinet SF6 gas tank helium check system and method
CN101650353B (en) Desaeration process of full desaeration system of chromatogram high-performance total analysis on-line monitoring device and desaeration system
CN209131919U (en) A kind of ring network cabinet SF6 gas tank helium check system
CN203556163U (en) On-line degasser for gas in transformer oil
EP0017106B1 (en) Automatic analyzer for combustible gas in oil
JPH0152704B2 (en)
JP3343524B2 (en) Gas analyzer in electrical insulating oil
CN201477087U (en) Fully degassing system of chromatographic high-performance overall analysis online monitoring device
CN107966349B (en) Gas-liquid separator for monitoring gas in liquid
JPS637443B2 (en)
JPS588737B2 (en) gas extraction equipment
JPH04250331A (en) Method and device for measuring gas dissolved in liquid
KR100308877B1 (en) Apparatus for Extraction Gas Collection Using Plunger
JPS588738B2 (en) gas extraction equipment
JPS6223809B2 (en)
JP4804297B2 (en) Gas sampling apparatus and gas sampling method
JPS6223808B2 (en)
CN112147079A (en) Oil gas monitoring device with filtering capability
JPH0216473B2 (en)
CN206497087U (en) Oil chromatography vacuum deaerator plant
CN217980690U (en) Device for reducing signal background of hydrogen-nitrogen mass spectrometer leak detector
FR2720193A1 (en) Method of introducing an electrolyte into an accumulator element casing and installation for its implementation.