JPS637443B2 - - Google Patents

Info

Publication number
JPS637443B2
JPS637443B2 JP55109248A JP10924880A JPS637443B2 JP S637443 B2 JPS637443 B2 JP S637443B2 JP 55109248 A JP55109248 A JP 55109248A JP 10924880 A JP10924880 A JP 10924880A JP S637443 B2 JPS637443 B2 JP S637443B2
Authority
JP
Japan
Prior art keywords
gas
piston
cylinder chamber
dissolved gas
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55109248A
Other languages
Japanese (ja)
Other versions
JPS5734315A (en
Inventor
Hideo Oonuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10924880A priority Critical patent/JPS5734315A/en
Publication of JPS5734315A publication Critical patent/JPS5734315A/en
Publication of JPS637443B2 publication Critical patent/JPS637443B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • H01F27/14Expansion chambers; Oil conservators; Gas cushions; Arrangements for purifying, drying, or filling

Description

【発明の詳細な説明】 本発明は、電気絶縁油を使用している変圧器、
リアクトル等の電力用電気機器の早期異常診断を
行なうために必要な電気絶縁油中の溶存ガスの分
析または水車や冷却用機器に供給される水中の溶
存ガスの分析等に使用するガス抽出装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a transformer using electrical insulating oil;
Concerning gas extraction equipment used for analysis of dissolved gas in electrical insulating oil necessary for early abnormality diagnosis of electric power equipment such as reactors, or analysis of dissolved gas in water supplied to water turbines and cooling equipment. .

例えば電気絶縁油の場合について述べると、一
般に、電気絶縁油の溶存ガスのガス抽出装置とし
てはトリチエリー真空によるガス抽出装置、水銀
拡散ポンプとテブラーポンプの併用によるガス抽
出装置、および真空ポンプと移動弁を用いるガス
抽出装置等がある。ところが、上記トリチエリー
真空によるガス抽出装置は、水銀の入つたガラス
製の水準びんを用いていわゆるトリチエリー真空
を作り、その真空状態のガラス製の容器の中に電
気絶縁油中の溶存ガスを放出させる方法であり、
水銀とガラス製容器を用いるために、水銀蒸気の
逸散とガラス製容器の破損の危険性が伴なう等の
不都合がある。また、水銀拡散ポンプとテブラー
ポンプの併用によるガス抽出装置は、油回転ポン
プと水銀拡散ポンプおよびテブラーポンプを用い
てガラス製の脱気容器内を真空状態に保ち、その
脱気容器内に電気絶縁油を注入して溶存ガスを放
出させてガス溜容器に蓄積する方法であるが、前
述のトリチエリー真空方式と同様に水銀蒸気の逸
散とガラス製容器の破損の危険性がある。さらに
真空ポンプと移動弁を用いるガス抽出装置は、真
空ポンプによつてシリンダー内を真空状態に保
ち、その中に溶存ガスを放出させ、電気絶縁油か
ら脱ガスが完了した時点で移動弁を作動させて抽
出した溶存ガスをガス試料管に装入する方式であ
るが、これまた同一試料について抽出操作を一回
しか行なえないので、溶解の高い溶存ガスを十分
に抽出することが困難であり、精度よく溶存ガス
量の測定を行なうことがむつかしい等の欠点があ
る。
For example, in the case of electrical insulating oil, gas extraction equipment for dissolved gas in electrical insulating oil generally includes a gas extraction equipment using a Trithierly vacuum, a gas extraction equipment using a combination of a mercury diffusion pump and a Tebbler pump, and a vacuum pump and a moving valve. There are gas extraction devices used. However, the gas extraction device using the Trithierly vacuum described above uses a glass leveling bottle containing mercury to create a so-called Trithierly vacuum, and releases the dissolved gas in the electrical insulating oil into the vacuumed glass container. is a method,
Since mercury and a glass container are used, there are disadvantages such as the risk of mercury vapor escaping and the glass container being damaged. In addition, a gas extraction device that uses a combination of a mercury diffusion pump and a Tebbler pump uses an oil rotary pump, a mercury diffusion pump, and a Tebbler pump to maintain a vacuum state in a glass degassing container, and then injects electrically insulating oil into the degassing container. This is a method of injecting dissolved gas to release it and accumulate it in a gas storage container, but like the Trithiery vacuum method described above, there is a risk of mercury vapor escaping and damage to the glass container. In addition, a gas extraction device that uses a vacuum pump and a moving valve uses a vacuum pump to maintain a vacuum inside the cylinder, releases dissolved gas into the cylinder, and operates the moving valve when degassing is completed from the electrical insulating oil. This method involves charging the extracted dissolved gas into a gas sample tube, but since the extraction operation can only be performed once on the same sample, it is difficult to sufficiently extract highly dissolved dissolved gas. There are drawbacks such as difficulty in measuring the amount of dissolved gas with high accuracy.

また、これらの装置以外に、キヤリヤガスによ
つて電気絶縁油中の溶存ガスと置換させて溶存ガ
スを抽出するキヤリヤガス置換方式の溶存ガス抽
出装置もあるが、この場合溶存ガスの濃度が低い
場合には測定が困難であり、試料としての電気絶
縁油の量が少量のために測定値に誤差を生じ易い
等の欠点がある。
In addition to these devices, there is also a dissolved gas extraction device that uses a carrier gas replacement method to extract dissolved gas by replacing the dissolved gas in electrical insulating oil with a carrier gas, but in this case, when the concentration of dissolved gas is low, It is difficult to measure, and there are drawbacks such as the fact that the amount of electrical insulating oil used as a sample is small, which tends to cause errors in measured values.

本発明はこのような点に鑑み、破損の危険性の
あるガラス製の装置を使用する必要がなく、また
水銀蒸気の逸散の危険性も排除することができ、
しかも溶解度の高い溶存ガスも効率よく十分に脱
気し得るガス抽出装置を提供することを目的とす
る。
In view of these points, the present invention eliminates the need to use a glass device that is at risk of breakage, and also eliminates the risk of mercury vapor escaping.
Moreover, it is an object of the present invention to provide a gas extraction device that can efficiently and sufficiently degas even highly soluble dissolved gases.

以下、添付図面を参照して本発明の実施例につ
いて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

符号1は撹拌装置2によつて試料である電気絶
縁油を撹拌し、その溶存ガスを分離せしめるため
の脱気容器であつて、その脱気容器1に連設され
た切換弁3に試料採油器4が接続可能としてあ
る。また、上記脱気容器1は弁5を介して往復動
式ピストン装置7のシリンダ室7aに接続してあ
り、上記シリンダ室7aは弁8および三方切換弁
9を介して真空ポンプ10が連接されている。
Reference numeral 1 denotes a degassing container for stirring electrical insulating oil as a sample with a stirring device 2 and separating its dissolved gas, and a switching valve 3 connected to the degassing container 1 is used to collect the sample oil. device 4 can be connected. Further, the degassing container 1 is connected to a cylinder chamber 7a of a reciprocating piston device 7 via a valve 5, and a vacuum pump 10 is connected to the cylinder chamber 7a via a valve 8 and a three-way switching valve 9. ing.

一方、上記三方切換弁9に接続された導管11
には複数個(図においては2個)の分岐導管12
a,12bがそれぞれ切換弁13a,13bを介
してガス試料管14a,14bに接続されてい
る。
On the other hand, a conduit 11 connected to the three-way switching valve 9
There are multiple (two in the figure) branch conduits 12.
a, 12b are connected to gas sample tubes 14a, 14b via switching valves 13a, 13b, respectively.

しかして、各切換弁13a,13bが図示位置
の場合には、導管11を経たガスが上記切換弁1
3a,13bを通つてそれぞれガス試料管14
a,14bに供給され、一方上記切換弁13a,
13bを所定角度回動するとともに、その切換弁
13a,13bに接続されたキヤリヤガスによつ
てガス試料管14a,14b内のガスが上記切換
弁13a,13bを経、さらに導管16a,16
bを介してガスクロマトグラフ等の分析装置(図
示せず)に送給されるようにしてある。
Therefore, when each of the switching valves 13a and 13b is in the illustrated position, the gas passing through the conduit 11 is transferred to the switching valve 1.
Gas sample tubes 14 are passed through 3a and 13b, respectively.
a, 14b, while the switching valves 13a,
13b is rotated by a predetermined angle, the gas in the gas sample tubes 14a, 14b passes through the switching valves 13a, 13b by the carrier gas connected to the switching valves 13a, 13b, and is further transferred to the conduits 16a, 16.
b to an analytical device (not shown) such as a gas chromatograph.

また、前記導管11には圧力センサ17が設け
られており、その導管11を通つてガス試料管1
4a,14bに供給されたガス量の測定が行なわ
れ得るようにしてある。
Further, the conduit 11 is provided with a pressure sensor 17, and a gas sample tube 1 is passed through the conduit 11.
It is arranged so that the amount of gas supplied to 4a, 14b can be measured.

ところで、前記往復動式ピストン装置7は差動
ピストン装置20によつて駆動される。すなわ
ち、上記往復動式ピストン装置7のピストン7b
はアルミニウム製であると、溶存ガスと共に抽出
されてくるミスト状の油が劣化分解して生成する
有機酸と反応し、水素ガスを生成して分析結果に
悪影響を及ぼす。そこでこのピストン7bはステ
ンレス鋼で形成するかまたは合成樹脂により被覆
して形成する。このピストン7bにはピストンロ
ツド21を介して大径ピストン22が連結されて
おり、その大径ピストン22のピストン7b側シ
リンダ室20aは切換弁23を介して真空ポンプ
10に接続され、また大径ピストン21の他方側
シリンダ室20bは切換弁24を介して上記真空
ポンプ10に接続されている。
Incidentally, the reciprocating piston device 7 is driven by a differential piston device 20. That is, the piston 7b of the reciprocating piston device 7
If it is made of aluminum, the mist-like oil that is extracted along with the dissolved gas will react with the organic acid produced by decomposition and produce hydrogen gas, which will adversely affect the analysis results. Therefore, the piston 7b is made of stainless steel or coated with synthetic resin. A large-diameter piston 22 is connected to the piston 7b via a piston rod 21, and a cylinder chamber 20a on the piston 7b side of the large-diameter piston 22 is connected to the vacuum pump 10 via a switching valve 23. The other cylinder chamber 20b of 21 is connected to the vacuum pump 10 via a switching valve 24.

したがつて、切換弁24を切換えてシリンダ室
20bを真空ポンプ10と接続するとともに、切
換弁23によつて他方のシリンダ室20aを大気
側に開放すると、大径ピストン22はその両側の
差圧によつて図において右方に移動し、それに応
じてピストン7bが後退する。一方、切換弁23
を介してシリンダ室20aを真空ポンプ10に接
続するとともに、切換弁24を介してシリンダ室
20bを大気側に開放すると、大径ピストン22
とともにピストン7bが左動し、前述のように溶
存のガスのガス試料管14a,14bへの移送を
行なうことができる。
Therefore, when the switching valve 24 is switched to connect the cylinder chamber 20b to the vacuum pump 10, and the other cylinder chamber 20a is opened to the atmosphere by the switching valve 23, the large-diameter piston 22 is moved by the differential pressure on both sides thereof. As a result, the piston 7b moves to the right in the figure, and the piston 7b retreats accordingly. On the other hand, the switching valve 23
When the cylinder chamber 20a is connected to the vacuum pump 10 through the switching valve 24 and the cylinder chamber 20b is opened to the atmosphere through the switching valve 24, the large diameter piston 22
At the same time, the piston 7b moves to the left, and the dissolved gas can be transferred to the gas sample tubes 14a and 14b as described above.

しかして、上記装置によつて電気絶縁油中の溶
存ガスを抽出するには、まず切換弁3に試料採油
器4を接続するとともにその試料採油器4が大気
側に連通するように切換弁3を切換え、試料の電
気絶縁油の一部を排油しながら接続部の空気を排
除する。次に、差圧ピストン装置20によつて往
復動式ピストン装置7のピストン7bを図におい
て右方に作動させそのシリンダ室7aの容積を広
くする。そこで、弁5,8を開くとともに三方切
換弁9を作動して上記シリンダ室7aおよび各ガ
ス試料管14a,14bを真空ポンプ10に連通
せしめ、上記真空ポンプ10を運転することによ
り、シリンダ室7a、脱気容器1、およびガス試
料管14a,14b等の内部を所定の真空状態と
する。
Therefore, in order to extract dissolved gas in electrical insulating oil using the above device, first connect the sample oil sampler 4 to the switching valve 3, and connect the sample oil sampler 4 to the atmosphere side by connecting the sample oil sampler 4 to the switching valve 3. Switch to drain some of the electrical insulating oil from the sample and eliminate air from the connection. Next, the piston 7b of the reciprocating piston device 7 is actuated rightward in the figure by the differential pressure piston device 20 to increase the volume of the cylinder chamber 7a. Therefore, by opening the valves 5 and 8 and operating the three-way switching valve 9 to connect the cylinder chamber 7a and each gas sample tube 14a, 14b to the vacuum pump 10, and operating the vacuum pump 10, the cylinder chamber 7a , the degassing container 1, the gas sample tubes 14a, 14b, etc. are brought into a predetermined vacuum state.

このようにしてシリンダ室7a等の内部が所定
の真空状態となると、三方切換弁9を切換え、シ
リンダ室7aおよびガス試料管14a,14b等
と真空ポンプ10との連通を断つとともに切換弁
3を開放して試料採油器4内の電気絶縁油を脱気
容器1内に流入させ撹拌装置2を作動させて上記
電気絶縁油を撹拌する。
When the inside of the cylinder chamber 7a etc. reaches a predetermined vacuum state in this way, the three-way switching valve 9 is switched to cut off the communication between the cylinder chamber 7a, gas sample tubes 14a, 14b, etc. and the vacuum pump 10, and the switching valve 3 is switched off. When opened, the electrical insulating oil in the sample oil sampler 4 flows into the degassing container 1, and the stirring device 2 is operated to stir the electrical insulating oil.

上記撹拌によつて電気絶縁油の溶存ガスはその
電気絶縁油から分離放出され、その放出された溶
存ガスは真空状態に保たれているシリンダ室7a
およびガス試料管14a,14bへと流入し蓄積
される。
By the stirring, the dissolved gas in the electrical insulating oil is separated and released from the electrical insulating oil, and the released dissolved gas is kept in the cylinder chamber 7a in a vacuum state.
The gas also flows into the gas sample tubes 14a and 14b and is accumulated therein.

そこで、弁5を閉じるとともにシリンダ室7a
とガス試料管14a,4bとが連通するような状
態に三方切換弁9を維持させたまま、差圧ピスト
ン装置20を作動させ往復動式ピストン装置7の
ピストン7bを左方に移動せしめる。したがつ
て、上記ピストン7bの移動によつてピストン室
7a内の溶存ガスは強制的にガス試料管14a,
14bへと移送装入される。
Therefore, the valve 5 is closed and the cylinder chamber 7a is closed.
While maintaining the three-way switching valve 9 in a state where the gas sample tubes 14a and 4b communicate with each other, the differential pressure piston device 20 is operated to move the piston 7b of the reciprocating piston device 7 to the left. Therefore, the movement of the piston 7b forces the dissolved gas in the piston chamber 7a into the gas sample tubes 14a,
14b.

上述のようにしてガス試料管14a,14bへ
の装入が完了すると、その時点で弁8を閉じ、往
復動式ピストン装置7のピストン7bを再び右方
に移動させる。しかしてシリンダ室7aの内部は
再び高真空度化されるので、弁5の開放によつて
脱気容器1内の電気絶縁油中の溶存ガスがその電
気絶縁油から放出されてシリンダ室7a内に蓄積
され、蓄積された溶存ガスは前述の操作を繰返す
ことによつて順次ガス試料管14a,14bの中
に移送装入される。
When the gas sample tubes 14a, 14b are completely charged as described above, the valve 8 is closed and the piston 7b of the reciprocating piston device 7 is moved to the right again. As a result, the inside of the cylinder chamber 7a is brought to a high degree of vacuum again, so that by opening the valve 5, the dissolved gas in the electrical insulating oil in the degassing container 1 is released from the electrical insulating oil and inside the cylinder chamber 7a. The accumulated dissolved gas is sequentially transferred and charged into the gas sample tubes 14a and 14b by repeating the above-described operation.

このようにして、同一試料の電気絶縁油につい
て溶存ガスの脱気抽出操作を繰返し行なうことに
よつて、溶解度の高い脱気し難い溶存ガスも効率
よく抽出される。
In this way, by repeatedly performing the degassing and extraction operation for dissolved gases on the same sample of electrical insulating oil, dissolved gases that have high solubility and are difficult to degas can also be efficiently extracted.

抽出された溶存ガスは予め校正された圧力セン
サ17により溶存ガス量の測定が行なわれ、一方
ガス試料機14a,14bに装入された溶存ガス
は、切換弁13a,13bをそれぞれ切換えキヤ
リヤガス供給管15からのキヤリヤガスをガス試
料管14a,14bに供給することによつて、切
換弁13a,13bを介して導管16a,16b
を経て適宜ガスクロマトグラフ等の分析装置に送
られる。なお、水車や冷却用機器に供給される水
から溶存ガスを抽出する場合等、他の各種液体か
ら溶存ガスを抽出する場合にも同様に実施でき
る。
The amount of dissolved gas extracted is measured by a pre-calibrated pressure sensor 17, while the dissolved gas charged into gas samplers 14a and 14b is transferred to the carrier gas supply pipe by switching the switching valves 13a and 13b, respectively. By supplying carrier gas from 15 to gas sample tubes 14a, 14b, conduits 16a, 16b are supplied via switching valves 13a, 13b.
The sample is then sent to an analytical device such as a gas chromatograph as appropriate. Note that the same method can be applied to extracting dissolved gas from various other liquids, such as when extracting dissolved gas from water supplied to a water turbine or cooling equipment.

本発明は上述のように構成したので、往復動式
ピストン装置のピストンの往復によつて液体中か
ら繰返し溶存ガスの抽出を行なうことができる。
また溶解度が高い溶存ガスでも十分に抽出するこ
とができると共にピストンをステンレス鋼で形成
するかまたは合成樹脂で被覆しているので、有機
酸あるいは腐食生成物を生成する液体からの溶存
ガスの抽出にも充分適用することができる。しか
も装置全体が非常に小形で軽量である一方、溶存
ガスの抽出に水銀を用いないため水銀蒸気の逸散
の危険性が皆無となる。さらに、真空と大気圧の
圧力差によつて往復動式ピストン装置のピストン
が往復動せしめられるので、機械的駆動装置或は
上記往復動式ピストン装置の駆動のために特別な
加圧装置を設ける必要がなく、脱気容器内等を真
空にするための真空ポンプをその駆動源としても
使用することができる等の効果を奏する。
Since the present invention is configured as described above, dissolved gas can be repeatedly extracted from a liquid by reciprocating the piston of the reciprocating piston device.
In addition, it is possible to sufficiently extract even highly soluble dissolved gases, and the piston is made of stainless steel or coated with synthetic resin, making it suitable for extracting dissolved gases from liquids that produce organic acids or corrosion products. can also be fully applied. Moreover, the entire device is extremely small and lightweight, and since mercury is not used to extract dissolved gas, there is no risk of mercury vapor escaping. Furthermore, since the piston of the reciprocating piston device is caused to reciprocate by the pressure difference between vacuum and atmospheric pressure, a mechanical drive device or a special pressurizing device is provided to drive the reciprocating piston device. This is not necessary, and the vacuum pump for evacuating the inside of the degassing container can also be used as a driving source.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明のガス抽出装置の概略系統図であ
る。 1……脱気容器、2……撹拌装置、4……試料
採油器、5,8……弁、7……往復動式ピストン
装置、9……三方切換弁、10……真空ポンプ、
14a,14b……ガス試料管、20……差圧ピ
ストン装置。
The drawing is a schematic system diagram of the gas extraction device of the present invention. 1... Deaeration container, 2... Stirring device, 4... Sample oil sampler, 5, 8... Valve, 7... Reciprocating piston device, 9... Three-way switching valve, 10... Vacuum pump,
14a, 14b...Gas sample tube, 20...Differential pressure piston device.

Claims (1)

【特許請求の範囲】[Claims] 1 液体中の溶存ガスの分析等に使用するガス抽
出装置において、試料である液体から溶存ガスを
分離せしめるための脱気容器と、上記脱気容器か
ら溶存ガスを抽出しそれをガス試料管に放出せし
める往復動式ピストン装置と、真空ポンプによる
真空と大気圧との差によつて往復動し、上記往復
動式ピストン装置を駆動する差圧ピストン装置
と、上記脱気容器および往復動式ピストン装置の
シリンダ室並びにガス試料管に切換弁を介して接
続され、ガス抽出作動開始前に上記脱気容器およ
びシリンダ室内等を所定真空状態とする真空ポン
プとからなり、前記往復動式ピストン装置のピス
トンはステンレス鋼で形成するかまたは合成樹脂
を被覆して形成したことを特徴とするガス抽出装
置。
1. In a gas extraction device used for analysis of dissolved gas in liquid, etc., there is a degassing container for separating dissolved gas from the liquid sample, and a device that extracts dissolved gas from the degassing container and transfers it to a gas sample tube. a reciprocating piston device that causes discharge, a differential pressure piston device that reciprocates due to the difference between the vacuum generated by a vacuum pump and atmospheric pressure and drives the reciprocating piston device, the degassing container and the reciprocating piston. The reciprocating piston device comprises a vacuum pump that is connected to the cylinder chamber and gas sample tube of the device via a switching valve, and brings the degassing container and cylinder chamber to a predetermined vacuum state before starting the gas extraction operation. A gas extraction device characterized in that the piston is made of stainless steel or coated with synthetic resin.
JP10924880A 1980-08-11 1980-08-11 Gas extracting device Granted JPS5734315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10924880A JPS5734315A (en) 1980-08-11 1980-08-11 Gas extracting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10924880A JPS5734315A (en) 1980-08-11 1980-08-11 Gas extracting device

Publications (2)

Publication Number Publication Date
JPS5734315A JPS5734315A (en) 1982-02-24
JPS637443B2 true JPS637443B2 (en) 1988-02-17

Family

ID=14505362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10924880A Granted JPS5734315A (en) 1980-08-11 1980-08-11 Gas extracting device

Country Status (1)

Country Link
JP (1) JPS5734315A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929049B (en) * 2016-04-19 2018-05-29 国家电网公司 A kind of universal portable oil dissolved gas on-line computing model calibration equipment
CN112896730B (en) * 2020-12-25 2022-06-03 国网四川省电力公司电力科学研究院 Insulating oil storage structure of oil chromatography online monitoring device, detection device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830235U (en) * 1971-08-12 1973-04-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830235U (en) * 1971-08-12 1973-04-13

Also Published As

Publication number Publication date
JPS5734315A (en) 1982-02-24

Similar Documents

Publication Publication Date Title
US4409814A (en) Gas extracting device
CN107063784B (en) Extraction and purification system for dissolving xenon in water and extraction and purification method thereof
CN103149307B (en) Degassing sampling device using mechanical oscillation method
EP0017106B1 (en) Automatic analyzer for combustible gas in oil
JPS637443B2 (en)
JP3343524B2 (en) Gas analyzer in electrical insulating oil
JPS588737B2 (en) gas extraction equipment
JP2000275150A (en) Device for analyzing gas dissolved in oil
JPS588736B2 (en) gas extraction equipment
CN108535377A (en) It is a kind of to automate quick detection device and rapid detection method
CN105954416B (en) The apparatus and method of isoprene are dissolved in a kind of measure water body
JPS588738B2 (en) gas extraction equipment
KR920015127A (en) Groundwater Sampling and Inspection Apparatus and Method
JPH0152704B2 (en)
CN107966349B (en) Gas-liquid separator for monitoring gas in liquid
CN108469490B (en) Automatic analysis device for components and carbon isotopes of gas in thermal simulation gold tube of hydrocarbon source rock
JPS6223808B2 (en)
JPS6223809B2 (en)
JPH04250331A (en) Method and device for measuring gas dissolved in liquid
KR100308877B1 (en) Apparatus for Extraction Gas Collection Using Plunger
CN215179880U (en) Automatic and rapid measuring device for chemical components of tobacco
JPS5571950A (en) Method of controlling partially filling device
JP3238242B2 (en) Airtightness inspection method and device
JPS5926031A (en) Sampling apparatus of dissolved gas
JPH03197834A (en) Method for measuring evaporation of organic solvent and pretreating device for measurement of evaporation