JPH0216473B2 - - Google Patents

Info

Publication number
JPH0216473B2
JPH0216473B2 JP56068166A JP6816681A JPH0216473B2 JP H0216473 B2 JPH0216473 B2 JP H0216473B2 JP 56068166 A JP56068166 A JP 56068166A JP 6816681 A JP6816681 A JP 6816681A JP H0216473 B2 JPH0216473 B2 JP H0216473B2
Authority
JP
Japan
Prior art keywords
gas
oil
generated
electrical equipment
cylinder chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56068166A
Other languages
Japanese (ja)
Other versions
JPS57183226A (en
Inventor
Hideo Oonuma
Shigeo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56068166A priority Critical patent/JPS57183226A/en
Publication of JPS57183226A publication Critical patent/JPS57183226A/en
Publication of JPH0216473B2 publication Critical patent/JPH0216473B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は油入電気機器の異常検知装置に係り、
特に絶縁油中の発生ガスの抽出および検出を自動
化して警報表示し得るようにした油入電気機器の
異常検知装置に関する。
[Detailed description of the invention] The present invention relates to an abnormality detection device for oil-filled electrical equipment,
In particular, the present invention relates to an abnormality detection device for oil-filled electrical equipment that can automate the extraction and detection of gas generated in insulating oil and display an alarm.

油入電気機器例えば変圧器の異常を検知する方
法の一例として、変圧器の絶縁物、主として有機
絶縁材料である鉱油および繊維素系絶縁物が熱分
解した場合に材料特有の分解ガスが発生して蓄積
し、該分解ガス量が規定量を超えた時点で、保護
継電器が作動して警報表示する方法がある。しか
し乍ら、最近の変圧器は絶縁油の劣化を防止する
ために、無圧密閉形の構造を採用し、変圧器内に
絶縁油を充填する際に十分に脱気を行なつている
ので、上述の方法では変圧器内部で不具合により
分解ガスを発生しても、初期に発生した分解ガス
は絶縁油中に吸収され、その吸収が飽和した後に
更に引続いて発生した分解ガスが気泡となつて絶
縁油中から逸散した時点において初めて保護継電
器によつて検知されて警報表示が行なわれる。従
つて初期の不具合が発生してから保護継電器が検
知して警報表示がなされるまで時間的に可成りの
遅れを期たす欠点がある。
As an example of a method for detecting abnormalities in oil-filled electrical equipment, such as transformers, when the insulation of a transformer, mainly organic insulation materials such as mineral oil and cellulose insulation, thermally decomposes, a decomposition gas peculiar to the material is generated. There is a method in which a protective relay is activated and an alarm is displayed when the decomposed gas amount exceeds a specified amount. However, in order to prevent deterioration of the insulating oil, recent transformers have adopted a pressureless sealed structure, and sufficient deaeration is performed when filling the transformer with insulating oil. In the above method, even if cracked gas is generated due to a malfunction inside the transformer, the initially generated cracked gas is absorbed into the insulating oil, and after the absorption is saturated, the subsequently generated cracked gas becomes bubbles. Only when it escapes from the insulating oil will it be detected by the protective relay and an alarm will be displayed. Therefore, there is a drawback that there is a considerable time delay after the initial malfunction occurs until the protective relay detects it and an alarm is displayed.

一方絶縁油中の発生ガスの検出に供する種々の
装置が開発されて多用されているが、これらの検
出装置においてはガス検出に供するための試料油
の採油、試料油からの脱ガスおよび発生ガス検出
の各段階における操作は手動で行なわなければな
らない。しかも各操作共試料油を一旦研究所ある
いは試験室に持帰つて行なわなければならないた
め、異常の検知が速やかに行なえないなどの欠点
を有しているほか連続的な異常検知装置としては
甚だ困難である等の欠点がある。
On the other hand, various devices have been developed and widely used for detecting gases generated in insulating oil, but these detection devices are capable of collecting sample oil for gas detection, degassing the sample oil, and degassing gases generated from the sample oil. Operations at each stage of detection must be performed manually. Moreover, for each operation, the sample oil must be returned to the laboratory or testing room, which has drawbacks such as the inability to detect abnormalities quickly and is extremely difficult to use as a continuous abnormality detection device. There are drawbacks such as:

特に絶縁油中から発生ガスを抽出する装置とし
てトリチエリー真空によるガス抽出装置、水銀拡
散ポンプとテプラーポンプの併用によるガス抽出
装置および真空ポンプと移動弁を用いるガス抽出
装置等があるが、いずれもガラス製容器あるい
は、水銀を使用しているために、ガラス製容器の
破損または水銀蒸気の逸散など種々の危険を伴な
う不具合がある。
In particular, as devices for extracting generated gas from insulating oil, there are gas extraction devices using a Trithier vacuum, gas extraction devices using a combination of a mercury diffusion pump and a Teppler pump, and gas extraction devices using a vacuum pump and a moving valve. Due to the use of glass containers or the use of mercury, there are problems with various dangers such as damage to the glass container and the escape of mercury vapor.

本発明はこのような点に鑑みてなされたもの
で、絶縁油中の発生ガスの抽出および検出を自動
的に行ない得ると共に連続的に検出し電気機器の
異常を迅速且確実に検知すると共に破損の危険性
のあるガラス製の装置を使用する必要がなく、ま
た、水銀蒸気の逸散の危険性を排除することがで
き、しかも絶縁油中からガス拡散容器内に拡散透
過して来た微量の発生ガスも充分にガス試料管に
移送装入し電気機器の初期の異常をも確実に検知
し得る油入電気機器の異常検知装置を提供するこ
とを目的とする。
The present invention has been made in view of these points, and is capable of automatically extracting and detecting gas generated in insulating oil, as well as continuously detecting it, quickly and reliably detecting abnormalities in electrical equipment, and detecting damage. There is no need to use a glass device that can be dangerous, and the risk of mercury vapor escaping can be eliminated. It is an object of the present invention to provide an abnormality detection device for oil-filled electrical equipment, which can sufficiently transfer and charge generated gas into a gas sample tube and reliably detect even initial abnormalities in the electrical equipment.

以下添付図面を参照して本発明の一実施例につ
いて説明する。第1図において、符号1は油入電
気機器例えば窒素封入形変圧器の油槽、2は油槽
1内に収納されるガス拡散透過装置である。この
ガス拡散透過装置2はガス透過性の良い高分子材
料などで有底円筒状に形成されその開口端が蓋2
aで密閉されている。このガス拡散透過装置2は
有底側を油槽1の絶縁油中に挿入して蓋2aが油
槽1の側壁外部に固着されている。このガス拡散
透過装置2は弁5を介して往復動式ピストン装置
6のシリンダー室6aに接続され、またシリンダ
ー室6aには弁7および三方弁8を介して真空ポ
ンプ9が接続されている。往復動式ピストン装置
6のシリンダー室6aは小径に構成され、内部に
ピストン6bを有している。この往復動式ピスト
ン装置6のピストン6bは差圧ピストン13のピ
ストン13bと連結され、これにより駆動される
ようになつている。すなわち、差圧ピストン装置
13は往復動式ピストン装置6のシリンダー室6
aよりも大径のシリンダー室13aを有し、その
内部に、上記ピストン6bにロツド16により連
結されたピストン13bを有している。またシリ
ンダー室13aのピストン6b側シリンダー室2
3a並びに他方のシリンダー室33aはそれぞれ
三方弁14,15を介して真空ポンプ9に接続さ
れている。従つて三方弁15を切換えてシリンダ
ー室33aを真空ポンプ9と接続し、三方弁14
によつてシリンダー室23aを大気側に開放すれ
ば、ピストン13bはその両側の差圧によつて図
示下方に移動し、それに応じてピストン6bが下
方に移動する。また逆に三方弁14を切換えてシ
リンダー室23aを真空ポンプ9に接続し、三方
弁15を切換えてシリンダー室33aを大気側に
開放すれば、ピストン13bとともにピストン6
bを上方に移動させることができる。一方上記三
方弁8に接続された導管10には切換弁11が接
続されており、この切換弁11にはガス採取管1
2が接続されるとともに導管16を介してガス分
析装置17および警報表示装置18が接続され、
更にキヤリアガス導管19が接続されている。従
つて切換弁11を所定角度回動すると、その切換
弁11に接続された導管19からのキヤリアガス
によつてガス採取管12内のガスが上記切換弁1
1を経て導管16を介し、ガス分析装置17に導
びかれ、ここでガス分析を行なつた結果水素ガス
等の可燃性ガスが規定量を超えた際には警報表示
装置18が作動して警報を表示し得るようになつ
ている。
An embodiment of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, reference numeral 1 denotes an oil tank of an oil-filled electric device, such as a nitrogen-filled transformer, and 2 is a gas diffusion permeation device housed within the oil tank 1. In FIG. This gas diffusion permeation device 2 is formed of a polymeric material with good gas permeability into a cylindrical shape with a bottom, and its open end is a lid 2.
It is sealed with a. This gas diffusion permeation device 2 has its bottomed side inserted into the insulating oil of the oil tank 1, and the lid 2a is fixed to the outside of the side wall of the oil tank 1. This gas diffusion permeation device 2 is connected to a cylinder chamber 6a of a reciprocating piston device 6 via a valve 5, and a vacuum pump 9 is connected to the cylinder chamber 6a via a valve 7 and a three-way valve 8. The cylinder chamber 6a of the reciprocating piston device 6 has a small diameter and has a piston 6b inside. The piston 6b of the reciprocating piston device 6 is connected to the piston 13b of the differential pressure piston 13, and is driven thereby. That is, the differential pressure piston device 13 is connected to the cylinder chamber 6 of the reciprocating piston device 6.
The cylinder chamber 13a has a diameter larger than the cylinder chamber 13a, and has a piston 13b connected to the piston 6b by a rod 16 inside the cylinder chamber 13a. Also, the cylinder chamber 2 on the piston 6b side of the cylinder chamber 13a
3a and the other cylinder chamber 33a are connected to the vacuum pump 9 via three-way valves 14 and 15, respectively. Therefore, the three-way valve 15 is switched to connect the cylinder chamber 33a to the vacuum pump 9, and the three-way valve 14 is connected to the vacuum pump 9.
When the cylinder chamber 23a is opened to the atmosphere, the piston 13b moves downward in the figure due to the pressure difference on both sides thereof, and the piston 6b moves downward accordingly. Conversely, if the three-way valve 14 is switched to connect the cylinder chamber 23a to the vacuum pump 9, and the three-way valve 15 is switched to open the cylinder chamber 33a to the atmosphere, the piston 13b and the piston
b can be moved upwards. On the other hand, a switching valve 11 is connected to a conduit 10 connected to the three-way valve 8, and a gas sampling pipe 1 is connected to this switching valve 11.
2 are connected, and a gas analyzer 17 and an alarm display device 18 are also connected via a conduit 16.
Furthermore, a carrier gas conduit 19 is connected. Therefore, when the switching valve 11 is rotated by a predetermined angle, the gas in the gas sampling pipe 12 is transferred to the switching valve 1 by the carrier gas from the conduit 19 connected to the switching valve 11.
1, the gas is led to a gas analyzer 17 via a conduit 16, and as a result of gas analysis here, if the amount of combustible gas such as hydrogen gas exceeds a specified amount, an alarm display device 18 is activated. It is now possible to display a warning.

次に前述のように構成した本発明の装置の動作
について説明する。
Next, the operation of the apparatus of the present invention configured as described above will be explained.

まず変圧器内部で使用されている絶縁物が熱分
解によつて生ずるガスの成分について述べる。繊
維素系絶縁物が熱分解した場合には一酸化炭素や
炭酸ガスが発生し、また絶縁油(鉱油)が熱分解
した場合にはメタン,エタン,エチレン,水素等
のガスが発生する。特に絶縁油(鉱油)がアーク
やコロナ放電などにより熱分解した場合には、水
素,アセチレン,エチレン等の有機ガスが発生す
る。これらの発生したガスがガス透過性の良い高
分子材料からなる円筒状に形成された管のガス透
過作用により連続してガス拡散透過装置2内に浸
透して来るので、この発生ガスを抽出して絶縁油
などの熱分解による機器の異常を検知し警報表示
を行なうものである。
First, we will discuss the components of the gas produced by thermal decomposition of the insulators used inside the transformer. When cellulose-based insulators are thermally decomposed, carbon monoxide and carbon dioxide gas are generated, and when insulating oil (mineral oil) is thermally decomposed, gases such as methane, ethane, ethylene, and hydrogen are generated. In particular, when insulating oil (mineral oil) is thermally decomposed by arc or corona discharge, organic gases such as hydrogen, acetylene, and ethylene are generated. These generated gases continuously permeate into the gas diffusion permeation device 2 due to the gas permeation effect of the cylindrical tube made of a polymeric material with good gas permeability, so that the generated gases are extracted. This system detects abnormalities in equipment caused by thermal decomposition of insulating oil, etc., and displays an alarm.

本発明装置においては、まず真空ポンプ9を駆
動し、三方弁8を切換えて導管10および切換弁
11を介してガス分析装置17やガス採取管12
と連通させる。一方、弁7を切換えてシリンダー
室6aと連通させ、さらに弁5を切換えてガス拡
散透過装置2と連通させる。他方、三方弁14を
介してシリンダー室23aを真空ポンプ9に接続
するとともに三方弁15を介してシリンダー室3
3aを大気側に開放することにより、ピストン1
3bとともにロツト16を介して連結されている
ピストン6bを共に上方に移動させる。しかして
真空ポンプ9を引続き駆動することにより、ガス
分析装置17,ガス採取管12,導管10,シリ
ンダー室6a,シリンダー室23aおよびガス拡
散透過装置2等の内部を所定の真空状態とする。
このようにして、ガス拡散透過装置2等の内部が
所定の真空状態になつた後、三方弁8を切換えて
シリンダー室6aおよびガス拡散透過装置2等と
真空ポンプ9との連通を断つとともに弁5を閉
じ、弁7を閉じ、真空ポンプ9を停止して一定時
間放置し、ガス拡散透過装置2内へ発生ガスを浸
透させ蓄積させる。
In the apparatus of the present invention, first, the vacuum pump 9 is driven, the three-way valve 8 is switched, and the gas analyzer 17 and the gas sampling pipe 12 are connected via the conduit 10 and the switching valve 11.
communicate with. On the other hand, the valve 7 is switched to communicate with the cylinder chamber 6a, and the valve 5 is further switched to communicate with the gas diffusion permeation device 2. On the other hand, the cylinder chamber 23a is connected to the vacuum pump 9 through the three-way valve 14, and the cylinder chamber 3 is connected through the three-way valve 15.
By opening 3a to the atmosphere, the piston 1
3b and the piston 6b connected via the rod 16 are moved upward together. By continuing to drive the vacuum pump 9, the interiors of the gas analyzer 17, gas sampling tube 12, conduit 10, cylinder chamber 6a, cylinder chamber 23a, gas diffusion permeation device 2, etc. are brought into a predetermined vacuum state.
In this way, after the inside of the gas diffusion permeation device 2, etc. reaches a predetermined vacuum state, the three-way valve 8 is switched to cut off the communication between the cylinder chamber 6a, the gas diffusion permeation device 2, etc., and the vacuum pump 9, and the valve 5 is closed, the valve 7 is closed, the vacuum pump 9 is stopped, and the gas is left for a certain period of time to allow the generated gas to permeate into the gas diffusion permeation device 2 and accumulate therein.

次にガス拡散透過装置2を、弁5を開いてシリ
ンダー室6aと連通させ、三方弁14を大気側に
開放し、三方弁15を切換えてシリンダー室33
aと真空ポンプ9と連通させて真空ポンプ9を駆
動することにより、ピストン13bはその両側の
差圧によつて下方に移動し、それに応じてピスト
ン6bが下降しシリンダー室6aの内部が更に高
真空状態となり、ガス拡散透過装置2の内部に蓄
積された発生ガスがシリンダー室6a内に抽出さ
れる。そこで弁5を閉じると共にシリンダー室6
aと切換弁11が連通するような状態に三方弁8
を維持させたまま、差圧ピストン装置13を動作
させ往復動式ピストン装置6のピストン6bを上
方に移動させる。したがつて上記ピストン6bの
移動によつてシリンダー室6a内の抽出された発
生ガスは強制的に切換弁11を介してガス採取管
12内へ移送される。
Next, the gas diffusion permeation device 2 is connected to the cylinder chamber 6a by opening the valve 5, opening the three-way valve 14 to the atmosphere, and switching the three-way valve 15 to communicate with the cylinder chamber 6a.
By communicating with the vacuum pump 9 and driving the vacuum pump 9, the piston 13b moves downward due to the differential pressure on both sides, and the piston 6b descends accordingly, causing the inside of the cylinder chamber 6a to further rise. A vacuum state is created, and the generated gas accumulated inside the gas diffusion permeation device 2 is extracted into the cylinder chamber 6a. Then, the valve 5 is closed and the cylinder chamber 6 is closed.
The three-way valve 8 is placed in a state where the switching valve 11 and the switching valve 11 communicate with each other.
While maintaining this, the differential pressure piston device 13 is operated to move the piston 6b of the reciprocating piston device 6 upward. Therefore, by the movement of the piston 6b, the generated gas extracted in the cylinder chamber 6a is forcibly transferred through the switching valve 11 into the gas sampling pipe 12.

上述のようにしてガス採取管12へガスの移送
が完了すれば、その時点で切換弁11を切換え、
往復動式ピストン装置6のピストン6bを再び、
下方に移動させる。しかしてシリンダー室6aの
内部は再び高真空変化されるので、弁5の開放に
よつてガス拡散透過装置2内に浸透して来た微量
の発生ガスがシリンダー室6a内に抽出されて蓄
積される。蓄積された発生ガスは前述の操作を繰
返すことによつて順次ガス採取管12の中に移送
される。このようにして抽出,移送,装入操作を
繰返し行なうことによつて浸透して来た微量の発
生ガスも効率よく抽出される。そしてガス採取管
12内に蓄積されたガス又は切換弁11を切換え
て導管19からキヤリアガスをガス採取管12に
供給することによつて切換弁11,導管16を介
してガス分析装置17に送られる。
When the transfer of gas to the gas sampling pipe 12 is completed as described above, the switching valve 11 is switched at that point.
The piston 6b of the reciprocating piston device 6 is moved again.
Move it downward. As a result, the inside of the cylinder chamber 6a is changed to a high vacuum again, so that a small amount of generated gas that has permeated into the gas diffusion permeation device 2 by opening the valve 5 is extracted and accumulated in the cylinder chamber 6a. Ru. The accumulated generated gas is sequentially transferred into the gas sampling tube 12 by repeating the above-described operations. By repeating the extraction, transfer, and charging operations in this manner, trace amounts of generated gas that have penetrated can be efficiently extracted. Then, the gas accumulated in the gas sampling pipe 12 or by switching the switching valve 11 and supplying the carrier gas from the conduit 19 to the gas sampling pipe 12 is sent to the gas analyzer 17 via the switching valve 11 and the conduit 16. .

ガス分析装置17には警報表示装置18が接続
されており、発生ガスの分析の結果、水素等の可
燃性ガス量が規定量を上廻つた場合には、警報表
示装置18が作動して変圧器に異常がある旨の警
報表示がなされる。
An alarm display device 18 is connected to the gas analyzer 17, and if the amount of combustible gas such as hydrogen exceeds a specified amount as a result of analyzing the generated gas, the alarm display device 18 is activated and the transformer is An alarm will be displayed indicating that there is an abnormality.

本発明は上述のように構成したので往復動式ピ
ストン装置6のピストン6bの往復によつて繰返
し抽出を行なうことができるので、微量の発生ガ
スをも十分に抽出し移送し得ると共に、ガス透過
性の良い高分子材料から成る円筒状に形成された
ガス拡散透過装置2の拡散浸透作用により絶縁油
中の発生ガスが連続的に分離,抽出されるので、
異常発生時点と警報表示時点とのずれがなくな
り、さらに各々の弁を電磁弁とし、該電磁弁の開
閉動作および真空ポンプ9の動作等をリレーおよ
びタイマーの組合せにより行なえば、作業時期,
作動順序が自動的に行なわれるので、機器の保守
管理者が作動開始を指令するのみで、発生ガスの
抽出から分析および警報表示まで全て自動的にそ
の場で行なわれ得ると共に迅速且つ確実に機器の
異常を検知し得る油入電気機器の異常検知装置を
提供することができる。
Since the present invention is configured as described above, it is possible to repeatedly extract by reciprocating the piston 6b of the reciprocating piston device 6, so that even a small amount of generated gas can be sufficiently extracted and transferred, and gas permeation is possible. The gas generated in the insulating oil is continuously separated and extracted by the diffusion and permeation action of the cylindrical gas diffusion permeation device 2 made of a polymeric material with good properties.
There is no difference between the time when an abnormality occurs and the time when an alarm is displayed, and if each valve is a solenoid valve and the opening/closing operation of the solenoid valve and the operation of the vacuum pump 9 are performed by a combination of a relay and a timer, the work timing can be adjusted.
Since the operation sequence is automatically performed, the equipment maintenance manager only has to give a command to start operation, and everything from extraction of generated gas to analysis and alarm display can be done automatically on the spot, and the equipment can be quickly and reliably operated. It is possible to provide an abnormality detection device for oil-filled electrical equipment that can detect abnormalities in oil-filled electrical equipment.

なお、上記実施例においては、ガス拡散透過装
置2を円筒状に構成した場合について説明した
が、第2図に示すように高分子材料で形成された
管22aを螺旋状に形成し、その両端を蓋22b
に設けた容器22cに連結させてガス拡散透過装
置22を構成することもできる。
In the above embodiment, a case has been described in which the gas diffusion permeation device 2 is configured in a cylindrical shape, but as shown in FIG. The lid 22b
The gas diffusion permeation device 22 can also be configured by connecting it to a container 22c provided in the container 22c.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による油入電気機器の異常検知
装置の一実施例を示す構成図、第2図は本発明の
他の実施例を示す構成図である。 1…油入電気機器の油槽、2,22…ガス拡散
透過装置、5…弁、6…往復動式ピストン装置、
6a,13a,23a,33a…シリンダー室、
6b,13b…ピストン、8,14,15…三方
弁、9…真空ポンプ、11…切換弁、12…ガス
採取管、13…差圧ピストン装置、17…ガス分
析装置、18…警報表示装置。
FIG. 1 is a block diagram showing one embodiment of an abnormality detection device for oil-filled electrical equipment according to the present invention, and FIG. 2 is a block diagram showing another embodiment of the present invention. 1... Oil tank of oil-filled electrical equipment, 2, 22... Gas diffusion permeation device, 5... Valve, 6... Reciprocating piston device,
6a, 13a, 23a, 33a... cylinder chamber,
6b, 13b... Piston, 8, 14, 15... Three-way valve, 9... Vacuum pump, 11... Switching valve, 12... Gas sampling tube, 13... Differential pressure piston device, 17... Gas analyzer, 18... Alarm display device.

Claims (1)

【特許請求の範囲】 1 油入電気機器の油槽の絶縁油中に挿入され、
ガス透過性の良い高分子材料で形成されたガス拡
散透過装置と、前記絶縁油中から拡散透過して来
た絶縁油中の発生ガスを抽出し、該発生ガスを切
換弁を介してガス採取管に移送する往復動式ピス
トン装置と、真空ポンプによる真空と大気圧との
圧力差によつて往復動し、上記往復動式ピストン
装置を駆動する差圧ピストン装置と、前記ガス採
取管に接続され、ガス採取管に蓄積されたガスを
分析するガス分析装置と、このガス分析装置に接
続され所定のガスが規定の濃度を超えた場合に警
報表示する警報表示装置とからなる油入電気機器
の異常検知装置。 2 ガス拡散透過装置が円筒状に構成されている
ことを特徴とする特許請求の範囲第1項記載の油
入電気機器の異常検知装置。 3 ガス拡散透過装置がパイプを螺旋状に折曲し
て構成されていることを特徴とする特許請求の範
囲第1項記載の油入電気機器の異常検知装置。
[Claims] 1. Inserted into insulating oil of an oil tank of oil-filled electrical equipment,
A gas diffusion permeation device made of a polymeric material with good gas permeability is used to extract the generated gas from the insulating oil that has diffused and permeated through the insulating oil, and the generated gas is collected via a switching valve. A reciprocating piston device that transfers the gas to the pipe, a differential pressure piston device that reciprocates due to a pressure difference between a vacuum generated by a vacuum pump and atmospheric pressure, and drives the reciprocating piston device, and is connected to the gas sampling pipe. Oil-filled electrical equipment consisting of a gas analyzer that analyzes the gas accumulated in the gas sampling pipe, and an alarm display device that is connected to the gas analyzer and displays an alarm when a specified gas exceeds a specified concentration. Anomaly detection device. 2. An abnormality detection device for oil-filled electrical equipment according to claim 1, wherein the gas diffusion permeation device has a cylindrical shape. 3. An abnormality detection device for oil-filled electrical equipment according to claim 1, wherein the gas diffusion permeation device is constructed by bending a pipe into a spiral shape.
JP56068166A 1981-05-08 1981-05-08 Malfunction monitor for oil-immersed electric equipment Granted JPS57183226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56068166A JPS57183226A (en) 1981-05-08 1981-05-08 Malfunction monitor for oil-immersed electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56068166A JPS57183226A (en) 1981-05-08 1981-05-08 Malfunction monitor for oil-immersed electric equipment

Publications (2)

Publication Number Publication Date
JPS57183226A JPS57183226A (en) 1982-11-11
JPH0216473B2 true JPH0216473B2 (en) 1990-04-17

Family

ID=13365900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56068166A Granted JPS57183226A (en) 1981-05-08 1981-05-08 Malfunction monitor for oil-immersed electric equipment

Country Status (1)

Country Link
JP (1) JPS57183226A (en)

Also Published As

Publication number Publication date
JPS57183226A (en) 1982-11-11

Similar Documents

Publication Publication Date Title
US5613533A (en) Cylinder rupture vessel
US4944333A (en) Cylinder rupture vessel with clamps for immobilizing a container inside the vessel
CN104623930B (en) A kind of degasser being applied to optoacoustic spectroscopy principle dissolved gas analysis
CN105931921A (en) Helium detection, charging, exhausting and sealing system for power relay production
CN105651565A (en) Field sampling device for SF6 gas analysis
CN111707711A (en) Simulation method and device for detecting dissolved gas in oil under insulating oil electrical fault
USRE33799E (en) Cylinder rupture vessel
US2374227A (en) Geochemical prospecting system
CN104048851A (en) Transformer oil sampling device and method
CN208420435U (en) A kind of isolation air sampling device
CN107966349B (en) Gas-liquid separator for monitoring gas in liquid
JPH0216473B2 (en)
CN109269845A (en) A kind of internal floating roof tank mixed gas on-line sampling monitoring system and monitoring method
KR920015127A (en) Groundwater Sampling and Inspection Apparatus and Method
CN108469490B (en) Automatic analysis device for components and carbon isotopes of gas in thermal simulation gold tube of hydrocarbon source rock
EP0506737B1 (en) Sampling tool for obtaining samples of fluids present in a well
CN201681003U (en) Portable sulfur hexafluoride gas sampling device
JPH0152704B2 (en)
US1809325A (en) Apparatus for automatically withdrawing gas samples
JPH04324343A (en) Measuring apparatus for dissolved gas in liquid
JPH09288058A (en) Gas-in-oil detector
CN206002349U (en) A kind of detection oil taking apparatus of transformer
CN1123012C (en) Method and device for obtaining fluid sample
CN201535725U (en) Sealed sampling device
JPS588737B2 (en) gas extraction equipment