JPH0152596B2 - - Google Patents

Info

Publication number
JPH0152596B2
JPH0152596B2 JP11001183A JP11001183A JPH0152596B2 JP H0152596 B2 JPH0152596 B2 JP H0152596B2 JP 11001183 A JP11001183 A JP 11001183A JP 11001183 A JP11001183 A JP 11001183A JP H0152596 B2 JPH0152596 B2 JP H0152596B2
Authority
JP
Japan
Prior art keywords
chamber
compression
pressure
suction
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11001183A
Other languages
Japanese (ja)
Other versions
JPS601397A (en
Inventor
Kunifumi Goto
Manabu Sugiura
Katsuhiko Ooshiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP11001183A priority Critical patent/JPS601397A/en
Publication of JPS601397A publication Critical patent/JPS601397A/en
Publication of JPH0152596B2 publication Critical patent/JPH0152596B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 技術分野 本発明は車室内における冷房負荷の変化にとも
ない圧縮容量を自動的に制御することの出来る圧
縮容量可変型の圧縮機、更に具体的には吸入室内
若しくは圧縮室内の吸入行程における圧力(吸入
行程圧力PL)と、圧縮室内の圧縮行程における
圧力(圧縮行程圧力PH)との間に生ずる差圧の
変化を利用して制御弁を自動開閉可能に設け、同
制御弁の自動開閉を介して低冷房負荷時において
圧縮室内の圧縮途中にある冷媒ガスの一部を吸入
室側に逃すことによつて圧縮室におけるその圧縮
容量を自動的に調整することが出来る様に設けら
れる容量可変型圧縮機のその制御弁機構の改良に
関するものである。
[Detailed Description of the Invention] Technical Field The present invention relates to a variable compression capacity compressor that can automatically control the compression capacity in accordance with changes in the cooling load in a vehicle interior, and more specifically to a variable compression capacity compressor that can be used in a suction compartment or a compression compartment. A control valve is provided so as to be able to automatically open and close by utilizing a change in the differential pressure that occurs between the pressure in the suction stroke (suction stroke pressure PL ) and the pressure in the compression stroke in the compression chamber (compression stroke pressure PH ), The compression capacity in the compression chamber can be automatically adjusted by automatically opening and closing the control valve to release a portion of the refrigerant gas that is in the middle of compression in the compression chamber to the suction chamber during low cooling loads. This invention relates to an improvement in the control valve mechanism of a variable capacity compressor that can be installed as much as possible.

従来技術 従来車室内における冷房負荷の変化にともない
圧縮容量を自動的に制御するようにした容量可変
型の圧縮機としては吸入室内の圧力と圧縮室内の
圧力間に生ずる差圧の変化を利用する方法、即ち
吸入行程圧力PLと圧縮行程圧力PHとの間に生ず
る差圧の変化を比較した場合において吸入行程に
おける圧力の高さに比例してその差圧の変化が大
きくなることに鑑み、その差圧の変化を利用して
制御弁機構を自動開閉させることによりその圧縮
容量を調整する方法が本出願人によつて先に提案
されている。
Conventional technology Conventionally, a variable capacity compressor that automatically controls the compression capacity as the cooling load changes in the vehicle interior utilizes changes in the differential pressure that occurs between the pressure in the suction chamber and the pressure in the compression chamber. In consideration of the fact that when comparing the change in the differential pressure that occurs between the suction stroke pressure P L and the compression stroke pressure P H , the change in the differential pressure increases in proportion to the height of the pressure in the suction stroke. The applicant has previously proposed a method of adjusting the compression capacity by automatically opening and closing a control valve mechanism using changes in the differential pressure.

上記提案とは第7図及び第8図に示す様に吸入
室9と圧縮室6(第1図及び第2図参照)間に介
在するフロントサイドプレート3Aに同吸入室9
と圧縮室6を連通する如くバイパス路11を貫設
し、同バイパス路11に対しては同バイパス路1
1の開閉を制御すべくスプール19をバイパス路
11に対して直交する方向に向けて摺動自在に設
けるに同スプール19はバイパス路11をばね2
2により開放する方向に向けて付勢された状態に
ある如く設けるとともに同スプール19の両側に
は高圧室20と低圧室21を対峙させて設け、高
圧室20は第1導圧孔24を介して圧縮室6の圧
縮行程(圧縮行程圧力PH)と連通する如く設け、
又低圧室21は第2導圧孔23を介して吸入室9
若しくは圧縮室6の吸入行程(吸入行程圧力PL
と連通する如く設け、吸入工程における圧力の上
昇に伴ない圧縮行程圧力PHと吸入行程圧力PL
に生ずる差圧がばね22の設定圧力を上回る圧力
状態においてはバイパス路11を塞ぎ、又吸入行
程における圧力の低下に伴ない圧縮行程圧力PH
と吸入行程圧力PL間に生ずる差圧がばね22の
設定圧力を下回る状態においてはバイパス路11
を開放して圧縮途中にある冷媒ガスの一部を吸入
室9側に逃す様に設けることによつて車室内の冷
房負荷が大きい状態にあつては圧縮機をフル稼動
させることが出来、又車室内の冷房負荷が減少し
た状態においては圧縮機の稼動率を低下させるこ
とが出来る如く車室内の冷房負荷の変化に対応し
てその圧縮容量を自動的に調整することが出来る
様に設けて成るものであつて、同提案にあつては 起動時において電磁クラツチを接続させると
同時に圧縮行程圧力PHと吸入行程圧力PL間に
大きな差圧が生じ、開放状態にあるバイパス路
11は瞬間的に閉塞状態になることにより起動
時における立上りシヨツクの緩和作用が充分に
得られない。
The above proposal means that, as shown in FIGS. 7 and 8, the suction chamber 9 is attached to the front side plate 3A interposed between the suction chamber 9 and the compression chamber 6 (see FIGS. 1 and 2).
A bypass passage 11 is provided so as to communicate with the compression chamber 6, and the bypass passage 11 is connected to the compression chamber 6.
A spool 19 is provided so as to be slidable in a direction perpendicular to the bypass passage 11 in order to control the opening and closing of the bypass passage 11.
A high pressure chamber 20 and a low pressure chamber 21 are provided facing each other on both sides of the spool 19, and the high pressure chamber 20 is connected through the first pressure guiding hole 24. provided so as to communicate with the compression stroke (compression stroke pressure P H ) of the compression chamber 6,
Furthermore, the low pressure chamber 21 is connected to the suction chamber 9 through the second pressure guiding hole 23.
Or the suction stroke of the compression chamber 6 (suction stroke pressure P L )
The bypass passage 11 is closed in a pressure state in which the differential pressure generated between the compression stroke pressure P H and the suction stroke pressure P L as the pressure rises in the suction stroke exceeds the set pressure of the spring 22. Compression stroke pressure P H due to pressure drop in suction stroke
In a state where the differential pressure generated between P L and the suction stroke pressure P
By opening the refrigerant gas so that a part of the refrigerant gas in the middle of compression escapes to the suction chamber 9 side, the compressor can be operated at full capacity when the cooling load in the vehicle interior is large. The compressor is provided so that its compression capacity can be automatically adjusted in response to changes in the cooling load in the vehicle interior so that the operating rate of the compressor can be lowered when the cooling load in the vehicle interior is reduced. In this proposal, when the electromagnetic clutch is connected at the time of startup, a large pressure difference is generated between the compression stroke pressure P H and the suction stroke pressure P L , and the bypass passage 11 in the open state is instantaneously As a result, the start-up shock at startup cannot be sufficiently relaxed.

運転中に急加速させた場合において、圧縮行
程圧力PHと吸入行程圧力PL間に生ずる差圧は
更に大きくなつてスプール19が低圧室21側
(バイパス路11を塞ぐ方向)に移動すること
により、100%冷房負荷が掛つた状態にて高速
回転する状態、即ち全負荷運転状態となり車室
内が過冷却となる。
When the engine is suddenly accelerated during operation, the differential pressure generated between the compression stroke pressure P H and the suction stroke pressure P L becomes even larger, and the spool 19 moves toward the low pressure chamber 21 side (in the direction of blocking the bypass path 11). This results in a state where the engine rotates at high speed with 100% cooling load applied, that is, a full load operation state, and the interior of the vehicle becomes supercooled.

等の不具合を生ずることとなる。This may cause problems such as:

発明の目的 本発明は上記の様な従来の実情に鑑みてその改
善を試みたものであつて、本発明の目的は起動時
及び急加速時における制御弁機構の作動特性を向
上させることにある。
Purpose of the Invention The present invention is an attempt to improve the conventional situation as described above, and the purpose of the present invention is to improve the operating characteristics of the control valve mechanism during startup and sudden acceleration. .

発明の構成 即ち本発明は起動時においてトルクを軽減し立
上りシヨツクを緩和するとともに急加速時におけ
る全負荷運転を防止する様にしたことをその特徴
とするものであつて、本発明の要旨は圧縮室と吸
入室を隔設するサイドプレート内に進退自在に設
けられるスプールの両端部に高圧室と低圧室を対
峙させて設け、低圧室は吸入室若しくは圧縮室の
吸入行程と連通させ、且つ同低圧室内には上記ス
プールを高圧室方向に向けて付勢するばねを介装
する一方、サイドプレートには圧縮室側に高圧室
と連通するバイパス孔を圧縮室の圧縮行程と対応
させて設けるとともに吸入室側には吸入室と連通
する複数個のバイパス孔を上記圧縮室側のバイパ
ス孔に対してその開口位置を変位させて設け、前
記スプールにはバイパス連通孔を穿設し、同連通
孔の一端は高圧室に連通させるとともに他端をス
プールの摺動を介して上記複数個のバイパス孔に
対して選択的に連通可能で且つ前記バイパス孔間
に形成する壁面部によつて閉塞可能に設ける様に
構成したことにある。
Structure of the Invention That is, the present invention is characterized by reducing the torque at startup to alleviate the start-up shock and preventing full load operation during sudden acceleration. A high-pressure chamber and a low-pressure chamber are provided facing each other at both ends of a spool that is movably provided in a side plate that separates the chamber and the suction chamber, and the low-pressure chamber is communicated with the suction stroke of the suction chamber or the compression chamber, and A spring is interposed in the low pressure chamber to urge the spool toward the high pressure chamber, while a bypass hole communicating with the high pressure chamber is provided on the compression chamber side in the side plate in correspondence with the compression stroke of the compression chamber. A plurality of bypass holes communicating with the suction chamber are provided on the suction chamber side, the opening positions of which are displaced relative to the bypass holes on the compression chamber side, and the spool is provided with a bypass communication hole. One end communicates with the high pressure chamber, and the other end can selectively communicate with the plurality of bypass holes through sliding of the spool, and can be closed by a wall portion formed between the bypass holes. The reason is that it is configured in such a way that it is set up.

実施例 以下に本発明の具体的な実施例を例示の図面に
ついて説明する。第1図乃至第6図に示す各図面
において1は圧縮機の外殻を構成するハウジング
を示す。同ハウジング1はフロントハウジング1
Aとリヤハウジング1Bにより形成され、同フロ
ントハウジング1Aにはシリンダーブロツク2
が、又同シリンダーブロツク2を間に挾んでその
両側にフロントサイドプレート3Aとリヤサイド
プレート3Bが内嵌される。シリンダーブロツク
2は前後両端部に開口部を存して中空円筒状に形
成され、同中空部の内壁面はシリンダーブロツク
2の外周面と同心円の円筒状に形成される。同シ
リンダーブロツク2の前後両開口部は上記両サイ
ドプレート3A,3Bによつて遮蔽され、両サイ
ドプレート3A,3B間には駆動軸4が横架され
る。同駆動軸4はシリンダーブロツク2に対して
その中心線を偏寄させて設けられ、同駆動軸4に
はローター5が一体的に固着される。同ローター
5はシリンダーブロツク2の内壁面に対してその
外周壁の一部が摺接可能な如く設けられ、同ロー
ター5の外周壁とシリンダーブロツク2の内壁面
間には圧縮室6が形成される。又ローター5には
ベーン溝7…が刻設され、各ベーン溝7…にはベ
ーン8…が圧縮室6に対して出没自在に嵌挿され
る。
Embodiments Specific embodiments of the present invention will be described below with reference to illustrative drawings. In each of the drawings shown in FIGS. 1 to 6, reference numeral 1 indicates a housing constituting the outer shell of the compressor. The housing 1 is the front housing 1
A and a rear housing 1B, and the front housing 1A has a cylinder block 2.
However, a front side plate 3A and a rear side plate 3B are fitted on both sides of the cylinder block 2 with the same cylinder block 2 in between. The cylinder block 2 is formed into a hollow cylindrical shape with openings at both front and rear ends, and the inner wall surface of the hollow part is formed into a cylindrical shape concentric with the outer peripheral surface of the cylinder block 2. Both the front and rear openings of the cylinder block 2 are shielded by the side plates 3A, 3B, and a drive shaft 4 is horizontally suspended between the side plates 3A, 3B. The drive shaft 4 is provided with its center line offset relative to the cylinder block 2, and a rotor 5 is integrally fixed to the drive shaft 4. The rotor 5 is provided so that a part of its outer circumferential wall can slide against the inner wall surface of the cylinder block 2, and a compression chamber 6 is formed between the outer circumferential wall of the rotor 5 and the inner wall surface of the cylinder block 2. Ru. Further, vane grooves 7 are formed in the rotor 5, and vanes 8 are fitted into each vane groove 7 so as to be freely retractable into the compression chamber 6.

フロントハウジング1Aとフロントサイドプレ
ート3A間には吸入室9が設けられ、同吸入室9
にはフロントハウジング1A側に吸入管路(図示
省略)に接続する吸入口9′が設けられる。又同
フロントサイドプレート3Aには圧縮室6の一
端、即ちローター5の回転方向に沿う始端部と相
対応して吸入孔10が開口される。
A suction chamber 9 is provided between the front housing 1A and the front side plate 3A.
A suction port 9' connected to a suction pipe (not shown) is provided on the front housing 1A side. Further, a suction hole 10 is opened in the front side plate 3A in correspondence with one end of the compression chamber 6, that is, a starting end along the rotational direction of the rotor 5.

一方圧縮室6の他端、即ちローター5の回転方
向に沿う終端部と相対応する位置にはシリンダー
ブロツク2の一部を切欠いてフロントハウジング
1Aの内壁面との間に吐出室13が形成され、同
吐出室13と圧縮室6の終端部間は吐出孔14に
よつて連通する如く設けられる。15は同吐出孔
14を覆う吐出弁、16は同吐出弁15の開き角
度を規制するリテーナーを示す。又リヤハウジン
グ1Bにはリヤサイドプレート3Bとの間に潤滑
油の分離室17が形成される。同分離室17はリ
ヤサイドプレート3Bに開口する通孔18を介し
て上記吐出室13と連通する如く設けられる。同
通孔18の開口部にはフイルター(図示省略)が
設けられる一方、分離室17内には同フイルター
によつて分離される潤滑油の溜り部が設けられ
る。そして又同分離室17にはリヤハウジング1
B側に吐出管路(図示省略)に接続する吐出口1
7′が設けられる。
On the other hand, at the other end of the compression chamber 6, that is, at a position corresponding to the terminal end along the rotational direction of the rotor 5, a part of the cylinder block 2 is cut out to form a discharge chamber 13 between the cylinder block 2 and the inner wall surface of the front housing 1A. The discharge chamber 13 and the terminal end of the compression chamber 6 are provided so as to communicate with each other through a discharge hole 14. Reference numeral 15 indicates a discharge valve that covers the discharge hole 14, and reference numeral 16 indicates a retainer that regulates the opening angle of the discharge valve 15. Further, a lubricating oil separation chamber 17 is formed between the rear housing 1B and the rear side plate 3B. The separation chamber 17 is provided so as to communicate with the discharge chamber 13 through a through hole 18 opening in the rear side plate 3B. A filter (not shown) is provided at the opening of the through hole 18, and a lubricant reservoir is provided in the separation chamber 17 to be separated by the filter. Also, in the separation chamber 17 there is a rear housing 1.
Discharge port 1 connected to the discharge pipe line (not shown) on the B side
7' is provided.

前記フロントサイドプレート3Aには圧縮室6
の吸入行程と圧縮行程の略中間(圧縮行程初期)
に位置して圧縮室6と吸入室9間を連通するバイ
パス路11(同バイパス路11は後述する様にバ
イパス孔11a,11b,11b′とスプール19
に穿設するバイパス連通孔11cにより形成され
る。)と、同バイパス路11の開閉を制御する弁
機構(以下「制御弁機構12」という)が設けら
れる。同制御弁機構12にはスプール19が摺動
自在に設けられ、同スプール19の両端部には高
圧室20と低圧室21より成る一対の圧力室が対
峙させて設けられる。そして低圧室21は導圧孔
23を介して圧縮室6の吸入行程と連通する如く
設けるに同導圧孔23の先端部は吸入孔10と比
較的近接する位置に開口する如く設けられる。又
低圧室21にはばね22が介装され、常時はスプ
ール19を高圧室20方向に向けて付勢する状態
にある様に設けられる。なお、このとき高圧室2
0を密封する栓部材30の内端面には、該高圧室
20内に向けて係止片31が突設され、更に具体
的には、同係止片31は第3図に示す様にその厚
みをバイパス連通孔11cの径より小さな厚みを
存して突設させることにより、スプール19の端
部が該係止片31に当接した状態においても、バ
イパス連通孔11cと高圧室20、ひいてはバイ
パス孔11aとの連通が確保されるように構成さ
れている。ただし、上記係止片31を栓部材30
に突設する代りに、栓部材30内端面に溝を形成
して、該溝によつてバイパス連通孔11cと高圧
室20とを連通するように構成してもよい。高圧
室20はフロントサイドプレート3Aの圧縮室6
側に開口するバイパス孔11aを介して圧縮室
6、更に具体的には圧縮室6の圧縮行程初期(吸
入行程と圧縮行程の中間部)と連通する如く設け
られる一方、スプール19に穿設するバイパス連
通孔11c及び同バイパス連通孔11cに連続す
るスプール19の周面の連通溝11eと相対応さ
せてフロントサイドプレート3Aの吸入室9側に
開口するバイパス孔11b,11b′を介して吸入
室9と連通する如く設けられる。即ちフロントサ
イドプレート3Aの吸入室9側にはスプール19
の摺動方向に沿つて複数個(本実施例では2個)
のバイパス孔11b,11b′がその間に壁面部1
1dを存して並列させて設けられる。そしてスプ
ール19に穿設するバイパス連通孔11cは同ス
プール19の摺動を介して上記両バイパス孔11
b,11b′に対して選択的に連通させることが可
能な如く設けられる。更に具体的には停止時及び
起動時において高圧室20寄りに開口するバイパ
ス孔11bと連通し、運転時においては両バイパ
ス孔11b,11b′間に形成する壁面11dによ
つてバイパス連通孔11cを閉塞し、且つ急加速
時においては低圧室21寄りに開口するバイパス
孔11b′と連通する様に設けられる。
A compression chamber 6 is provided in the front side plate 3A.
Approximately midway between the suction stroke and the compression stroke (early stage of the compression stroke)
A bypass passage 11 is located in and communicates between the compression chamber 6 and the suction chamber 9 (the bypass passage 11 is located in the bypass hole 11a, 11b, 11b' and the spool 19
It is formed by a bypass communication hole 11c bored in the. ) and a valve mechanism (hereinafter referred to as "control valve mechanism 12") that controls opening and closing of the bypass passage 11. A spool 19 is slidably provided in the control valve mechanism 12, and a pair of pressure chambers consisting of a high pressure chamber 20 and a low pressure chamber 21 are provided at both ends of the spool 19 facing each other. The low pressure chamber 21 is provided so as to communicate with the suction stroke of the compression chamber 6 via a pressure guide hole 23, and the tip of the pressure guide hole 23 is provided so as to open at a position relatively close to the suction hole 10. Further, a spring 22 is interposed in the low pressure chamber 21, and is provided so as to normally bias the spool 19 toward the high pressure chamber 20. In addition, at this time, the high pressure chamber 2
A locking piece 31 is provided on the inner end surface of the plug member 30 that seals the high pressure chamber 20, and more specifically, the locking piece 31 is provided with a locking piece 31 as shown in FIG. By protruding with a thickness smaller than the diameter of the bypass communication hole 11c, even when the end of the spool 19 is in contact with the locking piece 31, the bypass communication hole 11c and the high pressure chamber 20, and by extension, It is configured to ensure communication with the bypass hole 11a. However, if the locking piece 31 is
Instead of protruding from the plug member 30, a groove may be formed on the inner end surface of the plug member 30 so that the bypass communication hole 11c and the high pressure chamber 20 communicate with each other through the groove. The high pressure chamber 20 is the compression chamber 6 of the front side plate 3A.
It is provided so as to communicate with the compression chamber 6, more specifically, the early stage of the compression stroke of the compression chamber 6 (the middle part between the suction stroke and the compression stroke) through the bypass hole 11a that opens on the side, and is bored in the spool 19. The suction chamber is connected to the suction chamber through the bypass communication hole 11c and the bypass holes 11b and 11b' that open toward the suction chamber 9 side of the front side plate 3A in correspondence with the communication groove 11e on the circumferential surface of the spool 19 that is continuous with the bypass communication hole 11c. It is provided so as to communicate with 9. That is, there is a spool 19 on the suction chamber 9 side of the front side plate 3A.
multiple pieces (two pieces in this example) along the sliding direction of
The bypass holes 11b and 11b' are connected to the wall part 1 between them.
1d, and are arranged in parallel. The bypass communication hole 11c bored in the spool 19 is connected to both the bypass holes 11 through the sliding movement of the spool 19.
b, 11b' so as to be able to selectively communicate with them. More specifically, it communicates with the bypass hole 11b that opens toward the high pressure chamber 20 when stopped and started, and during operation, the bypass communication hole 11c is connected by the wall surface 11d formed between the bypass holes 11b and 11b'. It is provided so as to communicate with a bypass hole 11b' which is closed and opens closer to the low pressure chamber 21 during rapid acceleration.

次にその作用について説明する。 Next, its effect will be explained.

圧縮機が停止した状態においては、圧縮機内の
各部、即ち吸入室9、圧縮室6、吐出室13,分
離室17は夫々略同圧状態にある。又制御弁機構
12において高圧室20と低圧室21は同圧状態
にあることによりスプール19は第4図に示す様
にばね22を介して高圧室20方向に向けて付勢
された状態にあり、圧縮室6と吸入室9はバイパ
ス孔11a、高圧室20、バイパス連通孔11
c、バイパス孔11bを介して連通する状態にあ
る。
When the compressor is stopped, each part within the compressor, that is, the suction chamber 9, the compression chamber 6, the discharge chamber 13, and the separation chamber 17, are at approximately the same pressure. In addition, in the control valve mechanism 12, the high pressure chamber 20 and the low pressure chamber 21 are in the same pressure state, so that the spool 19 is biased toward the high pressure chamber 20 via the spring 22, as shown in FIG. , the compression chamber 6 and the suction chamber 9 have a bypass hole 11a, a high pressure chamber 20, and a bypass communication hole 11.
c, in a state of communication via the bypass hole 11b.

しかして各部が上記の様な状態にあつて、電磁
クラツチ(図示省略)の接続操作を介してエンジ
ンの駆動力を駆動軸4に伝達することによりロー
ター5及び各ベーン8…の回転作用が得られる。
そして各ベーン8…の回転を介してエバポレータ
(図示省略)より吸入管路を径て吸入室9内に送
り込まれた冷媒ガスは吸入孔10を経て圧縮室6
内に吸引される。圧縮室6内に吸引された冷媒ガ
スはベーン8…の回転作用を介して圧縮室6内を
その始端部より終端部方向に向けて送られる間に
次第に圧縮される。そしてこの様にして圧縮室6
内をその終端位置迄送られた冷媒ガスは吐出孔1
4、吐出室13、通孔18、分離室17を経て吐
出口17′より吐出管路内をコンデンサー(図示
省略)方向に向けて送り出されるのであるが、前
記の様にバイパス路11が開放された状態にある
ことにより、即ち圧縮室6と吸入室9はバイパス
孔11a、高圧室20、バイパス連通孔11c、
バイパス孔11bを介して連通状態にあることに
より、上記の様に圧縮室6内をローター5の回転
方向に沿つて終端部方向に向けて送られる冷媒ガ
スの一部はその圧縮途中において吸入室9側に流
出する。
With each part in the above state, the rotor 5 and each vane 8 can be rotated by transmitting the driving force of the engine to the drive shaft 4 through the connection operation of an electromagnetic clutch (not shown). It will be done.
Through the rotation of each vane 8, the refrigerant gas is sent from the evaporator (not shown) into the suction chamber 9 through the suction pipe through the suction hole 10 and into the compression chamber 6.
sucked inside. The refrigerant gas sucked into the compression chamber 6 is gradually compressed while being sent through the compression chamber 6 from its starting end toward its terminal end through the rotating action of the vanes 8 . And in this way, the compression chamber 6
The refrigerant gas sent inside to its terminal position is discharged through the discharge hole 1.
4. After passing through the discharge chamber 13, the through hole 18, and the separation chamber 17, the discharge pipe is sent out from the discharge port 17' toward the condenser (not shown), but the bypass passage 11 is opened as described above. In other words, the compression chamber 6 and the suction chamber 9 are connected to the bypass hole 11a, the high pressure chamber 20, the bypass communication hole 11c,
By being in communication via the bypass hole 11b, a part of the refrigerant gas sent in the compression chamber 6 toward the terminal end along the rotational direction of the rotor 5 as described above flows into the suction chamber during compression. It flows out to the 9th side.

そしてこの様に圧縮途中にある冷媒ガスの一部
がバイパス路11を介して吸入室9側に流出する
ことにより、圧縮機の起動時におけるその立上り
をスムーズに行なうことが出来るとともにその起
動トルクを軽減する作用が得られる。
In this way, a part of the refrigerant gas in the middle of compression flows out to the suction chamber 9 side through the bypass path 11, so that the start-up of the compressor can be performed smoothly and the starting torque can be reduced. A relieving effect can be obtained.

このとき、高圧室20と低圧室21に作用する
圧力(PH,PL)はそれぞれ第9図に示す状態で
変化し、横軸の時点でスプールが後述の中間位
置に達する。(従来では第10図に示すごとく横
軸の時点で早くもスプールが切換わる。)これ
は、バイパスガス圧が直接高圧室20に作用する
からPHの波状変化が大きくなることと、バイパ
スとして圧力が抜けようとすることから、ある値
にまで達するのに余分な時間を要するからと考え
られるが、このことによつて、従来よりも良好な
起動トルクの軽減に大きく貢献している。
At this time, the pressures (P H , P L ) acting on the high pressure chamber 20 and the low pressure chamber 21 change as shown in FIG. 9, and the spool reaches an intermediate position, which will be described later, at the time indicated by the horizontal axis. (Conventionally, the spool is switched as early as the horizontal axis as shown in Fig. 10.) This is because the bypass gas pressure directly acts on the high pressure chamber 20, which increases the wave-like change in P H , and because the bypass This is thought to be because it takes extra time to reach a certain value as the pressure tries to escape, but this greatly contributes to a better reduction in starting torque than in the past.

上記の様にローター5の回転が繰り返されるこ
とにより圧縮室6内の圧縮圧力が次第に高められ
ることとなるのであるが、この様にして圧縮室6
内において高められた圧縮ガスの一部が高圧室2
0内に送り込まれることによつて同高圧室20内
の圧力((圧縮行程圧力PH)が次第に高められ
る。そしてこの様に圧縮行程圧力PHが高められ
て、同圧縮行程圧力PHと低圧室21内に得られ
る吸入行程圧力PLとの間に生ずるその差圧がば
ね22の設定圧力を上回つた状態においてスプー
ル19はばね22の付勢圧に打ち勝つて低圧室2
1方向に押圧される。即ち高圧室20と低圧室2
1は第5図に示す状態(中間位置)にてバランス
し、スプール19に穿設するバイパス連通孔11
cを壁面部11dによつて閉塞する作用が得られ
る。そしてこの様にバイパス路11が塞がれるこ
とにより圧縮室6内の冷媒ガスはその一部が上記
バイパス路11を経て吸入室9側に流出すること
なく、その全てが圧縮されて吐出孔14、吐出室
13、通孔18、分離室17を経て吐出管路内を
コンデンサー方向に向けて送り出される。即ち
100%運転状態が得られる。
By repeating the rotation of the rotor 5 as described above, the compression pressure in the compression chamber 6 is gradually increased.
A part of the compressed gas increased in the high pressure chamber 2
0, the pressure in the high pressure chamber 20 ((compression stroke pressure P H ) is gradually increased. In this way, the compression stroke pressure P H is increased, and the same compression stroke pressure P H In a state where the differential pressure generated between the suction stroke pressure P L obtained in the low pressure chamber 21 exceeds the set pressure of the spring 22, the spool 19 overcomes the biasing pressure of the spring 22, and the low pressure chamber 2
Pressed in one direction. That is, high pressure chamber 20 and low pressure chamber 2
1 is a bypass communication hole 11 that is balanced in the state shown in FIG. 5 (intermediate position) and is bored in the spool 19.
The effect of closing the wall portion 11d by the wall portion 11d can be obtained. By blocking the bypass passage 11 in this way, a part of the refrigerant gas in the compression chamber 6 does not flow out to the suction chamber 9 side through the bypass passage 11, and all of it is compressed into the discharge hole 14. , the discharge chamber 13, the through hole 18, and the separation chamber 17, and are sent out through the discharge pipe toward the condenser. That is,
100% operational status is obtained.

又車室内の冷房負荷が減少し、吸入室9内の圧
力が低下するのにともない吸入行程圧力PLと圧
縮行程圧力PH間の差圧も小さくなる。そしてそ
の差圧が低圧室21内に介装されるばね22の設
定圧力を下回つた状態においてこれ迄上記差圧に
よつて低圧室21側に押圧されてバイパス連通孔
11cを壁面部11dによつて塞ぐ状態にあつた
スプール19はばね22の付勢圧を介して高圧室
20方向に向けて摺動し、バイパス連通孔11c
の一部が再びバイパス孔11bと連通する状態、
即ち圧縮室6内において圧縮途中にある冷媒ガス
の一部を吸入室9側に逃し、その圧縮容量をダウ
ンさせる作用、即ちいわゆる部分冷房負荷運転状
態が得られる。そして又電磁クラツチが離断する
ことにより第4図に示す状態、即ちスプール19
はばね22によつて高圧室20方向に付勢されて
バイパス連通孔11cとバイパス孔11bが一致
する状態に戻る。
Furthermore, as the cooling load in the vehicle compartment decreases and the pressure in the suction chamber 9 decreases, the differential pressure between the suction stroke pressure P L and the compression stroke pressure P H also decreases. When the pressure difference is lower than the set pressure of the spring 22 installed in the low pressure chamber 21, the pressure difference presses the bypass communication hole 11c toward the wall portion 11d. The spool 19, which has been in a closed state, slides toward the high pressure chamber 20 via the biasing pressure of the spring 22, and the bypass communication hole 11c is closed.
a state in which a part of the is in communication with the bypass hole 11b again,
That is, a part of the refrigerant gas that is being compressed in the compression chamber 6 is released to the suction chamber 9 side, and the compression capacity is reduced, that is, a so-called partial cooling load operating state is obtained. Then, the electromagnetic clutch is disengaged again, resulting in the state shown in FIG. 4, that is, the spool 19
is urged toward the high pressure chamber 20 by the spring 22, and returns to the state where the bypass communication hole 11c and the bypass hole 11b are aligned.

一方圧縮機の運転中において急加速させた場合
においてエンジンの回転数が増大するのにともな
い圧縮機の回転数も必然的に増大することとな
る。そして圧縮機の回転数が増大することによ
り、高圧室20における圧縮行程圧力PHと低圧
室21における吸入行程圧力PL間に生ずる差圧
も又より一そう増大することとなる。そしてこの
様に両室間の差圧が増大することによりスプール
19は第5図に示す状態よりも更に低圧室21方
向に摺動し、第6図に示す様にバイパス連通孔1
1cがバイパス孔11b′と連通する状態が得られ
るのであるが、この様にバイパス路11が連通状
態となることにより圧縮室6内において圧縮途中
にある冷媒ガスの一部をバイパス孔11a、高圧
室20、バイパス連通孔11c、バイパス孔11
b′を経て吸入室9側に逃す作用が得られる。又こ
の様に圧縮室6内の冷媒ガスを吸入室9側に逃す
ことに起因して圧縮行程圧力PHと吸入行程圧力
PL間に生ずる差圧が急激に低下することとなる
のであるが、この様に圧縮行程圧力PHと吸入行
程圧力PL間に生ずる差圧が急激に低下すること
により、スプール19はばね22により高圧室2
0方向に向けて付勢されて第4図に示す様にバイ
パス連通孔11cとバイパス孔11bが連通状態
となつて起動時と同様圧縮室6内において圧縮途
中にある冷媒ガスの一部をバイパス孔11a、高
圧室20、バイパス連通孔11c、バイパス孔1
1bを経て吸入室9に逃す作用が得られる。そし
てこの様な逃し作用が得られている間に高圧室2
0内の圧力は次第に高められることとなるのであ
るが、高圧室20における圧縮行程圧力PHと低
圧室21における吸入行程圧力PL間に生ずる差
圧がばね22の付勢圧を上回つた状態において、
スプール19は低圧室21方向に摺動し、再び第
5図に示す様にバイパス連通孔11cを壁面部1
1dによつて閉塞する状態、即ち通常の100%運
転状態に戻る。
On the other hand, when the compressor is suddenly accelerated during operation, as the engine rotational speed increases, the compressor rotational speed also inevitably increases. As the rotational speed of the compressor increases, the differential pressure generated between the compression stroke pressure P H in the high pressure chamber 20 and the suction stroke pressure P L in the low pressure chamber 21 also increases further. As the differential pressure between the two chambers increases in this way, the spool 19 slides further toward the low pressure chamber 21 than in the state shown in FIG. 5, and as shown in FIG.
1c is in communication with the bypass hole 11b', and by establishing the communication state of the bypass path 11 in this way, a part of the refrigerant gas that is being compressed in the compression chamber 6 is transferred to the bypass hole 11a and the high pressure Chamber 20, bypass communication hole 11c, bypass hole 11
An effect of releasing air to the suction chamber 9 side through b' is obtained. In addition, due to the refrigerant gas in the compression chamber 6 being released to the suction chamber 9 side in this way, the compression stroke pressure P H and the suction stroke pressure
The differential pressure that occurs between P L will suddenly decrease, but due to this sudden decrease in the differential pressure that occurs between the compression stroke pressure P H and the suction stroke pressure P L , the spool 19 will spring. High pressure chamber 2 by 22
0 direction, the bypass communication hole 11c and the bypass hole 11b are brought into communication as shown in FIG. 4, and a part of the refrigerant gas that is being compressed in the compression chamber 6 is bypassed as in the case of startup. Hole 11a, high pressure chamber 20, bypass communication hole 11c, bypass hole 1
The effect of releasing air into the suction chamber 9 through 1b is obtained. While this relief effect is obtained, the high pressure chamber 2
0 will gradually increase, but the pressure difference generated between the compression stroke pressure P H in the high pressure chamber 20 and the suction stroke pressure P L in the low pressure chamber 21 exceeds the biasing pressure of the spring 22. In the state,
The spool 19 slides in the direction of the low pressure chamber 21, and as shown in FIG.
1d returns to the closed state, that is, the normal 100% operating state.

発明の効果 本発明は以上の様に構成されるものであつて、
上記の様に構成したことにより、起動時において
立上りトルクを軽減することが出来るとともにス
ムーズな立上りを得ることが出来るに至つた。
Effects of the Invention The present invention is constructed as described above, and includes:
By configuring as described above, it is possible to reduce the start-up torque at the time of start-up, and also to obtain a smooth start-up.

又圧縮機の運転中に急加速させた場合におい
て、圧縮機の回転数が急激に上昇することに起因
して発生するシヨツクを緩和することが出来ると
ともに過冷却に対して適切に対処することが出来
るに至つた。
In addition, when the compressor is suddenly accelerated during operation, it is possible to alleviate the shock that occurs due to the sudden increase in the rotation speed of the compressor, and it is also possible to appropriately deal with supercooling. I was able to do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る圧縮機の側断面図(第2
図におけるA―B―C線断面図)、第2図は第1
図におけるD―D線断面図、第3図は同E―E線
断面図、第4図乃至第6図は制御弁機構部分の作
用状態を表わす拡大図、第7図は従来構造を表わ
す断面図、第8図は同制御弁機構部分の断面図、
第9図および第10図は高圧室と低圧室のそれぞ
れの圧力変化の状態を示すグラフであり、第9図
は本願発明に係るもので、第10図は従来に関す
るものである。 1…ハウジング、1A…フロントハウジング、
1B…リヤハウジング、2…シリンダーブロツ
ク、3A…フロントサイドプレート、3B…リヤ
サイドプレート、4…駆動軸、5…ローター、6
…圧縮室、7…ベーン溝、8…ベーン、9…吸入
室、9′…吸入口、10…吸入孔、11…バイパ
ス路、11a,11b,11b′…バイパス孔、1
1c…バイパス連通孔、11d…壁面部、12…
制御弁機構、13…吐出室、14…吐出孔、15
…吐出弁、16…リテーナー、17…分離室、1
7′…吐出口、18…通孔、19…スプール、2
0…高圧室、21…低圧室、22…ばね、23…
導圧孔。
FIG. 1 is a side sectional view (second view) of a compressor according to the present invention.
A-B-C line sectional view in the figure), Figure 2 is the 1st
3 is a sectional view taken along line EE in the figure, FIGS. 4 to 6 are enlarged views showing the operating state of the control valve mechanism, and FIG. 7 is a sectional view showing the conventional structure. Figure 8 is a sectional view of the control valve mechanism part,
9 and 10 are graphs showing the states of pressure changes in the high pressure chamber and the low pressure chamber, respectively. FIG. 9 is related to the present invention, and FIG. 10 is related to the prior art. 1...Housing, 1A...Front housing,
1B...Rear housing, 2...Cylinder block, 3A...Front side plate, 3B...Rear side plate, 4...Drive shaft, 5...Rotor, 6
...Compression chamber, 7...Vane groove, 8...Vane, 9...Suction chamber, 9'...Suction port, 10...Suction hole, 11...Bypass path, 11a, 11b, 11b'...Bypass hole, 1
1c...Bypass communication hole, 11d...Wall surface portion, 12...
Control valve mechanism, 13...Discharge chamber, 14...Discharge hole, 15
...Discharge valve, 16...Retainer, 17...Separation chamber, 1
7'...Discharge port, 18...Through hole, 19...Spool, 2
0...High pressure chamber, 21...Low pressure chamber, 22...Spring, 23...
Pressure hole.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮室と吸入室を隔設するサイドプレート内
に進退自在に設けられるスプールの両端部に高圧
室と低圧室を対峙させて設け、低圧室は吸入室若
しくは圧縮室の吸入工程と連通させ且つ同低圧室
内には上記スプールを高圧室方向に向けて付勢す
るばねを介装する一方、サイドプレートには圧縮
室側に高圧室と連通するバイパス孔を圧縮室の圧
縮工程と対応させて設けるとともに吸入室側には
吸入室と連通する複数個のバイパス孔を上記圧縮
室側のバイパス孔に対してその開口位置を変位さ
せて設け、前記スプールにはバイパス連通孔を穿
設し、同連通孔の一端は高圧室に連通させるとと
もに、他端を部分容量運転時にはスプールの摺動
を介して上記複数個のバイパス孔に対して選択的
に連通可能で且つ全容量運転時には前記バイパス
孔間に形成する壁面部によつて閉塞可能に設けて
成る圧縮容量可変型圧縮機。
1. A high-pressure chamber and a low-pressure chamber are provided facing each other at both ends of a spool that is movably provided in a side plate that separates a compression chamber and a suction chamber, and the low-pressure chamber is communicated with the suction chamber or the suction process of the compression chamber, and A spring is installed in the low-pressure chamber to bias the spool toward the high-pressure chamber, and a bypass hole communicating with the high-pressure chamber is provided in the side plate on the compression chamber side in correspondence with the compression process of the compression chamber. At the same time, a plurality of bypass holes communicating with the suction chamber are provided on the suction chamber side, the opening positions of which are displaced relative to the bypass holes on the compression chamber side, and a bypass communication hole is bored in the spool to communicate with the suction chamber. One end of the hole communicates with the high pressure chamber, and the other end can selectively communicate with the plurality of bypass holes through the sliding of the spool during partial capacity operation, and between the bypass holes during full capacity operation. A variable compression capacity compressor that can be closed by a wall portion formed therein.
JP11001183A 1983-06-17 1983-06-17 Compressor of variable compression capacity type Granted JPS601397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11001183A JPS601397A (en) 1983-06-17 1983-06-17 Compressor of variable compression capacity type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11001183A JPS601397A (en) 1983-06-17 1983-06-17 Compressor of variable compression capacity type

Publications (2)

Publication Number Publication Date
JPS601397A JPS601397A (en) 1985-01-07
JPH0152596B2 true JPH0152596B2 (en) 1989-11-09

Family

ID=14524850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11001183A Granted JPS601397A (en) 1983-06-17 1983-06-17 Compressor of variable compression capacity type

Country Status (1)

Country Link
JP (1) JPS601397A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217173A (en) * 1985-07-15 1987-01-26 Ulvac Corp Flat plate magnetron sputtering device
JPH0660391B2 (en) * 1987-06-11 1994-08-10 日電アネルバ株式会社 Sputtering equipment
JPH0794832B2 (en) * 1988-08-12 1995-10-11 三菱重工業株式会社 Rotary compressor
JPH06158301A (en) * 1992-11-19 1994-06-07 Nec Corp Sputtering device
CN100424355C (en) * 2004-06-21 2008-10-08 乐金电子(天津)电器有限公司 Discharge valve device of rotary compressor

Also Published As

Publication number Publication date
JPS601397A (en) 1985-01-07

Similar Documents

Publication Publication Date Title
US4566863A (en) Rotary compressor operable under a partial delivery capacity
US7150610B2 (en) Gas compressor
US4447196A (en) Rotary vane compressor with valve control of undervane pressure
US4808083A (en) Variable capacity type vane compressor
JPH0152596B2 (en)
US4209287A (en) Rotary vane compressor with start-up pressure biasing vanes
US4086041A (en) Rotary compressor comprising improved rotor lubrication system
JP2913155B2 (en) Gas compressor
US4135865A (en) Rotary vane compressor with outlet check valve for start-up pressure on lubricant system
JPS58222994A (en) Variable capacity compressor
JP4185722B2 (en) Gas compressor
JPH0712697Y2 (en) Chattering prevention structure in slide vane type rotary compressor
JPS60145476A (en) Oil feeding apparatus for rotary vane type compressor
JPS5968593A (en) Variable capacity type compressor
JPS611887A (en) Rotary compressor
JPS6329188Y2 (en)
JPS6245993A (en) Volume control mechanism for variable delivery compressor
JPH0247275Y2 (en)
JPS5977095A (en) Volumetrically variable compressor
JPS63280883A (en) Variable volume type vane compressor
JPH0377394B2 (en)
JPS5999089A (en) Variable capacity type compressor
JPH0220838B2 (en)
JPS59113293A (en) Compressing capacity control mechanism in compressor
JPH1030584A (en) Small displacement operation control mechanism in slide vane type rotary compressor and small displacement operation control in rotary compressor