JPS6245993A - Volume control mechanism for variable delivery compressor - Google Patents

Volume control mechanism for variable delivery compressor

Info

Publication number
JPS6245993A
JPS6245993A JP18620185A JP18620185A JPS6245993A JP S6245993 A JPS6245993 A JP S6245993A JP 18620185 A JP18620185 A JP 18620185A JP 18620185 A JP18620185 A JP 18620185A JP S6245993 A JPS6245993 A JP S6245993A
Authority
JP
Japan
Prior art keywords
pressure
chamber
valve
throttling
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18620185A
Other languages
Japanese (ja)
Inventor
Katsunori Kawai
河合 克則
Hiroyuki Deguchi
出口 弘幸
Hisao Kobayashi
久雄 小林
Shuichi Sugisono
杉園 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP18620185A priority Critical patent/JPS6245993A/en
Publication of JPS6245993A publication Critical patent/JPS6245993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To obtain the stable delivery switching control by connecting a deliv ery pipe passage and a pressure working chamber when the load for a cooler is high and disconnecting the said connection when the said load is low. CONSTITUTION:When the load for a cooler is high, a spool valve 33 is opened so that the after-intake-and-throttling pressure on the intake flange (7) side becomes equal to the before-intake-and-throttling pressure on the evaporator (E) side. After this, a seal valve 41 is opened by a spool valve 39, and the deliv ery pressure in a delivery pipe passage 32 is sent to a pressure working chamber 29. At the same time, a bypass passage 26 is closed to let the compressor run into 100% capacity operation. On the other hand, when the load for a cooler is low, the reversed operation is carried out. With this contrivance, a stable capacity switching control can be obtained without being affected by the varia tion of differential pressure between the intake pressure and the delivery pres sure, which is caused by the factors other than the load for the cooler.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明は可変容量回転式圧縮機に係り、詳しくは冷房
負荷に応じて容量を正確に切換える可変容量回転式圧縮
機の容量制御機構に関するものである。
[Detailed Description of the Invention] Purpose of the Invention (Field of Industrial Application) This invention relates to a variable capacity rotary compressor, and more specifically, to capacity control of a variable capacity rotary compressor that accurately switches the capacity according to the cooling load. It is about the mechanism.

(従来の技術) 従来、室内における冷房負荷の変化に伴い圧縮容量を自
動的に制御するようにした可変容量型の圧縮機として、
本願出願人は特開昭58−222994号公報において
、吸入室内若しくは圧縮室内の吸入行程における吸入側
圧力と、圧縮室内の圧縮行程における圧縮側圧力との間
に生ずる差圧の変化を利用して容量切替え弁を自動開閉
可能に設け、この制御弁の自動開閉により冷房負荷の減
少時に冷媒ガスの一部を吸入室側に逃がすことにより、
圧縮室の圧縮容量を調整するものを提案している。
(Prior art) Conventionally, variable capacity compressors have been used as variable capacity compressors that automatically control compression capacity in accordance with changes in indoor cooling load.
In Japanese Patent Application Laid-open No. 58-222994, the applicant of the present application has proposed a method using the change in the differential pressure that occurs between the suction side pressure during the suction stroke in the suction chamber or compression chamber and the compression side pressure during the compression stroke in the compression chamber. A capacity switching valve is installed so that it can be opened and closed automatically, and by automatically opening and closing this control valve, part of the refrigerant gas is released to the suction chamber when the cooling load decreases.
We are proposing something that adjusts the compression capacity of the compression chamber.

(発明が解決しようとする問題点) ところが、上記従来の可変容量圧縮機では圧縮機本体内
での圧力差により容量切替え弁を開閉動作させるように
しているため、冷房負荷以外の要因、例えば、急加速、
登板特等エンジン回転数の急変による圧力変動や、高温
流体の吸入による影響を強く受けて誤作動し易いという
問題点がある。
(Problems to be Solved by the Invention) However, in the conventional variable capacity compressor described above, the capacity switching valve is opened and closed based on the pressure difference within the compressor body, so factors other than the cooling load, such as sudden acceleration,
There is a problem in that it is easily affected by pressure fluctuations due to sudden changes in the engine speed and the suction of high-temperature fluid, making it prone to malfunction.

発明の構成 (問題点を解決するための手段) この発明は前記問題点を解決するため、圧縮室と吸入室
とを区画する隔壁にバイパス1ffi!?&を設けると
ともに、前記吸入室には付勢手段により常には前記バイ
パス通路を開放する方向へ付勢される弁体と、同弁体の
背面側に設けた圧力作用室とにより開閉弁を形成し、さ
らに蒸発器から圧縮機に至る吸入管路には蒸発器の蒸発
圧力を設定値以上に保持する絞り弁を設けた可変容量回
転式圧縮機において、大径孔部と同大径孔部より両方向
に延びる一対の小径孔部とからなる嵌挿孔内に、大径円
盤部と同大径円盤部より両方向に延びる一対の小径ロッ
ド部とからなるスプール弁を嵌挿し、同スプール弁の」
1下に形成した絞り前圧力室及び絞り後圧力室の・うち
、絞り後圧力室を吸入管路の絞り後部分と連通させると
ともに、絞り前圧力室を吸入管路の絞り前部分若しくは
大気と連通させ、絞り後圧力室側の小径孔部を導圧通路
を介して前記圧力作用室と、絞り前圧力室側の小径孔部
を導圧通路を介して吐出管路とそれぞれ連通させるとと
もに、両導圧1ffl路を連通させ、さらに常には前記
両小径孔部を閉塞し、かつ、前記小径ロッド部により選
択的に押し開かれるシール弁を進退自在に設けるという
構成を採用している。
Structure of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a bypass 1ffi! ? &, and an on-off valve is formed in the suction chamber by a valve body that is always biased in a direction to open the bypass passage by a biasing means, and a pressure action chamber provided on the back side of the valve body. Furthermore, in a variable displacement rotary compressor, the suction pipe from the evaporator to the compressor is equipped with a throttle valve to maintain the evaporation pressure of the evaporator above a set value. A spool valve consisting of a large-diameter disk portion and a pair of small-diameter rod portions extending in both directions from the large-diameter disk portion is inserted into an insertion hole consisting of a pair of small-diameter hole portions extending in both directions, and the spool valve is ”
1. Of the pre-throttling pressure chamber and the post-throttling pressure chamber formed below, the post-throttling pressure chamber is communicated with the post-throttling part of the suction pipe, and the pre-throttling pressure chamber is connected to the pre-throttling part of the suction pipe or the atmosphere. and communicate the small diameter hole on the post-throttling pressure chamber side with the pressure action chamber via the pressure guiding passage, and the small diameter hole on the pre-throttling pressure chamber side with the discharge pipe line via the pressure guiding passage, A configuration is adopted in which both the impulse pressure 1ffl paths are communicated, and furthermore, a seal valve that always closes both the small-diameter holes and is selectively pushed open by the small-diameter rod is provided so as to be movable forward and backward.

(作用) この発明は前記手段を採用したことにより、次のように
作用する。
(Function) By employing the above-mentioned means, the present invention functions as follows.

車室内の冷房負荷が大きい場合には、吸入管路の絞り前
と後との圧力がほとんど同一となるため、絞り前圧力室
及び絞り後圧力室内の圧力がバランスした状態となり、
吐出管路側のシール弁がスプール弁の小径ロッド部によ
り押し開かれて吐出管路と圧力作用室とが連通され、圧
力作用室には吐出圧力が送り込まれる。これにより開閉
弁の弁体はバイパス通路を閉鎖し、100%容量運転が
行なわれる。
When the cooling load in the vehicle interior is large, the pressure before and after the throttle in the suction pipe becomes almost the same, so the pressures in the pre-throttling pressure chamber and the post-throttling pressure chamber become balanced.
The seal valve on the side of the discharge pipe is pushed open by the small diameter rod portion of the spool valve, the discharge pipe and the pressure action chamber are communicated with each other, and discharge pressure is sent into the pressure action chamber. As a result, the valve body of the on-off valve closes the bypass passage, and 100% capacity operation is performed.

車室内の冷房負荷が小さくなるのに伴って吸入管路の絞
り前の圧力が小さくなるため、絞り前と後との圧力差が
大きくなり、開かれた状態にあった吐出管路側のシール
弁が閉じられる。このため、圧力作用室と吐出管路との
連通が断たれるが、このとき両シール弁は閉じているた
め、圧力作用室は吐出圧力状態に保持され、弁体はバイ
パス通路を閉鎖状態に保持し、100%容量運転が維持
される。
As the cooling load in the vehicle interior decreases, the pressure before the throttle in the suction pipe decreases, and the pressure difference between before and after the throttle increases, causing the seal valve on the discharge pipe side, which was in the open state, to is closed. Therefore, communication between the pressure chamber and the discharge pipe is cut off, but since both seal valves are closed at this time, the pressure chamber is maintained at the discharge pressure, and the valve body closes the bypass passage. 100% capacity operation is maintained.

さらに車室内の冷房負荷が小さくなって絞り前と後との
圧力差が設定値になると、吸入管路側のシール弁がスプ
ール弁の小径ロッド部により押し開かれるため、吸入管
路の絞り後部分と圧力作用室とが連通されて絞り後圧力
が圧力作用室に送り込まれる。このため、弁体はバイパ
ス通路を開放し、小容量運転に切替えられる。
Furthermore, when the cooling load in the passenger compartment decreases and the pressure difference between before and after the throttle reaches the set value, the seal valve on the suction pipe side is pushed open by the small diameter rod of the spool valve, so that the pressure difference between the before and after throttle ends. and the pressure action chamber are communicated with each other, and the pressure after throttling is sent into the pressure action chamber. Therefore, the valve body opens the bypass passage and the operation is switched to small capacity operation.

小容量運転が継続され、冷房負荷が増加してくると、絞
り前と後との圧力差が減少し、これに伴って吸入管路側
のシール弁が閉じられる。このため、圧力作用室と吸入
管路の絞り後部分との連通が断たれるが、このとき両シ
ール弁は閉じているため、圧力作用室は絞り後圧力状態
に保持され、弁体はバイパス通路を開放状態に保持し、
小容量運転が維持される。
When the small-capacity operation continues and the cooling load increases, the pressure difference between before and after the throttle decreases, and the seal valve on the suction pipe side is accordingly closed. As a result, communication between the pressure chamber and the post-throttle portion of the suction pipe is cut off, but since both seal valves are closed at this time, the pressure chamber is maintained at the post-throttle pressure state, and the valve body is bypassed. Keep aisles open
Small capacity operation is maintained.

(実施例) 以下、この発明をベーン圧縮機に具体化した第1の実施
例を第1図〜第7図について説明すると、圧縮機への楕
円筒状中空部を有するシリンダ1の両端面には円板伏の
フロントサイドプレート2及びリヤサイドプレート3が
接合され、これらによってロータ収容用の楕円筒状空間
が形成されている。フロントサイドプレート2の前面に
は吸入室5を有するフロントハウジング4が設けられ、
吸入室5は吸入口6及び吸入フランジ7を介して外部回
路と連通されている。フロントサイドプレート2の後面
にはりャサイドプレート3及びシリンダ1の外周を囲繞
するようにリヤハウジング8が接合され、同リヤハウジ
ング8の後側には底部を油溜室10とした吐出ガス中の
オイルを分離するための油分離室9が形成され、間部分
離室9は吐出口11を介して外部回路と連通されている
(Embodiment) Hereinafter, a first embodiment in which the present invention is embodied in a vane compressor will be explained with reference to FIGS. 1 to 7. A disc-shaped front side plate 2 and a rear side plate 3 are joined together to form an elliptical cylindrical space for accommodating a rotor. A front housing 4 having a suction chamber 5 is provided on the front side of the front side plate 2.
The suction chamber 5 is communicated with an external circuit via a suction port 6 and a suction flange 7. A rear housing 8 is joined to the rear surface of the front side plate 2 so as to surround the outer periphery of the barrier side plate 3 and the cylinder 1, and the rear side of the rear housing 8 has an oil sump chamber 10 at the bottom, which contains the gas in the discharged gas. An oil separation chamber 9 for separating oil is formed, and the intermediate separation chamber 9 communicates with an external circuit via a discharge port 11.

前記フロントサイドプレート2及びリヤサイドプレート
3の中心部には、回転軸】2が積極回転可能に貫通され
ており、第2図に示すように同回転軸12に一体(別体
に形成することも可)に形成された円筒状のロータ13
がシリンダ1内にその外周面の2箇所をシリンダ内周面
の短径部2箇所と接するように収容され、三ケ月状をな
す2つの室14が形成されている。ロータ13の円周上
には全幅に渡って複数個(この実施例では5個の場合を
示す)のベーン溝15が所要深さをもって形成され、各
ベーン溝15に摺動可能に嵌合されたベーン16はその
先端がシリンダ1の内周面に当接することで前記三ケ月
状の室14をそれぞれ複数の圧縮室17に区画形成して
いる。同圧縮室17は前記フロントサイドプレート2に
貫設された連通孔18、シリンダ1に貫設された吸入通
路19、及び吸入通路19と圧縮室17とを連通ずるよ
うに貫設された吸入口20によって吸入室5と連通され
ている。また、圧縮室17はシリンダ1に貫設された吐
出口21を介して同シリンダ1の外周面とリヤハウジン
グ8の内周面間に形成された吐出室22と連通され、さ
らに、同吐出室22はリヤサイドプレート3に貫設され
た連通孔23を介して油分離室9と連通されている。な
お、吐出口21には吐出弁24及び弁理え25が設けら
れている。
A rotary shaft 2 passes through the center of the front side plate 2 and the rear side plate 3 so as to be able to rotate positively, and as shown in FIG. cylindrical rotor 13 formed in
is accommodated in the cylinder 1 so that its outer circumferential surface is in contact with two minor diameter portions of its inner circumferential surface, thereby forming two crescent-shaped chambers 14. On the circumference of the rotor 13, a plurality of vane grooves 15 (in this example, five grooves are shown) are formed with a required depth over the entire width, and each vane groove 15 is slidably fitted. The tips of the vanes 16 abut against the inner circumferential surface of the cylinder 1, thereby dividing the crescent-shaped chamber 14 into a plurality of compression chambers 17, respectively. The compression chamber 17 includes a communication hole 18 formed through the front side plate 2, a suction passage 19 formed through the cylinder 1, and a suction port formed so as to communicate the suction passage 19 and the compression chamber 17. 20 communicates with the suction chamber 5. Further, the compression chamber 17 communicates with a discharge chamber 22 formed between the outer peripheral surface of the cylinder 1 and the inner peripheral surface of the rear housing 8 via a discharge port 21 provided through the cylinder 1. 22 communicates with the oil separation chamber 9 via a communication hole 23 formed through the rear side plate 3. Note that the discharge port 21 is provided with a discharge valve 24 and a valve holder 25.

前記フロントサイドプレート2の対称状の圧縮室17と
対応する位置には、第1図に示すように同圧縮室17と
前記吸入室5とを連通ずるバイパス通路26がそれぞれ
の中央部に1個ずつ穿設され、開放状態において後述す
るように容量ダウンを行なうことができるようになって
いる。
At positions corresponding to the symmetrical compression chambers 17 of the front side plate 2, as shown in FIG. The capacitors are perforated so that in the open state, the capacity can be reduced as will be described later.

前記フロントハウジング4内壁面に形成した収容凹部2
7内には前記バイパス通路26を開閉するための弁体2
8が進退自在に設けられ、同弁体28の背面側には圧力
作用室29が形成されている。また、前記弁体28とフ
ロントサイドプレート2との間には前記バイパス通路2
6を常には開放する方向(第1図の左方)へ付勢する付
勢手段としてのばね30が介在されている。そして、弁
体28、圧力作用室29及びばね3oによりバイパス通
路26の開閉弁Bが形成されている。
Accommodation recess 2 formed on the inner wall surface of the front housing 4
7 includes a valve body 2 for opening and closing the bypass passage 26.
A pressure chamber 29 is formed on the back side of the valve body 28. Further, the bypass passage 2 is provided between the valve body 28 and the front side plate 2.
A spring 30 is interposed as a biasing means for biasing 6 in the direction in which it is normally opened (toward the left in FIG. 1). An on-off valve B for the bypass passage 26 is formed by the valve body 28, the pressure action chamber 29, and the spring 3o.

一方、前記吸入フランジ7には吸入管路31が連通され
、前記吐出口11には吐出管@32が連通されている。
On the other hand, a suction pipe line 31 is communicated with the suction flange 7, and a discharge pipe @32 is communicated with the discharge port 11.

そして、吐出管路32には凝縮器C1膨張弁D1蒸発器
Eが直列に設けられ、この蒸発器Eに前記吸入管路31
が連通されている。
A condenser C1, an expansion valve D1, and an evaporator E are connected in series to the discharge pipe line 32, and the suction pipe line 31 is connected to the evaporator E.
are being communicated.

また、吸入管路31にはその任意の中間部に位置して吸
入絞り弁Fが設けられている。同吸入絞り弁Fには蒸発
器E側の開口部と対向させてスプール弁33が進退自在
に嵌挿され、同スプール弁33のボトム側の一端には大
気と連通ずる大気圧力室34が設けられ、かつ、同大気
圧力室34にばばね35が介装され、一方、同スプール
弁33のばね35の反対側には吸入圧力室36が設けら
れている。同吸入絞り弁Fのスプール弁33は両圧力室
34.36間に生ずる差圧の変化により進退して蒸発器
Eの蒸発圧力を一定にするようにしている。
Further, the suction pipe line 31 is provided with a suction throttle valve F located at an arbitrary intermediate portion thereof. A spool valve 33 is fitted into the suction throttle valve F so as to be movable forward and backward, facing the opening on the side of the evaporator E, and an atmospheric pressure chamber 34 communicating with the atmosphere is provided at one end on the bottom side of the spool valve 33. A spring 35 is interposed in the atmospheric pressure chamber 34, and a suction pressure chamber 36 is provided on the opposite side of the spool valve 33 from the spring 35. The spool valve 33 of the suction throttle valve F moves back and forth in response to changes in the differential pressure generated between the two pressure chambers 34 and 36 to keep the evaporation pressure of the evaporator E constant.

コントロールバルブGのバルブ本体37にはスプール弁
39の嵌挿孔38が穿設されており、同嵌挿孔38は大
径孔部38aと、同大径孔部38aよりその中心線に沿
って両方向に穿設された一対の小径孔部38bとからな
る。そして、両小径孔部38b、38bの両端部にはそ
の間にボート40.40を介在させて後記するシール弁
41゜41の嵌挿孔4−2.42が対向するように穿設
されている。
A fitting insertion hole 38 for the spool valve 39 is bored in the valve body 37 of the control valve G, and the fitting insertion hole 38 extends from the large diameter hole 38a along the center line of the large diameter hole 38a. It consists of a pair of small diameter holes 38b drilled in both directions. At both ends of both the small diameter holes 38b, 38b, a boat 40.40 is interposed between them, and holes 4-2.42 for fitting a seal valve 41.41, which will be described later, are formed so as to face each other. .

前記スプール弁39は大径円盤部39aと、同大径円盤
部39aよりその中心線に沿って両方向に延設された一
対の小径ロッド部39b、39bとにより形成され、大
径用m部39aは大径孔部38aに対して、また、小径
ロッド部39b、39bは小径孔部38b、38bに対
してそれぞれ進退自在に嵌挿される。前記嵌挿孔38の
大径孔部38aには大径円盤部39aの」1下両側に絞
り前圧力室43、及びばね45を介装した絞り後圧力室
44が形成されている。そして、この圧力室44と前記
吸入管路3】の吸入絞り弁Fの絞り後部分とは導圧通路
46により連通されている。また、絞り前圧力室43に
は導圧通路47が接続され、その先端部は前記吸入絞り
弁Fの絞り前部分の開口部に連通されている。
The spool valve 39 is formed by a large-diameter disk portion 39a and a pair of small-diameter rod portions 39b, 39b extending from the large-diameter disk portion 39a in both directions along its center line, and includes a large-diameter m portion 39a. is fitted into the large-diameter hole 38a, and the small-diameter rod portions 39b, 39b are fitted into the small-diameter holes 38b, 38b so as to be freely retractable. In the large diameter hole 38a of the insertion hole 38, a pre-throttling pressure chamber 43 and a post-throttling pressure chamber 44 with a spring 45 interposed therein are formed on both sides of the large diameter disc part 39a below the "1". This pressure chamber 44 and the post-throttling portion of the suction throttle valve F of the suction pipe line 3 are communicated through a pressure guiding passage 46. Further, a pressure guiding passage 47 is connected to the pre-throttling pressure chamber 43, and its tip portion communicates with an opening in the pre-throttling portion of the suction throttle valve F.

前記両嵌挿孔42,42には前記スプール弁39の小径
ロッド部39b、39bと対向させてシール弁41.4
1が進退自在に嵌挿されている。
A seal valve 41.4 is provided in both the fitting holes 42, 42 facing the small diameter rod portions 39b, 39b of the spool valve 39.
1 is inserted so that it can move forward and backward.

両嵌挿孔42.42にばばね48.48が介装され、両
シール弁41,4.1を常には小径孔部38b、38b
を塞ぐ方向に付勢している。また、前記両ボート40.
40には導圧通路49.50が接続され、絞り後圧カ室
44側の導圧通路49は圧縮機への前記圧力作用室29
に接続されている。
A spring 48.48 is interposed in both fitting insertion holes 42.42, and both seal valves 41, 4.1 are always connected to small diameter holes 38b, 38b.
is biased in the direction of blocking it. In addition, both the boats 40.
40 are connected to pressure guiding passages 49 and 50, and the pressure guiding passage 49 on the post-throttling pressure chamber 44 side is connected to the pressure acting chamber 29 to the compressor.
It is connected to the.

もう一方の導圧通路5oは吐出管路32に接続されてい
る。また、絞り前圧カ室43例の小径孔部38bにはそ
の基部寄りに0リング51が介装されるとともに、先端
よりの任意の位置より導圧通路52が延設され、その先
端部は絞り後圧カ室44側の導圧通路49と接続されて
いる。なお、両車径孔部38b、38bは導圧通路を兼
ねて形成され、絞り前圧力室43の小径孔部38bばボ
ート40と導圧通路52とを連通している。
The other pressure guiding passage 5o is connected to the discharge pipe line 32. In addition, an O-ring 51 is interposed near the base of the small diameter hole 38b of the 43 examples of pre-throttle pressure chambers, and a pressure guiding passage 52 is provided extending from an arbitrary position from the tip. It is connected to the pressure guiding passage 49 on the post-throttle pressure chamber 44 side. The diameter holes 38b and 38b of both vehicles are formed to also serve as a pressure guiding passage, and the small diameter hole 38b of the pre-throttle pressure chamber 43 communicates the boat 40 and the pressure guiding passage 52.

次に前記のように構成したベーン圧縮機についてその作
用を説明する。
Next, the operation of the vane compressor constructed as described above will be explained.

車室内の冷房負荷が大きい状態、すなわち第5図に表わ
すグラフ中Q、Do以上の状態でば、蒸発器Eの圧力が
高くなっている。このため、吸入絞り弁Fの蒸発器E側
の吸入絞り前圧力Peと、大気圧力室34内の大気圧に
ばね35の付勢力を加算した圧力との間に大きな圧力差
が生じ、この圧力差によりスプール弁33が大きく開い
た状態となり、吸入管路31の吸入フランジ7側の吸入
絞り後圧力Psと、蒸発器E側の吸入絞り前圧力Peと
はほぼ同一の圧力状態となる。
When the cooling load in the vehicle interior is large, that is, when Q and Do in the graph shown in FIG. 5 are exceeded, the pressure in the evaporator E is high. Therefore, a large pressure difference occurs between the suction throttle pressure Pe of the suction throttle valve F on the evaporator E side and the pressure obtained by adding the biasing force of the spring 35 to the atmospheric pressure in the atmospheric pressure chamber 34, and this pressure The difference causes the spool valve 33 to be in a wide open state, and the post-intake throttling pressure Ps on the suction flange 7 side of the suction pipe 31 and the suction pre-throttling pressure Pe on the evaporator E side become approximately the same pressure state.

そして、吸入絞り前圧力Peは導圧通路47を介してコ
ントロールバルブGの絞り前圧力室43内に、又、吸入
絞り後圧力Psは導圧通路46を介して絞り後圧力室4
4内にそれぞれ送り込まれ、前述したように吸入絞り前
後の圧力Pe、Psは、はぼ同一であるため、スプール
弁39はばね45によってシール弁41を開放する方向
へ付勢され、小径ロッド部39bによってシール弁41
がばね48の付勢力に抗して押し開かれる。同シール弁
41が押し開かれて導圧通路50と導圧通路52とが連
通状態となり、吐出管路32内の吐出圧力が導圧通路5
0、ボート40.小径孔部38b、導圧通路52.49
の各部を経て圧力作用室29に送り込まれる。そうする
と、弁体28はフロントサイドプレート2方向へ押圧さ
れる。すなわち、第1図に示ずように弁体2Bの背面に
作用する吐出圧力が同弁体28の前面に作用する吸入圧
力(圧縮室17における吸入圧力+ばね30の付勢力)
を上回ってバイパス通路26を閉鎖し、100%容量運
転となる。
The suction pre-throttling pressure Pe enters the pre-throttling pressure chamber 43 of the control valve G via the pressure guiding passage 47, and the suction post-throttling pressure Ps passes through the pressure guiding passage 46 into the post-throttling pressure chamber 4.
As mentioned above, the pressures Pe and Ps before and after the suction throttle are almost the same, so the spool valve 39 is biased by the spring 45 in the direction of opening the seal valve 41, and the small diameter rod part Seal valve 41 by 39b
is pushed open against the biasing force of the spring 48. The seal valve 41 is pushed open and the pressure guiding passage 50 and the pressure guiding passage 52 are brought into communication, and the discharge pressure in the discharge pipe line 32 is reduced to the pressure guiding passage 50.
0, boat 40. Small diameter hole 38b, pressure guiding passage 52.49
It is fed into the pressure action chamber 29 through various parts. Then, the valve body 28 is pressed toward the front side plate 2. That is, as shown in FIG. 1, the discharge pressure acting on the back surface of the valve body 2B is equal to the suction pressure acting on the front surface of the valve body 28 (suction pressure in the compression chamber 17 + biasing force of the spring 30).
, the bypass passage 26 is closed and 100% capacity operation is achieved.

そして、上記のような100%容量運転が一定時間継続
されることにより、車室内の冷房負荷は徐々に小さくな
り、第5図に示すグラフ中Q、ω以下の状態となる。こ
れにより蒸発器Eにおける圧力も徐々に低下するが、こ
のように蒸発器Eの圧力が低下すると、吸入絞り弁Fの
吸入絞り前圧力Paと、大気圧力室34内の大気圧にば
ね35の付勢力を加算した圧力との間に生ずる圧力差が
徐々に小さくなり、スプール弁33の開き量が徐々に小
さくなる。これに伴い吸入管路3Iにおいて吸入絞り前
圧力Peと吸入絞り後圧力Psとの間に差圧ΔPが生じ
、その差圧ΔPが徐々に大きくなる。この結果、コント
ロールパルプGのそれまで絞り前圧力室43方向に付勢
された状態にあったスプール弁39が、ばね45の付勢
力に抗して絞り後圧力室44方向へ徐々に後退する。そ
して、小径ロッド部39bによって開かれた状態にあっ
たボート40はシール弁41によって閉塞され、両導圧
通路50.52間が遮断される。このように吐出管路3
2側のシール弁41が閉じられても、吸入管路31例の
シール弁41は直ぐには開放されず、一時期閉じられた
ままの状態となる。この両シール弁41.41が閉じら
れている状態では、弁体28はその背面側を前記吐出圧
力により付勢状態に保持される。従って、車室内の冷房
負荷が徐々に減少し、吸入管路31において吸入絞り前
圧力Paと吸入絞り後圧力Psとの間に生ずる差圧ΔP
が徐々に大きくなる状態、つまり第5図に示すグラフ中
、Q4oo以下にある状態では100%容量運転が維持
される。
Then, by continuing the 100% capacity operation as described above for a certain period of time, the cooling load in the vehicle interior gradually decreases to a state below Q and ω in the graph shown in FIG. As a result, the pressure in the evaporator E gradually decreases, but when the pressure in the evaporator E decreases in this way, the pre-intake throttle pressure Pa of the suction throttle valve F and the atmospheric pressure in the atmospheric pressure chamber 34 are affected by the spring 35. The pressure difference between the pressure and the pressure added to the biasing force gradually decreases, and the amount of opening of the spool valve 33 gradually decreases. Accordingly, a pressure difference ΔP is generated between the suction throttle pre-throttle pressure Pe and the suction throttle post-throttle pressure Ps in the suction pipe 3I, and the pressure difference ΔP gradually increases. As a result, the spool valve 39 of the control pulp G, which had been biased toward the pre-squeezing pressure chamber 43, gradually retreats toward the post-squeezing pressure chamber 44 against the biasing force of the spring 45. Then, the boat 40, which had been opened by the small diameter rod portion 39b, is closed by the seal valve 41, and the two pressure impulse passages 50, 52 are cut off. In this way, the discharge pipe 3
Even if the seal valve 41 on the second side is closed, the seal valve 41 on the suction pipe 31 is not immediately opened and remains closed for a period of time. When both seal valves 41, 41 are closed, the back side of the valve body 28 is kept in a biased state by the discharge pressure. Therefore, the cooling load in the vehicle interior gradually decreases, and a differential pressure ΔP occurs between the suction throttle pre-throttling pressure Pa and the suction post-throttling pressure Ps in the suction pipe 31.
100% capacity operation is maintained in a state in which Q gradually increases, that is, in a state below Q4oo in the graph shown in FIG.

そして、車室内の冷房負荷がさらに小さくなって吸入管
路31における前記差圧ΔPが設定値を上回った状態、
すなわち第5図に示すグラフ中、冷房負荷がQd 、差
圧ΔPがΔPdになると、吸入管路31側のシール弁4
1が小径ロッド部39bにより押し開かれる。そして、
導圧通路46と圧力作用室29とが連通されると、吸入
管路31における吸入絞り後圧力Psは導圧通路46、
絞り後圧力室44、小径孔部38b、ボート40、及び
導圧通路49の各部を経て圧力作用室29に送り込まれ
る。そして、吸入絞り後圧力Psは弁体28の前面側に
作用する圧縮室17内の圧力以下の状態になるため、弁
体28ばばね30によりバイパス通路26を開放する方
向に移動される。
Then, a state in which the cooling load in the vehicle interior is further reduced and the differential pressure ΔP in the suction pipe 31 exceeds the set value;
That is, in the graph shown in FIG. 5, when the cooling load becomes Qd and the differential pressure ΔP becomes ΔPd, the seal valve 4 on the suction pipe 31 side
1 is pushed open by the small diameter rod portion 39b. and,
When the pressure guiding passage 46 and the pressure action chamber 29 are communicated with each other, the suction throttled pressure Ps in the suction pipe line 31 is reduced to the pressure guiding passage 46,
After throttling, it is fed into the pressure action chamber 29 through the pressure chamber 44, the small diameter hole 38b, the boat 40, and the pressure guiding passage 49. Since the suction throttling pressure Ps becomes lower than the pressure in the compression chamber 17 acting on the front side of the valve body 28, the valve body 28 is moved by the spring 30 in the direction of opening the bypass passage 26.

第3図に示すように、バイパス通路26が開かれると、
小容量運転状態となる。
As shown in FIG. 3, when the bypass passage 26 is opened,
It enters a small capacity operation state.

小容量運転に切換えられることにより、冷房負荷はその
ままの状態で差圧ΔPが小さくなる、つまり第5図に示
すグラフ中冷房負荷がQdのまま差圧ΔPがΔPdより
ΔP1 に減少し、コントロールバルブGのスプール弁
39は再びばね45の付勢力により絞り前圧力室43側
に移動し、第4図に示すように吸入管路31側のシール
弁41が閉じられる。このとき、両シール弁41.41
が閉じられているため、圧力作用室29は前記吸入圧力
に保持され、弁体28はフロントサイドプレート2から
離間状態に保持される。そして、さらに冷房負荷は小さ
くなる。
By switching to small capacity operation, the differential pressure ΔP becomes smaller while the cooling load remains the same. In other words, the differential pressure ΔP decreases from ΔPd to ΔP1 in the graph shown in FIG. 5 while the cooling load remains Qd, and the control valve The G spool valve 39 is again moved toward the pre-throttling pressure chamber 43 by the urging force of the spring 45, and the seal valve 41 on the suction pipe line 31 side is closed as shown in FIG. At this time, both seal valves 41.41
is closed, the pressure chamber 29 is maintained at the suction pressure, and the valve body 28 is maintained apart from the front side plate 2. Then, the cooling load becomes even smaller.

一方、冷房負荷が最小(Qmln)の状態で小容量運転
されている状態において、冷房負荷が大きくなるのに伴
い差圧ΔPが徐々に小さくなるのであるが、第5図のグ
ラフに示すように冷房負荷がQd0まで増大した状態で
は両圧力室43.44間の差圧ΔPは、はぼOの状態(
ΔPo)となり、絞り前圧力室43側のシール弁41が
押し開かれ、吐出管路32と導圧通路49とが連通状態
となって圧力作用室29に対して吐出圧力が送り込まれ
、第1図に示すように小容量運転から100%容量運転
に切換えられる。
On the other hand, when the cooling load is at its minimum (Qmln) and the air conditioner is operated at a small capacity, the differential pressure ΔP gradually decreases as the cooling load increases, as shown in the graph of Figure 5. When the cooling load increases to Qd0, the differential pressure ΔP between the pressure chambers 43 and 44 is almost O (
ΔPo), the seal valve 41 on the pre-throttling pressure chamber 43 side is pushed open, the discharge pipe line 32 and the pressure guiding passage 49 are brought into communication, and the discharge pressure is sent to the pressure action chamber 29. As shown in the figure, the small capacity operation is switched to 100% capacity operation.

この場合、冷房負荷がQd0のまま100%容量運転に
切換えられると、差圧ΔPがΔPoからΔPユに増大し
、スプール弁39が絞り後圧力室44側に後退して絞り
前圧力室43側のシール弁41が閉じられる。そして、
両シール弁、11.41がともに閉じられているため、
圧力作用室29は吐出圧力状態に保持され、100%容
量運転が維持される。
In this case, when switching to 100% capacity operation with the cooling load Qd0, the differential pressure ΔP increases from ΔPo to ΔPu, the spool valve 39 retreats to the post-throttling pressure chamber 44 side, and the spool valve 39 retreats to the pre-throttling pressure chamber 43 side. The seal valve 41 of is closed. and,
Since both seal valves, 11.41, are closed,
The pressure application chamber 29 is maintained at the discharge pressure state, and 100% capacity operation is maintained.

なお、第5図のグラフ中、Qlooは圧縮隠Aが100
%容M運転状態にあり、かつ、吸入絞り前圧力Pe−吸
入絞り後圧力Ps一般定圧定圧力oの状態での冷房能力
、Q5oは圧縮機へが小容量運転状態にあり、かつ、吸
入絞り前圧力Pe −吸入絞り後圧力Ps一般定圧定圧
力oの状態での冷房能力を示す。また、設定圧力Peo
はスプール弁が全開時から閉鎖方向に作動する直前の圧
力を示す。
In addition, in the graph of Figure 5, Qloo has a compressed hidden A of 100.
The cooling capacity is Q5o when the compressor is in a small capacity operation state and the suction throttle pressure is Pe - the pressure after the suction throttle is Ps general constant pressure constant pressure o. Front pressure Pe - Post-suction throttling pressure Ps Shows the cooling capacity in a state of general constant pressure and constant pressure o. In addition, the set pressure Peo
indicates the pressure just before the spool valve operates in the closing direction from when it is fully open.

次に第2の実施例を第8図について説明すると、コント
ロールバルブGのスプール弁39の大径円盤部39aを
挾んでその両側に形成される絞り前圧力室43′、絞り
後圧力室44の内、絞り後圧力室44は導圧通路46に
より吸入絞り弁Fの吸入管路31に連通され、絞り前圧
力室43′にばばね45が介装され、かつ、導圧通路4
7′を介して直接大気と連通されている。
Next, the second embodiment will be explained with reference to FIG. 8. A pre-throttling pressure chamber 43' and a post-throttling pressure chamber 44 are formed on both sides of the large-diameter disk portion 39a of the spool valve 39 of the control valve G. The post-throttling pressure chamber 44 is connected to the suction pipe 31 of the suction throttle valve F through a pressure guiding passage 46, and a spring 45 is interposed in the pre-throttling pressure chamber 43'.
It is in direct communication with the atmosphere via 7'.

この実施例においては、コントロールバルブGの絞り後
圧力室44の圧力、すなわち吸入管路31における絞り
後圧力Psと、絞り前圧力室43′の圧力、すなわち大
気圧にばね45の付勢力を加算した圧力との間に生ずる
差圧ΔPの変化を介して上記第1の実施例と同様に小容
量運転及び100%容量運転の切換えを行なうことがで
きる。
In this embodiment, the biasing force of the spring 45 is added to the pressure in the post-throttling pressure chamber 44 of the control valve G, that is, the post-throttling pressure Ps in the suction pipe 31, and the pressure in the pre-throttling pressure chamber 43', that is, atmospheric pressure. As in the first embodiment, it is possible to switch between small capacity operation and 100% capacity operation through a change in the differential pressure ΔP generated between the two pressures.

次に、この発明をスクロール型圧縮機に具体化した第3
の実施例を第9.10図について説明すると、センタハ
ウジング61の両端部にはフロントハウジング62.リ
ヤハウジング63が一体的に設けられている。
Next, the third embodiment of this invention is a scroll compressor.
The embodiment will be described with reference to FIGS. 9 and 10. At both ends of the center housing 61, there are front housings 62. A rear housing 63 is integrally provided.

フロントハウジング62には回転軸64が回転可能に支
承され、同回転軸64の内端部には偏心軸65が連結さ
れており、この偏心軸65上には可動スクロール部材6
6が自転防止機構により公転のみ可能に装着されている
A rotary shaft 64 is rotatably supported on the front housing 62, and an eccentric shaft 65 is connected to the inner end of the rotary shaft 64. A movable scroll member 6 is mounted on the eccentric shaft 65.
6 is mounted so that it can only revolve due to an anti-rotation mechanism.

一方、リヤハウジング63の内周面には固定スクロール
部材67が装着され、両スクロール部材66.67は円
板状の基板66a、67aと、それらの前面に形成され
、互いに常時2箇所以」二で接触するうず巻部66b、
67bとにより構成されている。前記リヤハウジング6
3の外周部には吸入室68が、中央部には吐出室69が
それぞれ区画形成されている。また、固定スクロール部
材67の基板67aには2箇所に吸入通路70が貫設さ
れるとともに、前記基板67aには吐出室69と圧縮室
71とを連通ずる吐出iJl路72が貫設され、吐出弁
73及び弁理え74が取付けられている。同じく前記基
板67aには圧縮室71と吸入室68とを連通ずる2つ
のバイパス通路75 (1つでも可)が形成され、両通
路75と対応して前記第1の実施例で示した開閉弁Bが
それぞれ設けられている。
On the other hand, a fixed scroll member 67 is attached to the inner circumferential surface of the rear housing 63, and both scroll members 66 and 67 are formed on disk-shaped substrates 66a and 67a and their front surfaces, and are always connected to each other at two or more locations. a spiral portion 66b in contact with the
67b. The rear housing 6
A suction chamber 68 and a discharge chamber 69 are defined in the center and the outer circumference of the pump 3, respectively. Further, suction passages 70 are provided in two places through the base plate 67a of the fixed scroll member 67, and a discharge iJl passage 72 is provided through the base plate 67a to communicate the discharge chamber 69 and the compression chamber 71. A valve 73 and a valve holder 74 are attached. Similarly, two bypass passages 75 (or one is possible) are formed in the substrate 67a to communicate the compression chamber 71 and the suction chamber 68, and the on-off valves shown in the first embodiment correspond to both passages 75. B are provided respectively.

この実施例も前述した実施例と同様に、吸入室68内の
バイパス通路75が開閉され、冷房負荷に応じて冷房能
力の自動切換が行なわれる。
In this embodiment, as in the previously described embodiment, the bypass passage 75 in the suction chamber 68 is opened and closed, and the cooling capacity is automatically switched in accordance with the cooling load.

なお、前記第1の実施例ではバイパス通路を2つ備えた
ボッシュタイプの可変容量型ベーン圧縮機について述べ
たが、バイパス通路を1つだけ備えたヨークタイプの可
変容量型ベーン圧縮機に実施してもよい。
In the first embodiment, a Bosch type variable displacement vane compressor with two bypass passages was described, but the present invention was applied to a yoke type variable displacement vane compressor with only one bypass passage. It's okay.

発明の効果 以上詳述したように、この発明によれば急加速等、冷房
負荷以外の要因に基づく吸入圧力と吐出圧力との差圧変
動には影響されず、冷房負荷による圧力変化に対してバ
イパス通路の開閉を行ない、正確、かつ、安定した容量
の切替え制御を行なうことができる優れた効果がある。
Effects of the Invention As detailed above, according to the present invention, it is not affected by differential pressure fluctuations between suction pressure and discharge pressure caused by factors other than cooling load, such as sudden acceleration, and is not affected by pressure changes due to cooling load. This has the excellent effect of opening and closing the bypass passage and performing accurate and stable capacity switching control.

【図面の簡単な説明】[Brief explanation of drawings]

、  第1図〜第7図はこの発明を具体化した第1の実
施例を示し、第1図は冷凍回路に組込まれた圧縮機、吸
入絞り弁及びコントロールバルブ各部の断面図、第2図
は第1図に示す圧縮機のX−X線断面図、第3.4図は
作用状態を示す各部の断面図、第5図〜第7図は吸入絞
り後圧力の変化を示すグラフ、第8図は第2の実施例を
示し、冷凍回路に組込まれた圧縮機、吸入絞り弁及びコ
ントロールバルブ各部の断面図、第9図は第3の実施例
を示し、冷凍回路に組込まれた圧縮機、吸入絞り弁及び
コントロールバルブ各部の断面図、第10図は第9図に
示す圧縮機のY−Y線断面図である。
, Fig. 1 to Fig. 7 show a first embodiment embodying the present invention, Fig. 1 is a sectional view of the compressor, suction throttle valve, and control valve incorporated in the refrigeration circuit, and Fig. 2 is a sectional view of each part. is a sectional view taken along the line X-X of the compressor shown in Fig. 1, Fig. 3.4 is a sectional view of each part showing the operating state, Figs. 5 to 7 are graphs showing changes in pressure after suction throttling, and Fig. Figure 8 shows the second embodiment, and is a sectional view of the compressor, suction throttle valve, and control valve incorporated in the refrigeration circuit, and Figure 9 shows the third embodiment, which shows the compressor incorporated in the refrigeration circuit. 10 is a sectional view taken along the line Y--Y of the compressor shown in FIG. 9.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮室を回転移動させて吸入した流体を圧縮し、吐
出する圧縮機の圧縮室と吸入室とを区画する隔壁にバイ
パス通路を設けるとともに、前記吸入室には付勢手段に
より常には前記バイパス通路を開放する方向へ付勢され
る弁体と、同弁体の背面側に設けた圧力作用室とにより
開閉弁を形成し、さらに蒸発器から圧縮機に至る吸入管
路には蒸発器の蒸発圧力を設定値以上に保持する絞り弁
を設けた可変容量回転式圧縮機において、大径孔部と同
大径孔部より両方向に延びる一対の小径孔部とからなる
嵌挿孔内に、大径円盤部と同大径円盤部より両方向に延
びる一対の小径ロッド部とからなるスプール弁を嵌挿し
、同スプール弁の上下に形成した絞り前圧力室及び絞り
後圧力室のうち、絞り後圧力室を吸入管路の絞り後部分
と連通させるとともに、絞り前圧力室を吸入管路の絞り
前部分若しくは大気と連通させ、絞り後圧力室側の小径
孔部を導圧通路を介して前記圧力作用室と、絞り前圧力
室側の小径孔部を導圧通路を介して吐出管路とそれぞれ
連通させるとともに、両導圧通路を連通させ、さらに常
には前記両小径孔部を閉塞し、かつ、前記小径ロッド部
により選択的に押し開かれるシール弁を進退自在に設け
た可変容量回転式圧縮機の容量制御機構。
1. A bypass passage is provided in a partition wall that partitions a compression chamber and a suction chamber of a compressor that rotationally moves a compression chamber to compress and discharge suctioned fluid, and the suction chamber is always provided with a bypass passage by a biasing means. A valve body that is biased in the direction of opening the passage and a pressure chamber provided on the back side of the valve body form an on-off valve, and a suction pipe from the evaporator to the compressor is connected to the evaporator. In a variable capacity rotary compressor equipped with a throttle valve that maintains the evaporation pressure above a set value, in a fitting hole consisting of a large diameter hole and a pair of small diameter holes extending in both directions from the large diameter hole, A spool valve consisting of a large-diameter disc part and a pair of small-diameter rod parts extending in both directions from the large-diameter disc part is inserted into the spool valve. The pressure chamber is communicated with the post-throttling part of the suction pipe, and the pre-throttling pressure chamber is made to communicate with the pre-throttling part of the suction pipe or the atmosphere, and the small diameter hole on the post-throttling pressure chamber side is connected to the The pressure action chamber and the small-diameter hole on the pre-throttling pressure chamber side are communicated with the discharge pipe via the pressure passage, and both pressure passages are communicated with each other, and both of the small-diameter holes are always closed, Further, a capacity control mechanism for a variable capacity rotary compressor is provided with a seal valve that is selectively pushed open by the small diameter rod portion and can be moved back and forth.
JP18620185A 1985-08-24 1985-08-24 Volume control mechanism for variable delivery compressor Pending JPS6245993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18620185A JPS6245993A (en) 1985-08-24 1985-08-24 Volume control mechanism for variable delivery compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18620185A JPS6245993A (en) 1985-08-24 1985-08-24 Volume control mechanism for variable delivery compressor

Publications (1)

Publication Number Publication Date
JPS6245993A true JPS6245993A (en) 1987-02-27

Family

ID=16184145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18620185A Pending JPS6245993A (en) 1985-08-24 1985-08-24 Volume control mechanism for variable delivery compressor

Country Status (1)

Country Link
JP (1) JPS6245993A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152256A (en) * 1988-12-30 1992-10-06 Yamaha Hatsudoki Kabushiki Kaisha Air-liquid cooled engine
WO2006014086A1 (en) * 2004-08-06 2006-02-09 Lg Electronics Inc. Capacity variable type rotary compressor and driving method thereof
JP2008508473A (en) * 2004-08-06 2008-03-21 エルジー エレクトロニクス インコーポレイティド Volume variable type rotary compressor, method of operating the same, and method of operating an air conditioner including the same
WO2008123171A1 (en) * 2007-03-28 2008-10-16 Daikin Industries, Ltd. Mechanism for controlling and operating compressor capacity and air conditioner having the same
JP2012247097A (en) * 2011-05-26 2012-12-13 Panasonic Corp Refrigerating cycle apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152256A (en) * 1988-12-30 1992-10-06 Yamaha Hatsudoki Kabushiki Kaisha Air-liquid cooled engine
WO2006014086A1 (en) * 2004-08-06 2006-02-09 Lg Electronics Inc. Capacity variable type rotary compressor and driving method thereof
JP2008508473A (en) * 2004-08-06 2008-03-21 エルジー エレクトロニクス インコーポレイティド Volume variable type rotary compressor, method of operating the same, and method of operating an air conditioner including the same
JP2008509327A (en) * 2004-08-06 2008-03-27 エルジー エレクトロニクス インコーポレイティド Variable displacement rotary compressor and method of operating the same
US7976289B2 (en) 2004-08-06 2011-07-12 Lg Electronics Inc. Capacity variable type rotary compressor and driving method thereof
WO2008123171A1 (en) * 2007-03-28 2008-10-16 Daikin Industries, Ltd. Mechanism for controlling and operating compressor capacity and air conditioner having the same
JP2012247097A (en) * 2011-05-26 2012-12-13 Panasonic Corp Refrigerating cycle apparatus

Similar Documents

Publication Publication Date Title
US4566863A (en) Rotary compressor operable under a partial delivery capacity
US7195470B2 (en) Scroll compressor having a supply passage connecting the back pressure chamber to discharge pressure region and passing a clearance at a sliding portion
KR900003099B1 (en) Variable displacement vane compressor
JPS62674A (en) Capacity controller for variable angle swing swash type variable capacity compressor
US5015161A (en) Multiple stage orbiting ring rotary compressor
JPS6245993A (en) Volume control mechanism for variable delivery compressor
JPS6149189A (en) Variable displacement type rotary compressor
JPS6291680A (en) Variable delivery type scroll compressor
JPH07293466A (en) Compressor
JPH0425440B2 (en)
JPH0377394B2 (en)
JPH0353034Y2 (en)
JPH0424559B2 (en)
JPH0437277Y2 (en)
JPS63143399A (en) Variable displacement type vane compressor
JPH09329094A (en) Vane type compressor
JPS63140883A (en) Variable-displacement type vane compressor
JPS62178796A (en) Vane type compressor
JPH03225099A (en) Variable displacement compressor
JPH0229879B2 (en) KAHENYORYOATSUSHUKUKI
JPS6246164A (en) Variable displacement compressor
JPS62265491A (en) Vane type compressor
JPS59158397A (en) Start load reduction device of compressor
JPH02238190A (en) Capacity changeable scroll type compressor
JPS6316186A (en) Vane type compressor