JPS5968593A - Variable capacity type compressor - Google Patents

Variable capacity type compressor

Info

Publication number
JPS5968593A
JPS5968593A JP17936482A JP17936482A JPS5968593A JP S5968593 A JPS5968593 A JP S5968593A JP 17936482 A JP17936482 A JP 17936482A JP 17936482 A JP17936482 A JP 17936482A JP S5968593 A JPS5968593 A JP S5968593A
Authority
JP
Japan
Prior art keywords
pressure
chamber
compression
spool
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17936482A
Other languages
Japanese (ja)
Inventor
Kunifumi Gotou
後藤 邦文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK, Toyoda Automatic Loom Works Ltd filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP17936482A priority Critical patent/JPS5968593A/en
Publication of JPS5968593A publication Critical patent/JPS5968593A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/16Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using lift valves

Abstract

PURPOSE:To make the titled compressor start operation smoothly preventing liquid compression from occuring by a method wherein, when the titled compressor is started, a spool in a control valve mechanism is provided so that it is energized in the direction to open a bypass hole. CONSTITUTION:When a compressor is stopped, a spool 19 in a control valve mechanism 12 is in a status wherein the spool 19 is energized in the direction to a high pressure chamber 20 through a spring 22 inserted in a low pressure chamber 21 i.e. a bypass hole 11 is opened. In such a status, a rotor 5 may be rotated by means of transmitting the driving force of an engine to a driving shaft 4. Then a part of refrigerant fed in the terminal direction along the rotary direction of the rotor 5 in a compression chamber 6 is flown into an inlet chamber 9 side through the bypass hole 11. Through these procedures, the compressor may start operation smoothly relieving the liquid compression in case the liquefied refrigerant gas remains in an inlet pipe.

Description

【発明の詳細な説明】 本発明は室内における冷房負荷の変化にともない圧縮容
量を自動的に制御することの出来る圧縮容量可変型の圧
縮機に関するものである。更に具体的には圧縮室内の吸
入行程における圧力(吸入行程圧力Prjと、圧縮室内
の圧縮行程における圧力(圧縮行程圧力PH)との間に
生ずる差圧の変化を利用して制御弁を自動開閉可能に設
け、同制御弁の自動開閉を介して低冷房負荷時において
圧縮室中の圧縮途中にある冷媒ガスの一部を吸入室側に
逃すことによって圧縮室におけるその圧縮容量を自動的
に調整することが出来る様に設けられる容量可変型圧縮
機のその制御弁機構の改良に関するものであって、その
制御機能を高めることを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable compression capacity compressor that can automatically control compression capacity in accordance with changes in indoor cooling load. More specifically, the control valve is automatically opened and closed by using the change in the differential pressure that occurs between the pressure in the suction stroke in the compression chamber (suction stroke pressure Prj) and the pressure in the compression stroke in the compression chamber (compression stroke pressure PH). By automatically opening and closing the control valve, the compression capacity in the compression chamber is automatically adjusted by releasing a portion of the refrigerant gas that is in the middle of compression in the compression chamber to the suction chamber during low cooling loads. The present invention relates to an improvement of the control valve mechanism of a variable capacity compressor that is installed to enable the control of the variable capacity compressor, and its purpose is to improve its control function.

従来室内における冷房負荷の変化にともない圧縮容量を
自動的に制御するようにした容量可変型の圧縮機として
は、吸入室内の圧力と、圧縮室内の圧力間に生ずる差圧
を利用する方法、即ち吸入室内の圧力と圧縮室内の圧力
との間に生ずる差圧を比較した場合においで、吸入室内
の圧力の高さに比例してその差圧の変化が大きくなるこ
とを利用して、制御弁を自動開閉させることによりその
圧縮容量を調整する方法(特開昭57−122191号
)が先に提案されている。
Conventionally, variable capacity compressors that automatically control the compression capacity as the cooling load changes indoors have been developed using a method that utilizes the differential pressure that occurs between the pressure in the suction chamber and the pressure in the compression chamber. When comparing the differential pressure that occurs between the pressure in the suction chamber and the pressure in the compression chamber, the change in the differential pressure increases in proportion to the height of the pressure in the suction chamber. A method of adjusting the compression capacity by automatically opening and closing the compressor (Japanese Unexamined Patent Publication No. 122191/1982) has previously been proposed.

同提案はライナー(シリンダーブロック)、前後両サイ
ドプレート、ローターによって囲繞される部分に形成さ
れる作動空間(圧縮室)と、吸入室間をつなぐ連通路を
設け、同連通路に対しては同連通路の開閉を制御する開
閉弁を設けるに同開閉弁は連通路のポートをふさぐ弁体
、同弁体を開き方向に付勢するばね、弁体の支持板、開
き側と閉じ側に区画するベローズフラムにょシ構成され
、弁体はばねの作用により常時は連通路のポートを開く
方向に付勢された状態にある様に設ゆ、る一方、ベロー
ズフラムを間に存してその開き側には吸入室内の圧力が
、又その閉じ側には作動空間(圧縮室)内の圧力(吸入
室内の圧力の約3倍程度)が夫々印加される様に設けら
れ、吸入室内の圧力と作動空間(圧縮室)内の圧力との
間に生ずる差圧が上記ばねの設定圧を上回った状態にお
いてベローズフラムの閉じ方向への移動を介して弁体が
連通路を自動的に閉じる作用が得られる様に設けられて
いる。
The proposal is to create a communication passage that connects the working space (compression chamber) formed in the area surrounded by the liner (cylinder block), front and rear side plates, and rotor, and the suction chamber. An on-off valve that controls the opening and closing of the communication passage is provided.The on-off valve consists of a valve body that blocks the port of the communication passage, a spring that biases the valve body in the opening direction, a support plate for the valve body, and a partition into an open side and a closed side. The valve element is normally biased in the direction of opening the port of the communication passage by the action of a spring, while the bellows frame exists between the valve body and the valve body to prevent the opening of the port. The pressure inside the suction chamber is applied to the side, and the pressure inside the working space (compression chamber) (approximately three times the pressure inside the suction chamber) is applied to the closed side. When the pressure difference between the pressure inside the working space (compression chamber) exceeds the set pressure of the spring, the valve body automatically closes the communication passage by moving the bellows flam in the closing direction. It is set up so that you can get it.

しかし乍ら上記の様に吸入室内の圧力と、圧縮室内の圧
力との間に生ずる差圧の変化により開閉弁を制御する方
法にあっては、吸入室から圧縮室へ入るときの圧力降下
により、吸入圧に対する圧縮室内圧力が理論値より低め
になってしまう。従ってばねの付勢力に対向する向きの
圧力が小さくなって差圧が小さくな9、冷房負荷が設定
値まで下っていなくても、前記連通路が開いてしまうこ
とになる。これは高速回転はど起きやすく、車両運転中
ギヤシフト等をする場合、頻繁に容量切替えが行なわれ
、冷媒ガス流れが不安定になる可能性がある。
However, in the method described above in which the on-off valve is controlled by changes in the differential pressure that occurs between the pressure in the suction chamber and the pressure in the compression chamber, the pressure drop when entering the compression chamber from the suction chamber , the pressure inside the compression chamber relative to the suction pressure will be lower than the theoretical value. Therefore, the pressure in the direction opposite to the biasing force of the spring becomes small, and the differential pressure becomes small9. Even if the cooling load has not decreased to the set value, the communication passage opens. This is more likely to occur at high speed rotations, and when gear shifting or the like is performed while the vehicle is running, the capacity is frequently changed and the flow of refrigerant gas may become unstable.

本発明は上記の様な従来の実情に鑑みてその改善を試み
たものであって、圧縮室内における吸入行程中の圧力(
吸入行程圧力PL)と、圧縮行程中の圧力(圧縮行程圧
力PH)との間に生ずる差圧の変化により開閉弁の制御
を行なう様にすることにより、開閉弁の制御機能をより
一そう向上させることが出来る様にしたことをその特徴
とするものである。更に具体的には吸入管路より吸入室
内に送り込まれた冷媒ガスはサイドグレートに開口され
る吸入孔を経て圧縮室内に送り込まれるのであるが、同
冷媒ガスが吸入室内より吸入孔を経て圧縮室内に送9込
まれる過程においてその圧力が第6図に示す様に若干低
下し、圧縮室の吸入行程側に吸入室内よシも低い圧力状
態が得られること、即ち吸入室内の圧力psと圧縮室内
の圧縮行程中の圧力PHとの間に得られる差圧と、圧縮
室内の吸入行程中の圧力PLと圧縮室内の圧縮行程中の
圧力pHとの間に得られる差圧を比較した場合において
PHP3  < PH−PL の不等式が成立することに鑑みてその改善を試みたもの
であって、上記従来方法と比較してより確実な開閉弁の
制御を得ることが出来る様にしたことをその特徴とする
ものである0 そして本発明の要旨は吸入室と圧縮室間に介在するサイ
ドプレートに同吸入室と圧縮室を連通ずる如くバイパス
孔を貫設し、同バイパス孔には同バイパス孔に対して直
交する方向に向けてスプールを開閉自在に設けるに、同
スプールは常時はバイパス孔を開放する方向に向けて付
勢された状態にある如く摺動自在に設けるとともに同ス
プールの両側には圧縮室の圧縮行程と連通ずる高圧室と
、圧縮室の吸入行程と連通ずる低圧室を設け、高圧室と
低圧室に生ずる圧力差を介してスプールを閉じ方向に移
動させる様に構成したことにある。
The present invention is an attempt to improve the conventional situation as described above, and the pressure during the suction stroke in the compression chamber (
By controlling the on-off valve based on changes in the differential pressure that occurs between the suction stroke pressure (PL) and the pressure during the compression stroke (compression stroke pressure PH), the control function of the on-off valve is further improved. It is characterized by the fact that it is possible to do so. More specifically, refrigerant gas is sent into the suction chamber from the suction pipe and is sent into the compression chamber through the suction hole opened in the side grate. As shown in Figure 6, the pressure decreases slightly in the process of being sent to When comparing the differential pressure obtained between the pressure PH during the compression stroke and the pressure PL during the suction stroke in the compression chamber and the pressure PH during the compression stroke in the compression chamber, PHP3 < This is an attempt to improve the inequality PH-PL in view of the fact that it holds true, and its feature is that it is able to obtain more reliable control of the on-off valve compared to the conventional method described above. 0 The gist of the present invention is that a bypass hole is provided through a side plate interposed between a suction chamber and a compression chamber so as to communicate the suction chamber and compression chamber; The spool is provided so that it can be freely opened and closed in the direction perpendicular to the bypass hole. A high pressure chamber communicating with the compression stroke of the chamber and a low pressure chamber communicating with the suction stroke of the compression chamber are provided, and the spool is configured to move in the closing direction via the pressure difference generated between the high pressure chamber and the low pressure chamber. .

以下に本発明の具体的な実施例を例示の図面について説
明する。
Specific embodiments of the present invention will be described below with reference to illustrative drawings.

第1図乃至第5図に示す各図面において(1)は圧縮機
の外殻を構成するハウジングを示す。同ハウジング(1
)はフロントハウジング (IA)とリヤハウジング 
(IB)により形成され、同フロントハウジング (I
A)にはシリンダーブロック(2)が、又同シリンダー
ブロック(2)を間に挾んでその両側にフロントサイド
プレー)  (3A)とりャサイドプレート(3B)が
内嵌される。シリンダーブロック(2)は前後両端部に
開口部を有口て中空円筒状に形成され、同中空部の内壁
面はシリンダーブロック(2)の外周面と同心円の円筒
状に形成される。同シリンダーブロック(2)の前後両
開口部は上記両サイドプレート(3A) (3B)  
によって遮蔽される。そして両サイドプレー)  (3
A) (ab)  間には駆動軸(4)が横架される。
In each of the drawings shown in FIGS. 1 to 5, (1) indicates a housing that constitutes the outer shell of the compressor. Same housing (1
) are front housing (IA) and rear housing
(IB) and the same front housing (I
In A), a cylinder block (2) is fitted, and front side plates (3A) and catcher side plates (3B) are fitted on both sides of the cylinder block (2) with the cylinder block (2) in between. The cylinder block (2) is formed into a hollow cylindrical shape with openings at both front and rear ends, and the inner wall surface of the hollow portion is formed into a cylindrical shape concentric with the outer peripheral surface of the cylinder block (2). Both the front and rear openings of the cylinder block (2) are connected to the above-mentioned side plates (3A) (3B).
is shielded by and both sides play) (3
A) (ab) A drive shaft (4) is installed horizontally between them.

同駆動軸(4)はシリンダーブロック(2)に対してそ
の中心線を偏寄させて設けられ、同駆動軸(4)にはロ
ータτ(5)が一体向に固着される。四ローター(5)
はシリンダーブロック(2)の内壁面に対してその外周
壁の一部が摺接可能な如く設けられ、同ローター(5)
の外周壁とシリンダーブロック(2)の内壁面間には圧
縮室(6)が形成される。又ローター(5)にはベーン
溝(7)・・が刻設され、各ベーン溝(7)・・・には
ベーン(8)・・が圧縮室(6)に対して出没自在に嵌
挿される。
The drive shaft (4) is provided with its center line offset relative to the cylinder block (2), and a rotor τ (5) is integrally fixed to the drive shaft (4). Four rotors (5)
is provided so that a part of its outer circumferential wall can slide against the inner wall surface of the cylinder block (2), and the rotor (5)
A compression chamber (6) is formed between the outer peripheral wall of the cylinder block (2) and the inner wall surface of the cylinder block (2). Further, vane grooves (7) are formed in the rotor (5), and vanes (8) are fitted into each vane groove (7) so as to be freely retractable into the compression chamber (6). It will be done.

フロントハウジング (IA)とフロントサイドプレー
ト(3A)間には吸入室(9)が設けられ、同吸入室(
9)にはフロントハウジング (IA)側に吸入管路(
図示省略)に接続する吸入口(9)′が設けられる。
A suction chamber (9) is provided between the front housing (IA) and the front side plate (3A).
9) has a suction pipe (
A suction port (9)' is provided which connects to the main body (not shown).

又同フロントサイドプレート(3A)には圧縮室(6)
の一端、即ちローター(5)の回転方向に沿う始端部と
相対応して吸入孔00)が開口される。そして又同フロ
ントサイドプレート (3A)には圧縮室(6)の吸入
行程と圧縮行程の略中間(圧縮行程初期)に位置してバ
イパス孔旧)が貫設される。このとき、バイパス孔をシ
リンダー周面にあけ、スプールをシリンダーブロック内
に設けることも可能である。
Also, the front side plate (3A) has a compression chamber (6).
A suction hole 00) is opened corresponding to one end of the rotor (5), that is, a starting end along the rotational direction of the rotor (5). Further, a bypass hole (formerly known as a bypass hole) is provided through the front side plate (3A), and is located approximately midway between the suction stroke and the compression stroke (early stage of the compression stroke) of the compression chamber (6). At this time, it is also possible to make a bypass hole in the cylinder peripheral surface and provide the spool in the cylinder block.

同バイパス孔(11)は圧縮室(6)と吸入室(9)間
を連通ずる如く設けられ、フロントサイドプレー)  
(3A)内には制御弁機構(12)が上記バイパス孔旧
)と直交する方向に向けて設けられる。(制御弁機構0
2)については後述する。) 一方圧縮室(6)の他端、即ちローター(5)の回転方
向に沿う終端部と相対応する位置にはシリンダーブロッ
ク(2)の一部を切欠いてリヤハウジング(IB)の内
壁面との間に吐出室(13)が形成され、同吐出室(1
3)と圧縮室(6)の終端部間は吐出孔(I4)によっ
て連通される。(15)は同吐出孔(14)を覆う吐出
弁、(16)は同吐出弁0均の開き角度を規制するりテ
ーナーを示す○又すヤハウジング (IB)にはりャザ
イドプレー)  (3B)との間に潤滑油の分離室07
)が形成される。
The bypass hole (11) is provided so as to communicate between the compression chamber (6) and the suction chamber (9).
(3A), a control valve mechanism (12) is provided in a direction perpendicular to the bypass hole (old). (Control valve mechanism 0
2) will be discussed later. ) On the other hand, at the other end of the compression chamber (6), that is, at a position corresponding to the terminal end along the rotational direction of the rotor (5), a part of the cylinder block (2) is cut out so as to be connected to the inner wall surface of the rear housing (IB). A discharge chamber (13) is formed between the discharge chambers (13) and 1.
3) and the terminal end of the compression chamber (6) are communicated through a discharge hole (I4). (15) is a discharge valve that covers the discharge hole (14), and (16) is a retainer that regulates the opening angle of the discharge valve. Lubricating oil separation chamber 07 between
) is formed.

同分離室Q71はりャサイドプレー)  (3B)に開
口する通孔08)を介して上記吐出室αつと連通ずる如
く設けられる。同通孔08)の開口部にはフィルター(
図示省略)が設けられる一方、分離室00内には同フィ
ルターによって分離される潤滑油の溜シ部が設けられる
。そして又同分離室00にはリヤハウジング (IB)
側に吐出管路(図示省略)に接続する吐出孔06)′が
設けられる。
The separation chamber Q71 is provided so as to communicate with the discharge chamber α via a through hole 08) opened in the side chamber (3B). The opening of the through hole 08) has a filter (
(not shown) is provided in the separation chamber 00, and a reservoir portion for lubricating oil to be separated by the filter is provided in the separation chamber 00. Also in the same separation chamber 00 is the rear housing (IB).
A discharge hole 06)' connected to a discharge pipe (not shown) is provided on the side.

前記制御弁機構σ埠にはバイパス孔(11)と相対応し
て同バイパス孔(11)開閉用のスプールOQがバイパ
ス孔(11)に対して直交する方向に向けて摺動自在に
設けられる。そして同スグールO窃の両端部には高圧室
(イ)と低圧室Q1)よシなる圧力室がそれぞれ設けら
れる。低圧室+21)内にははね(イ)が介装され、ス
プール(19)は同ばね(イ)を介して常時は高圧室翰
方向に付勢されてバイパス孔0])を開放する状態にあ
る様に設けられる。そして高圧室(4)からは第1導圧
孔(財)が延設され、その先端部は圧縮室(6)の圧縮
行程中に臨ませるに、同先端部はバイパス孔01)の開
口位置よシも吐出孔(+4)寄シで同バイパス孔(l]
)K比較的近接する位置に開口する如く設けられる。又
低王室(ハ)からは第2導圧孔(財)が延設され、その
先端部は圧縮室(6)の吸入行程中に臨ませるに、同先
端部は吸入孔(10)に比較的近接する位置に開口する
如く設けられる。上記第1導圧孔(イ)及び第2導圧孔
(ハ)は絞り効果を持たせるべく可及的に小径寸法にて
形成される。
In the control valve mechanism σ, a spool OQ for opening and closing the bypass hole (11) is provided in correspondence with the bypass hole (11) so as to be slidable in a direction orthogonal to the bypass hole (11). . Pressure chambers such as a high pressure chamber (a) and a low pressure chamber Q1) are provided at both ends of the same sugur O. A spring (A) is interposed in the low pressure chamber +21), and the spool (19) is normally biased toward the top of the high pressure chamber via the spring (A) to open the bypass hole 0). It is set up as shown in A first pressure guiding hole is extended from the high pressure chamber (4), and its tip faces the compression chamber (6) during the compression stroke, and its tip is located at the opening position of the bypass hole 01). The same bypass hole (l) is also connected to the discharge hole (+4).
)K are provided so as to open relatively close to each other. In addition, a second pressure introducing hole (good) is extended from the lower chamber (c), and its tip faces the compression chamber (6) during the suction stroke, and its tip is compared to the suction hole (10). It is provided so as to open at a position close to the target. The first pressure-conducting hole (a) and the second pressure-conducting hole (c) are formed to have a diameter as small as possible in order to provide a throttling effect.

次にその作用について説明する。Next, its effect will be explained.

圧縮機が停止した状態においては、圧縮機内の各部、即
ち吸入室(9)、圧縮室(6)、吐出室θ■2分離室0
7)は夫々略同圧状態にある。又制御弁機構02におい
てスプールθつはばね(イ)を介して高圧室(4)方向
に向けて付勢された状態、即ちバイパス孔(II)は開
かれた状態にある。
When the compressor is stopped, each part inside the compressor, namely the suction chamber (9), the compression chamber (6), the discharge chamber θ■2 separation chamber 0
7) are in substantially the same pressure state. Further, in the control valve mechanism 02, the spool θ is biased toward the high pressure chamber (4) via the spring (A), that is, the bypass hole (II) is in an open state.

上記の様な状態において電磁クラッチ(図示省略)の接
続操作を介してエンジンの駆動力を駆動軸(4)に対し
て伝達することによシ、ローター(5)が回転する状態
が得られるとともに同ローター(5)の回転を介して各
ベーン溝゛(7)  内に嵌挿される各ベーン(8)・
がその遠心作用により押出されてその先端におけるンー
ル作用が不完今年ら発揮されて回転する状態が得られる
。そして上記各ベーン(8)・の回転を介してエバポレ
ータ(図示省略)より吸入管路を経て吸入室(9)内に
送り込まれた冷媒ガスは吸入孔(10)を経て圧縮室(
6)内に吸引される。圧縮室(6)内に吸引された冷媒
ガスはベーン(8)の回転作用を介して圧縮室(6)内
をその始端部よシ終端部方向に向けて送られる間に次第
に圧縮される。そして圧縮室(6)内をその終端位置迄
送られた冷媒ガスは吐出孔04)、吐出室0■7通孔0
8)5分離室θ′7)を経て吐出孔07)′より吐出管
路内をコンデンサー(図示省略)方向に向けて送り出さ
れる。
In the above state, by transmitting the driving force of the engine to the drive shaft (4) through the connection operation of the electromagnetic clutch (not shown), a state in which the rotor (5) rotates is obtained, and Each vane (8) is inserted into each vane groove (7) through the rotation of the rotor (5).
is extruded by the centrifugal action, and the curl action at the tip is exerted from the incomplete position, resulting in a rotating state. Through the rotation of each of the vanes (8), the refrigerant gas is sent from the evaporator (not shown) through the suction pipe line into the suction chamber (9) through the suction hole (10) and into the compression chamber (
6) It is sucked into the body. The refrigerant gas drawn into the compression chamber (6) is gradually compressed while being sent through the compression chamber (6) from its starting end toward its terminal end through the rotating action of the vane (8). The refrigerant gas sent inside the compression chamber (6) to its terminal position is discharged through the discharge hole 04) and the discharge chamber 0■7 through hole 0.
8) It is sent out through the discharge hole 07)' through the 5 separation chambers 7) in the discharge pipe toward the condenser (not shown).

一方上記の様に圧縮室(6)内をローター(5)の回転
方向に沿って終端部方向に向けて送られる冷媒ガスの一
部はその圧縮途中、即ち圧縮室(5)の吸入孔(10)
寄りの任意の中間位置に開口するバイパス孔0])を経
て吸入室(9)側に向けて流出する。
On the other hand, as mentioned above, a part of the refrigerant gas sent in the compression chamber (6) toward the terminal end along the rotational direction of the rotor (5) is in the middle of compression, that is, in the suction hole (5) of the compression chamber (5). 10)
It flows out toward the suction chamber (9) through a bypass hole 0]) which opens at an arbitrary intermediate position.

この様に冷媒ガスの一部が圧縮途中において吸入室(9
)側に流出することにより、圧縮機の始動時におけるそ
の立上りをスムーズに行なうことが出来るとともにその
起動トルクを軽減することが出来、又圧縮機内及びエバ
ポレータと圧縮機間をつなぐ吸入管路中に冷媒ガスが液
化された状態にて残溜していた場合における液圧縮作用
を緩和することが出来る。
In this way, part of the refrigerant gas is compressed into the suction chamber (9).
) side, it is possible to smoothly start up the compressor when starting, and reduce the starting torque. It is possible to alleviate the liquid compression effect when the refrigerant gas remains in a liquefied state.

そしてローター(5)の回転が繰り返されることにより
圧縮室(6)内の圧縮圧力が次第に高められることとな
るのであるが、この様にして圧縮室(6)内において高
められた圧縮ガスの一部が第]導圧孔(法を経て高圧室
(20)内に送り込まれることによって同高圧室(20
)内の圧力が高められることとなる。
By repeating the rotation of the rotor (5), the compression pressure in the compression chamber (6) is gradually increased, and part of the compressed gas increased in the compression chamber (6) in this way is The high pressure chamber (20) is fed into the high pressure chamber (20) through the first pressure guiding hole (20).
) will be increased.

尚例えば運転開始時等冷房負荷が大きい状態においては
吸入室(9)内の圧力は比較的高く、冷房負荷が減少し
た状態においては」二記とは逆に吸入室(9)内の圧力
は低くなる。そして吸入行程圧力PLと圧縮行程圧力P
Hとの間に生ずる差圧ΔPは吸入室(9)内の圧力が高
くなるのに比例して大きくなることは第6図に示す通り
である〇 しかして上記の様に運絵開始時等室内の冷房負荷が大き
く、従って吸入室(9)内の圧力が高い状態にある場合
においては、吸入行程圧力PLと圧縮行程圧力PHとの
間に生ずる差圧は大きくなる。そしてその差圧がばね(
イ)の設定圧力を上回った状態において、スプール09
)がばね(イ)の付勢圧に抗して低圧室■υ力方向押圧
されて、同スプールθ[相]によシ、バイパス孔O])
をふさぐ状態が得られる。これにより圧縮室(6)内の
冷媒ガスはその一部がバイパス孔(11)を経て吸入室
(9)側に流出することなく、同圧縮室(6)内に送り
込壕れた冷媒ガスはその全てが圧縮されて吐出孔04)
、吐出室032通孔08)5分離室071を経て吐出管
路内をコンデンサ一方向に向けて送り出される。即ち1
00チ運転状態が得られる。
For example, when the cooling load is large, such as at the start of operation, the pressure inside the suction chamber (9) is relatively high, and when the cooling load is reduced, the pressure inside the suction chamber (9) is relatively high. It gets lower. And suction stroke pressure PL and compression stroke pressure P
As shown in Figure 6, the differential pressure ΔP generated between When the indoor cooling load is large and therefore the pressure inside the suction chamber (9) is high, the differential pressure generated between the suction stroke pressure PL and the compression stroke pressure PH becomes large. And that differential pressure is the spring (
b) When the pressure exceeds the set pressure of spool 09
) is pressed in the direction of the low pressure chamber ■υ force against the biasing pressure of the spring (a), and the same spool θ [phase] is pushed, and the bypass hole O])
A state is obtained in which the As a result, part of the refrigerant gas in the compression chamber (6) is sent into the compression chamber (6) without flowing out to the suction chamber (9) through the bypass hole (11). All of them are compressed and the discharge hole 04)
, the discharge chamber 032 through hole 08)5, and the condenser is sent out in one direction through the discharge pipe line through the separation chamber 071. That is, 1
00chi operating state is obtained.

一方室内の冷房負荷が減少し、吸入室(9)内の圧力が
低下するのに伴ない吸入行程圧力PLと圧縮行程圧力P
H間の差圧も小さくなる。そしてその差圧が制御弁機構
Q4におけるばね(イ)の設定圧力を下回った状態にお
いてこれ迄上記差圧によって低圧室121)側に押圧さ
れてバイパス孔(1υをふさぐ状態にあったスプール(
19)は、ばね翰を介して高圧室翰方向に向けて付勢さ
れた状態、即ちバイパス孔01)を開放する状態が得ら
れる。
On the other hand, as the indoor cooling load decreases and the pressure in the suction chamber (9) decreases, the suction stroke pressure PL and the compression stroke pressure P
The differential pressure between H also becomes smaller. When the differential pressure is lower than the set pressure of the spring (A) in the control valve mechanism Q4, the spool (121), which had been pressed toward the low pressure chamber 121) by the differential pressure and blocked the bypass hole (1υ), is
In 19), a state is obtained in which the bypass hole 01) is biased toward the high-pressure chamber via the spring cover, that is, a state in which the bypass hole 01) is opened.

スプール09)がバイパス孔(]υを開放することによ
り圧縮室(6)において圧縮途中にある冷媒ガスの一部
は同バイパス孔(11)を経て吸入室(9)側に流出す
る。
When the spool 09) opens the bypass hole (]υ, a part of the refrigerant gas that is being compressed in the compression chamber (6) flows out to the suction chamber (9) through the bypass hole (11).

そしてこの様に圧縮室(6)内の冷媒ガスの一部が吸入
室(9)側に流出することによって、圧縮室(6)内に
おける圧縮圧力は低下する。即ち室内における冷房負荷
の減少にともない冷媒ガスの圧縮容量を減らす作用が得
られる。
In this way, a portion of the refrigerant gas in the compression chamber (6) flows out to the suction chamber (9) side, thereby reducing the compression pressure in the compression chamber (6). That is, an effect of reducing the compression capacity of refrigerant gas can be obtained as the cooling load in the room decreases.

尚第1導圧孔(イ)を可及的に小径寸法にて形成し、同
第1導圧孔(ハ)に絞シ効果を持たせることにより、起
動時においては圧縮室(6)内の圧力上昇に対して高圧
室(ホ)に対する同圧力上昇の伝達を時間的に遅らせる
ことが出来、高圧室(ホ)における急激な圧力上昇を防
止出来る。そしてこの様に高圧室(イ)における急激な
圧力上昇を防止することが出来ることによってスプール
09)の開閉、即ちバイパス孔(1])を開放する状態
より同バイパス孔0])をふさぐ方向への移動をゆっく
りと行なしことが出来、起動時におけるフル稼動への移
行を各部に衝撃を与えることなくスムーズに行なうこと
が出来る。
By forming the first pressure impulse hole (A) with a diameter as small as possible and giving the first pressure impulse hole (C) a throttling effect, the inside of the compression chamber (6) is With respect to the pressure increase, the transmission of the same pressure increase to the high pressure chamber (E) can be delayed in time, and a sudden pressure increase in the high pressure chamber (E) can be prevented. In this way, by being able to prevent a sudden pressure rise in the high pressure chamber (A), the opening and closing of the spool 09), that is, the direction in which the bypass hole (1]) is closed rather than the state in which the bypass hole (1]) is opened, is prevented. can be moved slowly, and the transition to full operation at startup can be smoothly performed without applying shock to each part.

又定常運転時においては圧縮室(6)内の圧力変化に対
するスプール0@の過敏な移動を防止することが出来、
同スプール0つの動きを安定させることが出来る。そし
て又第2導圧孔(ハ)を上記第]導圧孔(ハ)と同様可
及的に小径寸法にて形成し、同第2導圧孔(財)に絞シ
効果を持たせることによシ、同スプール09)が、バイ
パス孔(1])を開放する状態よし同バイパス孔(11
)を閉じる方向に移動する場合における低圧室I2])
内の圧力低下をゆっくりと行なわせることが出来、上記
の第1導圧孔(イ)による絞り効果とあわせてフル稼動
への移行時における衝撃緩和効果をより一層高めること
が出来る。
Also, during steady operation, it is possible to prevent the spool 0@ from moving too sensitively to pressure changes in the compression chamber (6).
The movement of the same spool can be stabilized. Also, the second pressure impulse hole (c) should be formed to have a diameter as small as possible in the same way as the above-mentioned pressure impulse hole (c), and the second pressure impulse hole (c) should have a constriction effect. If the spool 09) opens the bypass hole (1), then the bypass hole (11) will open.
) when moving in the closing direction])
The internal pressure can be reduced slowly, and together with the throttling effect of the first pressure guiding hole (a), the impact mitigation effect at the time of transition to full operation can be further enhanced.

又図示省略しであるが第1導圧孔(ハ)内に逆止弁を設
けることによって高圧室(イ)内の圧力を、圧縮室(6
)内の第1導圧孔(ハ)の先端開口部が臨む位置におけ
るそのピーク圧力と同圧状態に保持することが出来る。
Although not shown, a check valve is provided in the first pressure guiding hole (c) to reduce the pressure in the high pressure chamber (a) to the compression chamber (6).
) can be maintained at the same pressure as the peak pressure at the position facing the tip opening of the first pressure guiding hole (c).

そしてこの様に高圧室(イ)内の圧力を一定の状態に保
持することが出来ることにより、高圧室(イ)内の圧力
変化を最小限に抑えることが出来、スプール(19)の
動きを更に安定させる作用を得ることが出来る。一方ス
ブール(19)はバイパス孔(11)に対して直交する
方向に向けて摺動自在に設けられていることによシ、同
スプール09)は圧縮室(6)内の圧縮圧力に伺等影響
されることなく圧縮行程圧力PHと吸入行程圧力PLと
の間に生ずる差圧のみによって摺動させることが出来る
。そしてこの様にスプール09)が圧縮室(6)内の圧
縮圧力に何等影響されることなく摺動させることが出来
ることにより、その精度を向上させることが出来る一方
、圧縮行程圧力PHと吸入行程圧力PL間に生ずる僅か
な圧力差によりスプール(1つを摺動させることが出来
ることによシ付勢力の弱いばね(イ)を使用することが
出来、その組付けを容易化するととが出来るとともにこ
の様に圧縮行程圧力PHと吸入行程圧力PLとの差圧が
小さいためにスプール09)部分からの圧力の漏れも必
然的に少なくてすむ結果、スプール(]9)嵌挿部のク
リアランスを大きくとることが出来る。そしてこの様に
クリアランスを大きくとることが出来ることにより摺動
抵抗を軽減することが出来る。
By being able to maintain the pressure within the high pressure chamber (A) in a constant state in this way, pressure changes within the high pressure chamber (A) can be minimized and the movement of the spool (19) can be minimized. A further stabilizing effect can be obtained. On the other hand, since the spool (19) is slidably provided in the direction perpendicular to the bypass hole (11), the spool 09) is affected by the compression pressure in the compression chamber (6). The sliding movement can be performed only by the differential pressure generated between the compression stroke pressure PH and the suction stroke pressure PL without being affected. In this way, by allowing the spool 09) to slide without being affected by the compression pressure in the compression chamber (6), its accuracy can be improved, while the compression stroke pressure PH and suction stroke By allowing one of the spools to slide due to the slight pressure difference that occurs between the pressures PL and PL, it is possible to use a spring (A) with a weaker biasing force, making it easier to assemble the spool. At the same time, since the differential pressure between the compression stroke pressure PH and the suction stroke pressure PL is small, the leakage of pressure from the spool 09) part is naturally reduced, and as a result, the clearance of the insertion part of the spool 09) is reduced. It can be made large. By increasing the clearance in this manner, sliding resistance can be reduced.

本発明は以上の様に構成されるものであって、上記の様
に構成したことにより、室内の冷房負荷が大きい状態に
おいては圧縮機をフル稼動させることが出来、又室内の
冷房負荷が減少した場合においては圧縮機の稼動率を低
下させることが出来る如く室内の冷房負荷に対応してそ
の圧縮容量を自動的に調整することが出来るに至った〇
又本発明にあってはスプールを常時はバイパス孔を開く
方向に向けて付勢された状態にある様に設けるとともに
同スプールを間に挾んでその両側に高圧室と低圧室を設
け、高圧室は第1導圧孔を介して圧縮室内の圧縮行程(
圧縮行程圧力PH)と連通さす、又低王室は第2導圧孔
を介して圧縮室の吸入行程(吸入行程圧力PL)と連通
させ、この両行程間に得られる差圧、即ち圧縮行程圧力
PHと吸入行程圧力PLとの間に生ずる差圧の変化を介
してスプールを開閉させる様にしたことにより、圧力降
下の影響によるスプールの誤作動を防止することが出来
、スプールの開閉を適確に行なわせることが出来るに至
った。即ち信頼性の高い制御弁機構を得ることが可能と
なった。
The present invention is configured as described above, and with the above configuration, the compressor can be operated at full capacity when the indoor cooling load is large, and the indoor cooling load is reduced. In such cases, the compression capacity of the compressor can be automatically adjusted in response to the indoor cooling load so that the operating rate of the compressor can be lowered.In addition, in the present invention, the spool can be kept open at all times. is provided so that it is biased in the direction of opening the bypass hole, and a high pressure chamber and a low pressure chamber are provided on both sides of the spool with the same spool in between, and the high pressure chamber is compressed through the first pressure guiding hole. Indoor compression stroke (
The low pressure chamber is connected to the suction stroke (suction stroke pressure PL) of the compression chamber through the second pressure guiding hole, and the differential pressure obtained between these two strokes, that is, the compression stroke pressure By opening and closing the spool through changes in the differential pressure that occurs between PH and suction stroke pressure PL, it is possible to prevent malfunction of the spool due to the influence of pressure drop, and the spool can be opened and closed appropriately. I was able to get him to do it. In other words, it has become possible to obtain a highly reliable control valve mechanism.

そして又本発明にあってはバイパス孔に対して直交する
方向に向けてスプールを設け、同スプールの開閉を圧縮
行程圧力PHと吸入行程圧力PL間に生ずる差圧の変化
を介して行なわせる様にしたことにより、同スプールは
圧縮室内の圧縮圧力に何等影響されることなくその開閉
を行わせることが出来、その精度をアップさせることが
出来るに至ったO その信奉発明にあっては起動時においてスプールはバイ
パス孔を開放する方向に向けて伺勢された状態にある様
に設けたことにより、起動時におけるその立上シをスム
ーズに行なうことが出来、且つ液圧縮の発生を防止する
ことが出来るに至った0
Further, in the present invention, a spool is provided in a direction perpendicular to the bypass hole, and the spool is opened and closed through a change in the differential pressure generated between the compression stroke pressure PH and the suction stroke pressure PL. By doing so, the spool can be opened and closed without being affected by the compression pressure in the compression chamber, and its accuracy has been improved. By arranging the spool so that it is biased in the direction of opening the bypass hole, it is possible to smoothly start up the spool at the time of startup, and to prevent the occurrence of liquid compression. I was able to do it0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る圧縮機の側断面図(第3図におけ
るA−B−C線断面図)、第2図は第1図におけるD−
D線断面図、第3図は同E−E線断面図、第4図及び第
5図は制御弁機構におけるその作用状態を示す断面図、
第6図は吸入行程圧力と圧縮行程圧力間の差圧の変化を
表わすグラフ図である。 (1)ハウジング、(IA)フロントハウジング、(I
B)リヤハウジング、(3)シリンダーブロック、(3
A)フロントサイドプレート、(3B)リヤサイドプレ
ート、(4)駆動軸、(5)ローター、(6)圧縮室、
(7)ベーン溝、(8)ベーン、(9)吸入室、(9)
′吸入口、(10)吸入孔、(11)バイパス孔、02
!1制御弁機構、03吐出室、04)吐出孔、α均吐出
弁、0傍リテーナ−1(17)分離室、αη′吐出口、
08)通孔、OOスプール、(イ)高圧室、(21)低
圧室、(イ)ばね、(イ)第1導圧孔、(ハ)第2導圧
孔。 / 特許出願人  株式会社 豊田自動織機製作所D 第2図 8     1   11 δ 第4図 9J5図
FIG. 1 is a side sectional view (A-B-C line sectional view in FIG. 3) of a compressor according to the present invention, and FIG. 2 is a D--
3 is a sectional view taken along line D, FIG. 3 is a sectional view taken along line E-E, FIGS. 4 and 5 are sectional views showing the operating state of the control valve mechanism,
FIG. 6 is a graph showing changes in the differential pressure between the suction stroke pressure and the compression stroke pressure. (1) Housing, (IA) Front housing, (I
B) Rear housing, (3) cylinder block, (3)
A) Front side plate, (3B) Rear side plate, (4) Drive shaft, (5) Rotor, (6) Compression chamber,
(7) Vane groove, (8) Vane, (9) Suction chamber, (9)
'Suction port, (10) Suction hole, (11) Bypass hole, 02
! 1 control valve mechanism, 03 discharge chamber, 04) discharge hole, α equalizing discharge valve, 0 side retainer 1 (17) separation chamber, αη′ discharge port,
08) Through hole, OO spool, (a) high pressure chamber, (21) low pressure chamber, (a) spring, (a) first pressure hole, (c) second pressure hole. / Patent applicant Toyota Industries Corporation D Figure 2 8 1 11 δ Figure 4 9J5

Claims (2)

【特許請求の範囲】[Claims] (1)吸入室と圧縮室間に介在するサイドプレートに同
吸入室と圧縮室を連通ずるバイパス孔を貫設し、同バイ
パス孔には同バイパス孔に対して直交する方向に向けて
スプールを開閉自在に設けて該スプールを常時はバイパ
ス孔を開放する方向に向けて付勢するとともに、同スプ
ールの両端部に形成された圧力室のうち、前記付勢の向
きと対向する側のものは圧縮行程中の圧縮室と連通させ
、かつ他方は吸入行程中の圧縮室と連通させたことを%
徴とする容量可変型圧縮機。
(1) A bypass hole is provided through the side plate interposed between the suction chamber and the compression chamber to communicate the suction chamber and the compression chamber, and the spool is inserted into the bypass hole in a direction perpendicular to the bypass hole. The spool is provided so as to be openable and closable, and the spool is normally biased in the direction of opening the bypass hole, and among the pressure chambers formed at both ends of the spool, the one on the side opposite to the direction of the bias is % indicates that one is in communication with the compression chamber during the compression stroke, and the other is in communication with the compression chamber during the suction stroke.
A variable capacity compressor.
(2)バイパス孔は圧縮室における吸入行程と圧縮行程
の略中間位置に臨む如く設け、低圧室と連通ずる第2導
圧孔は吸入孔に対して近接する位置に臨む如く設けると
ともに高圧室と連通ずる第1導圧孔はバイパス孔の開口
位置よpも吐出孔寄りで同バイパス孔に近接する位置に
臨む如く設けたことを特徴とする特許請求の範囲第1項
に記載の容量可変型圧縮機。
(2) The bypass hole is provided so as to face a position approximately halfway between the suction stroke and the compression stroke in the compression chamber, and the second pressure guiding hole communicating with the low pressure chamber is provided so as to face a position close to the suction hole, and is connected to the high pressure chamber. The variable capacity type according to claim 1, wherein the communicating first pressure guiding hole is provided so as to face a position closer to the discharge hole than the opening position of the bypass hole and close to the bypass hole. compressor.
JP17936482A 1982-10-13 1982-10-13 Variable capacity type compressor Pending JPS5968593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17936482A JPS5968593A (en) 1982-10-13 1982-10-13 Variable capacity type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17936482A JPS5968593A (en) 1982-10-13 1982-10-13 Variable capacity type compressor

Publications (1)

Publication Number Publication Date
JPS5968593A true JPS5968593A (en) 1984-04-18

Family

ID=16064555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17936482A Pending JPS5968593A (en) 1982-10-13 1982-10-13 Variable capacity type compressor

Country Status (1)

Country Link
JP (1) JPS5968593A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620042B1 (en) * 2005-06-30 2006-09-06 엘지전자 주식회사 Capacity variable type rotary compressor and airconditioner with this
KR100620043B1 (en) 2005-07-29 2006-09-06 엘지전자 주식회사 Capacity variable type rotary compressor and airconditioner with this

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620042B1 (en) * 2005-06-30 2006-09-06 엘지전자 주식회사 Capacity variable type rotary compressor and airconditioner with this
KR100620043B1 (en) 2005-07-29 2006-09-06 엘지전자 주식회사 Capacity variable type rotary compressor and airconditioner with this

Similar Documents

Publication Publication Date Title
US5993177A (en) Scroll type compressor with improved variable displacement mechanism
JPH0744775Y2 (en) Compressor capacity control device
EP0969209B1 (en) Scroll-type variable-capacity compressor
US4566863A (en) Rotary compressor operable under a partial delivery capacity
US4846632A (en) Variable displacement vane compressor
US4808083A (en) Variable capacity type vane compressor
US6089830A (en) Multi-stage compressor with continuous capacity control
US4447196A (en) Rotary vane compressor with valve control of undervane pressure
US6079952A (en) Continuous capacity control for a multi-stage compressor
JPS5968593A (en) Variable capacity type compressor
US5505592A (en) Variable capacity vane compressor
JP2794863B2 (en) Variable capacity scroll compressor
US4516920A (en) Variable capacity vane compressor capable of controlling back pressure acting upon vanes
JPS58222994A (en) Variable capacity compressor
JPH0152596B2 (en)
JPS5879689A (en) Variable displacement type compressor
US5020975A (en) Variable-delivery vane-type rotary compressor
JPS63259190A (en) Variable displacement type vane compressor
JPH024796B2 (en)
JPS59108896A (en) Capacity control mechanism for scroll type compressor
JPH0247275Y2 (en)
JPS5999089A (en) Variable capacity type compressor
JPS63280883A (en) Variable volume type vane compressor
JPS611887A (en) Rotary compressor
JP4258069B2 (en) Variable capacity scroll compressor and refrigeration cycle for vehicle