JPS601397A - Compressor of variable compression capacity type - Google Patents
Compressor of variable compression capacity typeInfo
- Publication number
- JPS601397A JPS601397A JP11001183A JP11001183A JPS601397A JP S601397 A JPS601397 A JP S601397A JP 11001183 A JP11001183 A JP 11001183A JP 11001183 A JP11001183 A JP 11001183A JP S601397 A JPS601397 A JP S601397A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- compression
- suction
- spool
- pressure chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本発明は車室内における冷房負荷の変化にともない圧縮
容量を自動的に制御することの出来る圧縮容量可変型の
圧縮機、更に具体的には吸入室内若しくは圧縮室内の吸
入行程における圧力(吸入行程圧力PL)と、圧縮室内
の圧縮行程における圧力(圧縮行程圧力PII)との間
に生ずる差圧の変化を利用して制御弁を自動開閉可能に
設け、同制御弁の自動開閉を介して低冷房負荷時におい
て圧縮室内の圧縮途中にある冷媒ガスの一部を吸入室側
に逃すことによって圧縮室におけるその圧縮容量を自動
的に調整することが出来る様に設けられる容量可変型圧
縮機のその制御弁機構の改良に関するものである。[Detailed Description of the Invention] Technical Field The present invention relates to a variable compression capacity compressor that can automatically control the compression capacity in accordance with changes in the cooling load in a vehicle interior, and more specifically to a compressor that can be used in a suction compartment or a compression compartment. The control valve is provided so that it can be automatically opened and closed by utilizing the change in the differential pressure that occurs between the pressure in the suction stroke (suction stroke pressure PL) and the pressure in the compression stroke in the compression chamber (compression stroke pressure PII). The system is designed so that the compression capacity in the compression chamber can be automatically adjusted by automatically opening and closing the valve to release a portion of the refrigerant gas that is in the middle of compression in the compression chamber to the suction chamber during low cooling loads. This invention relates to an improvement of the control valve mechanism of a variable capacity compressor.
従来技術
従来車室内における冷房負荷の変化にともない圧縮容量
を自動的に制御するようにした容量可変型の圧縮機とし
ては吸入室内の圧力と圧縮室内の圧力間に生ずる一差圧
の変化を利用する方法、即ち吸入行程圧力Ptと圧縮行
程圧力P11との間に生ずる差圧の変化を比較した場合
にお伝て吸入行程における圧力の高さに比例してその差
圧の変化が大きくなることに鑑み、その差圧の変化を利
用して制御弁機構を自動開閉させることによりその圧縮
容量を調整する方法が本出願人によって先に提案されて
いる。Prior art A variable capacity compressor that automatically controls the compression capacity in response to changes in the cooling load in the vehicle interior utilizes the change in differential pressure that occurs between the pressure in the suction chamber and the pressure in the compression chamber. In other words, when comparing the change in the differential pressure that occurs between the suction stroke pressure Pt and the compression stroke pressure P11, it is found that the change in the differential pressure increases in proportion to the height of the pressure in the suction stroke. In view of this, the present applicant has previously proposed a method of adjusting the compression capacity by automatically opening and closing a control valve mechanism using changes in the differential pressure.
上記提案とは第7図及び第8図に示す様に吸入室(9)
と圧縮室(6)(第1図及び第2図参照)間に介在する
フロントサイドプレート(3A)に同吸入室(9)と圧
縮室(6)を連通ずる如くバイパス路(11)を貫設し
、同バイパス路圓に対しては同バイパス路(11)の開
閉を制御すべくスプールa錫をバイパス路01)に対し
て直交する方向に向けて摺動自在に設けるに同スプール
(19)はバイパス路(11)をばね(221によシ開
放する方向に向けて付勢された状態にある如く設けると
ともに同スプールQ91の両側には高圧室(20)と低
圧室(21)を対峙させて設け、高圧室(20)は第1
導圧孔(財)を介して圧縮室(6)の圧縮行程(圧縮行
程圧力PR)と連通ずる如く設け、又低圧室(21)は
第2導圧孔(ハ)を介して吸入室(9)若しくは圧縮室
(6)の吸入行程(吸入行程圧力PL、)と連通ずる如
く設け、吸入行程における圧力の上昇に伴ない圧縮行程
圧力pnと吸入行程圧力PL間に生ずる差圧かばね(2
21の設定圧力を上回る圧力状態においてはバイパス路
01)を塞ぎ、又吸入行程における圧力の低下に伴ない
圧縮行程圧力PIlと吸入行程圧力PL間に生ずる差圧
かばね(2りの設定圧力を下回る状態においてはバイパ
ス路(11)を開放して圧縮途中にある冷媒ガスの一部
を吸入室(9)側に逃す様に設けることによって車室内
の冷房負荷が大きい状態にあっては圧縮機をフル稼°動
させることが出来、又車室内の冷房負荷が減少した状態
においては圧縮機の稼動率を低下させることが出来る如
く車室内の冷房負荷の変化に対応してその圧縮容量を自
動的に調整することが出来る様に設けて成るものであっ
て、同提案にあっては
■ 起動時において電磁クラッチを接続させると同時に
圧縮行程圧力PIIと吸入行程圧力Pt間に大きな差圧
ガ生じ、開放状態にあるバイパス。The above proposal consists of a suction chamber (9) as shown in Figures 7 and 8.
A bypass passage (11) is inserted through the front side plate (3A) interposed between the suction chamber (9) and the compression chamber (6) (see Figs. 1 and 2) so as to communicate the suction chamber (9) and the compression chamber (6). In order to control the opening and closing of the bypass path (11), a spool (19) is provided to be slidable in a direction perpendicular to the bypass path (01). ) is provided with a bypass passage (11) so as to be biased in the direction of opening by a spring (221), and a high pressure chamber (20) and a low pressure chamber (21) are arranged on both sides of the spool Q91. The hyperbaric chamber (20) is located in the first
The low pressure chamber (21) is provided so as to communicate with the compression stroke (compression stroke pressure PR) of the compression chamber (6) through the pressure guiding hole (c), and the low pressure chamber (21) is connected to the suction chamber (c) through the second pressure guiding hole (c). 9) Or, the compression chamber (6) is provided so as to communicate with the suction stroke (suction stroke pressure PL), and the differential pressure generated between the compression stroke pressure pn and the suction stroke pressure PL as the pressure increases in the suction stroke (
In the pressure state exceeding the set pressure of 21, the bypass passage 01) is blocked, and the differential pressure generated between the compression stroke pressure PIl and the suction stroke pressure PL as the pressure decreases in the suction stroke By opening the bypass passage (11) and providing a part of the refrigerant gas in the middle of compression to escape to the suction chamber (9), the compressor can be turned off when the cooling load inside the vehicle is large. The compression capacity can be automatically adjusted in response to changes in the cooling load inside the vehicle, so that the compressor can be operated at full capacity, and the operating rate of the compressor can be lowered when the cooling load inside the vehicle is reduced. According to the proposal, a large pressure difference is generated between the compression stroke pressure PII and the suction stroke pressure Pt at the same time as the electromagnetic clutch is connected at the time of startup. Bypass in open state.
路(11)は瞬間的に閉塞状態になることにより起動時
はおける立上シショソクの緩和作用が充分に得られない
。Since the path (11) is momentarily closed, it is not possible to sufficiently alleviate the start-up pressure at the time of startup.
■ 運転中に急加速させた場合において、圧縮行程圧力
pHと吸入行程圧力PL間に生ずる差圧\
は更に大きくなってスプール叫が低圧室(2Ij側(ノ
クイパス路旧)を塞ぐ方向ンに移動することによシ、1
00チ冷房負荷が掛った状態にて高速回転する状態、即
ち全負荷運転状態となり車室内が過冷却となる。■ When the engine is suddenly accelerated during operation, the differential pressure generated between the compression stroke pressure pH and the suction stroke pressure PL becomes even larger, causing the spool noise to move in the direction of blocking the low pressure chamber (2Ij side (old Nokui Pass path)). To do it, 1
The engine rotates at high speed with a cooling load applied, that is, a full-load operating state, and the interior of the vehicle becomes supercooled.
等の不具合を生ずることとなる。This may cause problems such as:
発明の目的
本発明は上記の様な従来の実情に鑑みてその改善を試み
たものであって、本発明の目的は起動時及び急加速時に
おける制御弁機構の作動特性を向上させることにある。Purpose of the Invention The present invention is an attempt to improve the conventional situation as described above, and the purpose of the present invention is to improve the operating characteristics of the control valve mechanism during startup and sudden acceleration. .
発明の構成
即ち本発明は起動時においてトルクを軽減し立上9シヨ
ツクを緩和するとともに急加速時における全負荷運転を
防止する様にしたことをその特徴とするものであって、
本発明の要旨は圧縮室と吸入室を隔設するサイドプレー
ト内に進退自在に設けられるスプールの両端部に高圧室
と低圧室を対峙させて設け、低圧室は吸入菫若しくは圧
縮室の吸入行程と連通させ、且つ同低圧室内には上記ス
プールを高圧室方向に向けて付勢するばねを介装する一
方、サイドプレートには圧縮室側に高圧室と連通ずるバ
イパス孔を圧縮室の圧縮行程と対応させて設けるととも
に吸入室側には吸入室と連通ずる複数個のバイパス孔を
上記圧縮室側のバイパス孔に対してその開口位置を変位
させて設け、前記スプールにはバイパス連通孔を穿設し
、同連通孔の一端は高圧室に連通させるとともに他端を
スプールの摺動を介して上記複数個のバイパス孔に対し
て選択的に連通可能で且つ前記バイパス孔間に形成する
壁面部によって閉塞可能に設ける様に構成したことにあ
る。The structure of the invention, that is, the present invention is characterized in that the torque is reduced at the time of start-up, the start-up shock is alleviated, and full-load operation is prevented during sudden acceleration.
The gist of the present invention is that a high pressure chamber and a low pressure chamber are provided facing each other at both ends of a spool that is provided in a side plate that separates a compression chamber and a suction chamber so as to be able to move forward and backward. A spring is interposed in the low pressure chamber to bias the spool toward the high pressure chamber, and a bypass hole in the side plate that communicates with the high pressure chamber is connected to the compression stroke of the compression chamber. and a plurality of bypass holes communicating with the suction chamber are provided on the suction chamber side with opening positions displaced relative to the bypass holes on the compression chamber side, and the spool is provided with bypass communication holes. one end of the communication hole communicates with the high pressure chamber, and the other end can communicate selectively with the plurality of bypass holes through sliding of the spool, and a wall portion formed between the bypass holes. The main reason is that it is constructed so that it can be closed by.
実施例
以下に本発明の具体的な実施例を例示の図面について説
明する。第1図乃至第6図に示す各図面において(1)
は圧縮機の外殻を構成するハウジングを示す。同ハウジ
ング(1)はフロントハウジング(INとリャハウジン
グ(IB)により形成され、同フロントハウジング(I
A)にはシリンダーブロック(2)が、又同シリンダー
ブロック(2)を間に挾んでその両側にフロントサイド
プレート(3A)とりャサイドブレート(3B)が内嵌
される。シリンダーブロック(2)は前後両端部に開口
部を存して中空円筒状に形成され、同中空部の内壁面は
シリンダーブロック(2)の外周面と同心円の円筒状に
形成される。同シリンダーブロック(2)の前後両開口
部は上記両サイドフ。EXAMPLES Specific examples of the present invention will be described below with reference to illustrative drawings. In each drawing shown in Figures 1 to 6 (1)
indicates the housing that constitutes the outer shell of the compressor. The housing (1) is formed by a front housing (IN) and a rear housing (IB).
In A), a cylinder block (2) is fitted, and a front side plate (3A) and a rear side plate (3B) are fitted on both sides of the cylinder block (2) with the cylinder block (2) in between. The cylinder block (2) is formed into a hollow cylindrical shape with openings at both front and rear ends, and the inner wall surface of the hollow part is formed into a cylindrical shape concentric with the outer peripheral surface of the cylinder block (2). The front and rear openings of the cylinder block (2) are the same as the above-mentioned side doors.
レート(3A)(3B)によって遮蔽され、両サイド゛
ノ°レ−) (3A)(3B)間には駆動軸(4)が横
架される0同駆動軸(4)はシリンダーブロック(2)
に対してその中心線を偏寄させて設けられ、同駆動軸(
4)にはローター(5)が一体的に固着される0同ロー
ター(5)はシリンダーブロック(2)の内壁面に対し
てその外周壁の一部が摺接可能な如く設けられ、同ロー
ター(5)の外周壁とシリンダーブロック(2)の内壁
面間には圧縮室(6)が形成される。又ローター(5)
にはベーン溝(7)・・・が刻設され、各ベーン溝(力
・・・にはベーン(8)・・−が圧縮室(6)に対して
出没自在に嵌挿される。The drive shaft (4) is horizontally suspended between the two side rails (3A) (3B) and is shielded by the cylinder block (2). )
The drive shaft (
A rotor (5) is integrally fixed to the cylinder block (2). A compression chamber (6) is formed between the outer peripheral wall of (5) and the inner wall surface of the cylinder block (2). Also rotor (5)
A vane groove (7) is formed in each vane groove (force), and a vane (8) is inserted into each vane groove so as to be retractable into the compression chamber (6).
フロントハウジング(IA)とフロントサイドプレー)
(3A)間には吸入室(9)が設けられ、同吸入室(9
)にはフロントハウジング(IA)側に吸入管路(図示
省略)に接続する吸入口(9)′が設けられる。又同フ
ロントサイドプレート(3A)には圧縮室(6)の一端
、即ちローター(5)の回転方向に沿う始端部と相対応
して吸入孔(10)が開口される。front housing (IA) and front side play)
(3A) A suction chamber (9) is provided between the suction chambers (9) and
) is provided with a suction port (9)' connected to a suction pipe (not shown) on the front housing (IA) side. Further, a suction hole (10) is opened in the front side plate (3A) in correspondence with one end of the compression chamber (6), that is, the starting end along the rotational direction of the rotor (5).
一方圧縮室(6)の他端、即ちローター(5)の回転方
向に沿う終端部と相対応する位置にはシリンダーブロッ
ク(2)の一部を切欠いてフロントハウジング(LA)
の内壁面との間に吐出室(13)が形成され、同吐出室
(13)と圧縮室(6)の終端部間は吐出孔(14)に
よって連通ずる如く設けられる。(15)は同吐出孔(
14)を椋う吐出弁、(■6)は同吐出弁a9の開き角
度を規制するりテーナーを示す0又リヤノhウジング(
IB)にはりャサイドプレー)(3B)との間−に潤滑
油の分離室(17)が形成される0同分離室a7)はり
ャサイドプレート(3B)に開口する通孔(18)を介
して上記吐出室Q3)と連通ずる如く設けられる。開通
孔(18)の開口部にはフィルター(図示省略)が設け
られる一方、分離室aD内には同フィルターによって分
離される潤滑油の溜り部が設けられる0そして又同分離
室αηにはリヤハウジング(IB)側に吐出管路(図示
省略)に接続する吐出口圃が設けられる。On the other hand, at the other end of the compression chamber (6), that is, at a position corresponding to the terminal end along the rotational direction of the rotor (5), a part of the cylinder block (2) is cut out to form a front housing (LA).
A discharge chamber (13) is formed between the discharge chamber (13) and the inner wall surface of the compression chamber (6), and a discharge hole (14) is provided so as to communicate between the discharge chamber (13) and the terminal end of the compression chamber (6). (15) is the same discharge hole (
14) is a discharge valve that controls the discharge valve a9, and (■6) is a zero or rear nose housing (6) that regulates the opening angle of the discharge valve a9.
A lubricating oil separation chamber (17) is formed between the barrier side plate (3B) and the barrier side plate (3B). It is provided so as to communicate with the discharge chamber Q3). A filter (not shown) is provided at the opening of the opening hole (18), and a lubricating oil reservoir separated by the filter is provided in the separation chamber aD. A discharge port connected to a discharge pipe (not shown) is provided on the housing (IB) side.
前記フロントサイドプレー)(3A)には圧縮室(6)
の吸入行程と圧縮行程の略中間(圧縮行程初期)に位置
して圧縮室(6)と吸入室(9)間を連通ずるノ(イパ
ス路(Il+ (同バイパス路旧)は後述する様にノく
イノシス孔(lla )、(11bN11b)’とスプ
ール(19)に穿設するノくイバス連通孔(llc)に
より形成される。)と、同バイパス路旧)の開閉を制御
する弁機構(以下[制御弁機構(12) Jという)が
設けられる。同制御弁機構(12)にはスプール(Hl
)が摺動自在に設けられ、同スプール鱈の両端部には高
圧室(20)と低圧室CDより成る一対の圧力室が対峙
させて設けられる。そして低圧室(2I)は導圧孔(2
3)を介して圧縮室(6)の吸入行程と連通ずる如く設
けるに同導圧孔’(231の先端部は吸入孔00)と比
較的迂兼する位置に開口する如く設けられる。又低圧室
0υにはばね(22が介装され、常時はスプール(19
)を高圧室(20)方向に向けて付勢する状態にある様
に設けられる。なお、このとき高圧室(20)を密封す
る栓部材(30)の内端面には、該高圧室(20)内に
向けて係止片31)が突設され、スプールα9)の端部
が該係止片(31)に当接した状態においても、バイ−
パス連通孔(lie)と高圧室(20) 、ひいてはバ
イパス孔(lla)との連通が確保されるように構成さ
れている。ただし、上記係止片(31)を栓部材(30
)に突設する代りに、栓部材00)内端面に溝を形成し
て、線溝によってバイパス連通孔(lie)と高圧室(
20)とを連通ずるように構成してもよい。高圧室(2
(1)はフロントサイドプレー)(3A)の圧縮室(6
)側に開口するバイパス孔(lla)を介して圧縮室(
6)、更に具体的には圧縮室(6)の圧縮行程初期(吸
入行程と圧縮行程の中間部)と連通ずる如く設けられる
一方、スプールVttに穿設するバイパス連通孔(ll
c)及び同バイパス連通孔(llc)に連続するスプー
ル卸の周面の連通溝(lie)と相対応させてフロント
サイドプレー)(3A)の吸入室(9)側に開口するバ
イパス孔(11b)(llb)’を介して吸入室(9)
と連通ずる如く設けられる。即ちフロントザイドプレー
)(3A)の吸入室(9)側にはスプールα9)の摺動
方向に沿って複数個(本実施例では2個)のバイパス孔
(llb) (llb)’がその間に壁面部(lid)
を存して並列させて設けられる。The front side play) (3A) has a compression chamber (6).
The bypass passage (Il+ (old bypass passage) is located approximately midway between the suction stroke and the compression stroke (at the beginning of the compression stroke) and communicates between the compression chamber (6) and the suction chamber (9). The valve mechanism (formed by the nokuinosis hole (lla), (11bN11b)') and the nokui bus communication hole (llc) drilled in the spool (19) and the opening/closing of the bypass passage (formerly) A control valve mechanism (12) J is provided hereinafter. The control valve mechanism (12) has a spool (Hl
) is slidably provided, and a pair of pressure chambers consisting of a high pressure chamber (20) and a low pressure chamber CD are provided facing each other at both ends of the spool cod. And the low pressure chamber (2I) has a pressure conduction hole (2I).
3) is provided so as to communicate with the suction stroke of the compression chamber (6) through the pressure guiding hole' (231, the tip of which opens at a position that is relatively round to the suction hole 00). In addition, a spring (22) is installed in the low pressure chamber 0υ, and the spool (19
) in the direction of the high pressure chamber (20). At this time, a locking piece 31) is provided on the inner end surface of the plug member (30) that seals the high pressure chamber (20) so as to protrude toward the inside of the high pressure chamber (20), and the end of the spool α9) Even when in contact with the locking piece (31), the bi-
It is configured to ensure communication between the pass communication hole (lie) and the high pressure chamber (20), and by extension the bypass hole (lla). However, the locking piece (31) is attached to the plug member (30).
), instead of protruding from the plug member 00), a groove is formed on the inner end surface of the plug member 00), and the line groove connects the bypass communication hole (lie) and the high pressure chamber (
20) may be configured to communicate with each other. Hyperbaric chamber (2
(1) is the front side play) (3A) compression chamber (6
) through the bypass hole (lla) that opens to the compression chamber (
6), more specifically, a bypass communication hole (ll
c) and a bypass hole (11b) that opens on the suction chamber (9) side of the front side play (3A) in correspondence with the communication groove (lie) on the circumferential surface of the spool outlet that is continuous with the bypass communication hole (llc). )(llb)' through suction chamber (9)
It is set up so that it communicates with the That is, on the suction chamber (9) side of the front side play (3A), there are a plurality of bypass holes (llb) (llb)' between them along the sliding direction of the spool α9). Wall section (lid)
are arranged in parallel.
そしてスプール(19)に穿設するバイパス連通孔(l
lc)は同スプールQ9)の摺動を介して上記両バイパ
ス孔(llb)(llb)’に対して選択的に連通させ
ることが可能な如く設けられる。更に具体的には停止時
及び起動時においては高圧室(20)寄9に開口するバ
イパス孔(llb)と連通し、運転時においては両バイ
パス孔(llb)(llb )’間に形成する壁面(l
id)によってバイパス連通孔(llc)を閉塞し、且
つ急加速時においては低圧室(2υ寄りに開口するバイ
パス孔(llb)’と連通ずる様に設けられる。A bypass communication hole (l) is drilled in the spool (19).
lc) is provided so as to be able to selectively communicate with the bypass holes (llb) and (llb)' through sliding movement of the spool Q9). More specifically, it communicates with the bypass hole (llb) opening to the high-pressure chamber (20) at the time of stopping and starting, and the wall surface formed between the two bypass holes (llb) (llb)' during operation. (l
id) to close the bypass communication hole (llc) and communicate with the low pressure chamber (bypass hole (llb)' which opens toward 2υ) during rapid acceleration.
次にその作用について説明する。Next, its effect will be explained.
圧縮機が停止した状態においては、圧縮機内の各部、即
ち吸入室(9)、圧縮室(6)、吐出室a3)、分離室
α力は夫々略同圧状態にある。又゛制御弁機構02に。When the compressor is stopped, each part in the compressor, that is, the suction chamber (9), the compression chamber (6), the discharge chamber a3), and the separation chamber α, are at approximately the same pressure. Also, to the control valve mechanism 02.
おいて高圧室(20)と低圧室(2I)は同圧状態にあ
ることによりスプールα9)は第4図に示す様にばね−
を介して高圧室(20)方向に向けて付勢された状態に
あり、圧縮室(6)と吸入室(9)はバイパス孔(ll
a)、高圧室(20)、バイパス連通孔(lie)、バ
イパス孔(llb)を介して連通ずる状態にある。Since the high pressure chamber (20) and the low pressure chamber (2I) are in the same pressure state, the spool α9) is spring-loaded as shown in FIG.
The compression chamber (6) and the suction chamber (9) are biased toward the high pressure chamber (20) through the bypass hole (ll).
a), the high pressure chamber (20), the bypass communication hole (lie), and the bypass hole (llb) communicate with each other.
しかして各部が上記の様な状態にあって、電磁クラッチ
(図示省略)の接続操作を介してエンジンの駆動力を駆
動軸(4)に伝達することによりローター(5)及び各
ベーン(8)・・・の回転作用が得られる。そして各ベ
ーン(8)・・・の回転を介してエバポレータ(図示省
略)より吸入管路を経て吸入室(9)内に送り込まれた
冷媒ガスは吸入孔(10)を経て圧縮室(6)内に吸引
される。圧縮室(6)内に吸引された冷媒ガスはベーン
(8)・・・の回転作用を介して圧縮室(6)内をその
始端部より終端部方向に向けて送られる間に次第に圧縮
される。そしてこの様にして圧縮室(6)内をその終端
位置迄送られた冷媒ガスは吐出孔04)、吐出室03)
、通孔08)、分離室07)を経て吐出口(17)’よ
り吐出管路内をコンデンサー(図示省略)方向に向けて
送り出されるのであるが、前記の様にバイパス路旧)が
開放された状態にあることにより、即ち圧縮室(6)と
吸入室(9)はノ(イノくス孔(11a)、高圧室−、
バイパス連通孔(11G) 1.<イノくス孔(llb
)を介して連通状態にあることにより、上記の様に圧縮
室(6)内をローター(5)の回転方向に沿って終端部
方向に向けて送られる冷媒ガスの一部はその圧縮途中に
おいて吸入室(9)側に流出する。Therefore, when each part is in the above state, the rotor (5) and each vane (8) are connected by transmitting the driving force of the engine to the drive shaft (4) through the connection operation of the electromagnetic clutch (not shown). ... rotational action can be obtained. Through the rotation of each vane (8)..., the refrigerant gas is sent from the evaporator (not shown) into the suction chamber (9) through the suction pipe line and into the compression chamber (6) through the suction hole (10). sucked inside. The refrigerant gas sucked into the compression chamber (6) is gradually compressed while being sent through the compression chamber (6) from its starting end toward its terminal end through the rotational action of the vanes (8). Ru. The refrigerant gas thus sent inside the compression chamber (6) to its terminal position is discharged through the discharge hole 04) and the discharge chamber 03).
, through hole 08), and separation chamber 07), and is sent out from the discharge port (17)' in the discharge pipe toward the condenser (not shown), but as mentioned above, the bypass passage (old) is opened. In other words, the compression chamber (6) and the suction chamber (9) are in a state of
Bypass communication hole (11G) 1. <Inokusu Hole (llb
), a part of the refrigerant gas sent in the compression chamber (6) toward the terminal end along the rotational direction of the rotor (5) as described above is partially compressed during compression. It flows out to the suction chamber (9) side.
そしてこの様に圧縮途中にある冷媒ガスの一部がバイパ
ス路旧)をブトして吸゛入室(9)側に流出することに
より、圧編機の起動時におけるその立上りをスムーズに
行なうことが出来るとともにその起動トルクを軽減する
作用が得られる0
このとき、高圧室(20)と低圧室(2I)に作用する
圧力(Pn + PL)はそれぞれ第9図に示す状態で
変化し、横軸■の時点でスプールが後述の中間位置に達
する。(従来では第10図に示すごとく横軸■の時点で
早くもスプールが切換わる。)これは、ノ<イパスガス
圧が直接高圧室(20)に作用するからPHの波状変化
が大きくなることと、バイパスとして圧。In this way, a part of the refrigerant gas in the middle of compression blows through the bypass passage (old) and flows out to the suction chamber (9), thereby making it possible for the refrigerant gas to rise smoothly when starting up the knitting machine. At this time, the pressures (Pn + PL) acting on the high pressure chamber (20) and the low pressure chamber (2I) change as shown in Fig. 9, and the horizontal axis At point (2), the spool reaches the intermediate position described below. (Conventionally, the spool is switched as early as the horizontal axis ■ as shown in Figure 10.) This is because the no-pass gas pressure directly acts on the high pressure chamber (20), which increases the wave-like change in pH. , pressure as a bypass.
力が抜けようとすることから、ある値に1で達するのに
余分な時間を要するからと考えられるが、このことによ
って、従来よシも良好な起動トルクの軽減に大きく貢献
している。This is thought to be because it takes extra time to reach a certain value at 1 because the force is about to be released, but this greatly contributes to reducing the starting torque, which is better than before.
上記の様にローター(5)の回転が繰り返されることに
より圧縮室(6)内の圧縮圧力が次第に高められること
となるのであるが、この様にして圧縮室(6)内におい
て高められた圧縮ガスの一部が高圧室(20)内に送り
込まれることによって同高圧室(20)内の圧力(圧縮
行程圧力PII)が次第に高められる。そしてこの様に
圧縮行程圧力pHが高められて、同圧縮行程圧力P■と
低圧室CD内に得られる吸入行程圧力PLとの間に生ず
るその差圧かばね(2力の設定圧力を上回った状態にお
いてスプールα9)はばね(2りの付勢圧に打ち勝って
低圧室(21)方向に押圧される。By repeating the rotation of the rotor (5) as described above, the compression pressure in the compression chamber (6) is gradually increased. By sending a portion of the gas into the high pressure chamber (20), the pressure (compression stroke pressure PII) within the high pressure chamber (20) is gradually increased. In this way, the compression stroke pressure pH is increased, and the differential pressure generated between the compression stroke pressure P and the suction stroke pressure PL obtained in the low pressure chamber CD is At this time, the spool α9) overcomes the biasing pressure of the two springs and is pressed toward the low pressure chamber (21).
即ち高圧室(20)と低圧室(21)は第5図に示す状
態(中間位置)にてバランスし、スプール(田に穿設す
るバイパス連通孔(llc)を壁面部(ild)に上っ
て閉塞する作用が得られる。そしてこの様にバイパス路
aυが塞がれるこ走によシ圧縮室(6)内の冷媒ガスは
その一部が上記ノくイノくス路(lυを経て吸入室(9
) Itlに流出することなく、その全てが圧縮されて
吐出孔(14)、吐出室(13)、通孔t18)、分離
室面を経て吐出管路内をコンデンサ一方“向に向けて送
り出される。That is, the high pressure chamber (20) and the low pressure chamber (21) are balanced in the state shown in Fig. 5 (intermediate position), and the spool (bypass communication hole (llc) drilled in the field is ascended to the wall surface (ild)). By blocking the bypass passage aυ in this way, a part of the refrigerant gas in the compression chamber (6) is sucked through the bypass passage (lυ). Room (9
) All of it is compressed and sent through the discharge hole (14), the discharge chamber (13), the through hole T18), and the separation chamber surface to the condenser in one direction through the discharge pipe without flowing out to the Itl. .
即ち100係運転状態が得られる0
又単室内の冷房負荷が減少し、吸入室(9)内の圧力が
低下するのにともない吸入行程圧力Pt、と圧縮行程圧
力211間の差圧も小さくなる0そしてその差圧が低圧
室(21)内に介装されるばね(22)の設定圧力を下
回った状態においてこれ迄上記差圧によって低圧室(2
I)側に押圧されてノ(イノくス連通孔(lie)を壁
面部(lid)によって塞ぐ状態にあったスプールα9
)はばね(22)の付勢圧を介して高圧室(20)方向
に向けて摺動し、バイパス連通孔(llc )の一部が
再びバイパス孔(llb)と連通ずる状態、即ち圧縮室
(6)内において圧縮途中にある冷媒ガスの一部を吸入
室(9)側に逃し、その圧縮容量を夕゛ウンさせる作用
、即ちいわゆる部分冷房負荷運転状態が得られるOそし
て又電磁クラッチが離断することにより第4図に示す状
態、即ちスプール(11ばばね(221によって高圧室
(20)方向に付勢されてバイパス連通孔(llc)と
バイパス孔(llb)が一致する状態に戻る。In other words, the 100-level operating state is obtained.0 Also, as the cooling load in the single chamber decreases and the pressure in the suction chamber (9) decreases, the differential pressure between the suction stroke pressure Pt and the compression stroke pressure 211 also decreases. 0 and the differential pressure is lower than the set pressure of the spring (22) interposed in the low pressure chamber (21).
The spool α9 was pressed toward the I) side and the wall portion (lid) was blocking the communication hole (lie).
) slides toward the high pressure chamber (20) through the biasing pressure of the spring (22), and a part of the bypass communication hole (llc) communicates with the bypass hole (llb) again, that is, the compression chamber. A part of the refrigerant gas that is being compressed in (6) is released to the suction chamber (9) side, reducing its compression capacity, that is, a so-called partial cooling load operating state is obtained. By separating, the spool (11) returns to the state shown in FIG. 4, that is, the state where the spool (11) is biased toward the high pressure chamber (20) by the spring (221) and the bypass communication hole (llc) and the bypass hole (llb) are aligned. .
一方圧m機の運転中において急加速させた場合において
エンジンの回転数が増大するのにともない圧縮機の回転
数も必然的に増大することとなる。On the other hand, when the compressor is suddenly accelerated during operation, as the engine rotational speed increases, the compressor rotational speed also inevitably increases.
そして圧縮機の回転数が増大することにより、高圧室(
20)における圧縮行程圧力PI(と低圧室(2I)に
おける吸入行程用力PL間に生ずる差圧も又より一そう
増大することとなる。そしてこの様に画室間の差圧が増
大することによりスプール(19)は第5図に示す状態
よりも更に低圧室0υ方向に摺動し、第6図に示す様に
バイパス連通孔(’1lc)がバイパス孔(llb)’
と連通ずる状態が得られるのであるが、この様にバイパ
ス路(1υが連通状態となることにより圧縮室(6)内
において圧縮途中にある冷媒ガスの一部をバイパス孔(
11a)、高圧室(20) 、バイパス連通孔(lie
)、バイパス孔(1lb)’を経て吸入室(9)側に逃
す作用が得られる。又この様に圧縮室(6)内の冷媒ガ
スを吸入室(9)側に逃すことに起因して圧縮行程圧力
pnと吸入行程圧力PL間に生ずる差圧が急激に低下す
ることとなるのであるが、この様に圧縮行程圧力Paと
吸入行程圧力PL間に生ずる差圧が急激に低下すること
により、スプール(191ばばね(221により高圧室
剛勇向に向けて付勢されて第4図に示す様にバイパス連
通孔(llc)とノ(イノくス孔(llb)が連通状態
となって起動時と同様圧縮室(6)内において圧縮途中
にある冷媒ガスの一部をバイパス孔(11a)、高圧室
(20)、バイパス連通孔(11c)、バイパス孔(l
lb>を経て吸入室(9)に逃す作用が得られる。そし
てこの様な逃し作用が得られている間に高圧室(20)
内の圧力は次第に高められることとなるのであるが、高
圧室(20)における圧縮行程圧力pHと低圧室(21
)における吸入行程圧力PL間に生ずる差圧かばね(2
2)の付勢圧を上回った状態において、スプール叫は低
圧室(21)方向に摺動し、再び第5図に示す様にバイ
パス連通孔(lie)を壁面部(lid )によって閉
基すふ状態、即ち通常の100チ運転状態に戻る0
発明の効果
本発明は以上の様に構成されるものであって、上記の様
に構成したことにより、起動時において立上りトルクを
軽減することが出来るとともにスムーズな立上りを得る
ことが出来るに至った。As the rotation speed of the compressor increases, the high pressure chamber (
The differential pressure that occurs between the compression stroke pressure PI (at 20) and the suction stroke force PL in the low pressure chamber (2I) will also increase even more.As the differential pressure between the compartments increases in this way, the spool (19) slides further in the low pressure chamber 0υ direction than the state shown in FIG. 5, and as shown in FIG.
By connecting the bypass passage (1υ) in this way, a part of the refrigerant gas that is being compressed in the compression chamber (6) is transferred to the bypass hole (1υ).
11a), high pressure chamber (20), bypass communication hole (lie
), the effect of releasing air to the suction chamber (9) side through the bypass hole (1lb)' is obtained. In addition, as the refrigerant gas in the compression chamber (6) is released to the suction chamber (9) side in this way, the differential pressure that occurs between the compression stroke pressure pn and the suction stroke pressure PL will rapidly decrease. However, as the differential pressure generated between the compression stroke pressure Pa and the suction stroke pressure PL suddenly decreases, the spool (191 spring (221) biases the high pressure chamber toward the high pressure chamber (see Fig. 4). As shown in the figure, the bypass communication hole (llc) and the inlet hole (llb) are in communication, and a part of the refrigerant gas that is being compressed in the compression chamber (6) is transferred to the bypass hole ( 11a), high pressure chamber (20), bypass communication hole (11c), bypass hole (l
The effect of releasing the air to the suction chamber (9) through lb> is obtained. While this relief effect is obtained, the high pressure chamber (20)
The internal pressure will gradually increase, but the compression stroke pressure pH in the high pressure chamber (20) and the low pressure chamber (21
) and the differential pressure generated between the suction stroke pressure PL at
2) In the state where the biasing pressure is exceeded, the spool slide slides toward the low pressure chamber (21), and the bypass communication hole (lie) is closed by the wall portion (lid) again as shown in Fig. 5. Effect of the Invention The present invention is configured as described above, and by having the configuration as described above, it is possible to reduce the start-up torque at the time of startup. As a result, we were able to obtain a smooth start-up.
又圧縮機の運転中に急加速させた場合において、圧縮機
の回転数が急激に上昇することに起因して発生するショ
ックを緩和することが出来るとともに過冷却に対して適
切に対処することが出来るに至った。In addition, when the compressor is suddenly accelerated during operation, it is possible to alleviate the shock that occurs due to the sudden increase in the rotation speed of the compressor, and it is also possible to appropriately deal with overcooling. I was able to do it.
第1図は本発明に係る圧縮機の側断面図(第2図におけ
るA−B−C線断面図)、第2図は第1図におけるD−
D線断面図、第3図は同E−E線断面図、第4図乃至第
6図は制御弁機構部分の作用状態を表わす拡大図、第7
図は従来構造を表わす断面図、第8図は同制御弁機措部
分の断面図、第9図および第10図は高圧室と低圧室の
それぞれの圧力変化の状態を示すグラフであり、第9図
は本願発明に係るもので、第10図は従来に関するもの
である。
(1)ハウジング、(IA)70ンドハウジング、(I
B)リヤハウジング、(2)シリンダーブロック、(3
A)フロントサイドプレート、(3B)リヤサイドプレ
ート、(4)駆動軸、(5)ローター、(6)圧縮室、
(カベーン溝、(8)ベーン、(9)吸入室、(9γ吸
入口、QQI吸入孔、Qllバイパス路、(1’1a)
(llb)+ (llb)’バイパス孔、(llc)バ
イパス連通孔、(lid)壁面部、αつ制御弁機構、α
3)吐出室、θ4)吐出孔、(151吐出弁、06)リ
テーナ−1Q7) 分離室、Hff 出口、(181通
孔、(19)スプール、(20)高圧室、Gl)低圧室
、(塑ばね、(23)導圧孔。
特許出願人 株式会社 豊田自動織機製作所第2訓
8 11D
第8図
第9図
第10図FIG. 1 is a side cross-sectional view of the compressor according to the present invention (cross-sectional view taken along line A-B-C in FIG. 2), and FIG.
3 is a sectional view taken along line E-E, FIGS. 4 to 6 are enlarged views showing the operating state of the control valve mechanism, and FIG. 7 is a sectional view taken along line D.
Figure 8 is a cross-sectional view of the conventional structure, Figure 8 is a cross-sectional view of the control valve mechanism, Figures 9 and 10 are graphs showing pressure changes in the high-pressure chamber and the low-pressure chamber, respectively. FIG. 9 is related to the present invention, and FIG. 10 is related to the prior art. (1) Housing, (IA) 70nd housing, (I
B) Rear housing, (2) cylinder block, (3
A) Front side plate, (3B) Rear side plate, (4) Drive shaft, (5) Rotor, (6) Compression chamber,
(Cavein groove, (8) vane, (9) suction chamber, (9γ suction port, QQI suction hole, Qll bypass path, (1'1a)
(llb) + (llb)' bypass hole, (llc) bypass communication hole, (lid) wall section, α control valve mechanism, α
3) Discharge chamber, θ4) Discharge hole, (151 discharge valve, 06) Retainer-1Q7) Separation chamber, Hff outlet, (181 hole, (19) Spool, (20) High pressure chamber, GI) Low pressure chamber, (Plastic Spring, (23) Pressure guiding hole. Patent applicant Toyota Automatic Loom Works Co., Ltd. 2nd Section 8 11D Fig. 8 Fig. 9 Fig. 10
Claims (1)
退自在に設けられるスプールの両端部に高圧室と低圧室
を対峙させて設け、低圧室は吸入室若しくは圧縮室の吸
入行程と連通させ且つ同低圧室内には上記スプールを高
圧室方向に向けて付勢するばねを介装する一方、サイド
プレートには圧縮室側に高圧室と連通ずるバイノくス孔
を圧縮室の圧縮行程と対応させて設けるとともに吸入室
側には吸入室と連通ずる複数個のノくイパス孔を上記圧
縮室側のバイノ(ス孔に対してその開口位置を変位させ
て設け、前記スプールにはバイパス連通孔を穿設し、同
連通孔の一端は高圧室に連通させるとともに他端をスプ
ールの摺動を介して上記複数個のバイパス孔に対して選
択的に連通可能で且つ前記バイノくス孔間に形成する壁
面部によって閉塞可能に設けて成る圧縮容量可変型圧縮
機。(1) A high-pressure chamber and a low-pressure chamber are provided facing each other at both ends of a spool that is movable in a side plate that separates a compression chamber and a suction chamber, and the low-pressure chamber communicates with the suction chamber or the suction stroke of the compression chamber. A spring is inserted in the low pressure chamber to urge the spool toward the high pressure chamber, and a binoculars hole in the side plate that communicates with the high pressure chamber is connected to the compression stroke of the compression chamber. A plurality of bypass passage holes are provided correspondingly and communicated with the suction chamber on the suction chamber side, the opening positions of which are displaced from the bino (spool) holes on the compression chamber side, and bypass communication holes are provided on the spool. A hole is bored, one end of the communication hole communicates with the high pressure chamber, and the other end communicates selectively with the plurality of bypass holes through sliding of the spool, and between the binocular bypass holes. A variable compression capacity type compressor which is provided so as to be closable by a wall portion formed on the wall.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11001183A JPS601397A (en) | 1983-06-17 | 1983-06-17 | Compressor of variable compression capacity type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11001183A JPS601397A (en) | 1983-06-17 | 1983-06-17 | Compressor of variable compression capacity type |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS601397A true JPS601397A (en) | 1985-01-07 |
JPH0152596B2 JPH0152596B2 (en) | 1989-11-09 |
Family
ID=14524850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11001183A Granted JPS601397A (en) | 1983-06-17 | 1983-06-17 | Compressor of variable compression capacity type |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS601397A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6217173A (en) * | 1985-07-15 | 1987-01-26 | Ulvac Corp | Flat plate magnetron sputtering device |
JPS63310965A (en) * | 1987-06-11 | 1988-12-19 | Anelva Corp | Sputtering device |
US5074760A (en) * | 1988-08-12 | 1991-12-24 | Mitsubishi Jukogyo Kabushiki Kaisha | Scroll type compressor |
JPH06158301A (en) * | 1992-11-19 | 1994-06-07 | Nec Corp | Sputtering device |
CN100424355C (en) * | 2004-06-21 | 2008-10-08 | 乐金电子(天津)电器有限公司 | Discharge valve device of rotary compressor |
-
1983
- 1983-06-17 JP JP11001183A patent/JPS601397A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6217173A (en) * | 1985-07-15 | 1987-01-26 | Ulvac Corp | Flat plate magnetron sputtering device |
JPH0432152B2 (en) * | 1985-07-15 | 1992-05-28 | ||
JPS63310965A (en) * | 1987-06-11 | 1988-12-19 | Anelva Corp | Sputtering device |
US5074760A (en) * | 1988-08-12 | 1991-12-24 | Mitsubishi Jukogyo Kabushiki Kaisha | Scroll type compressor |
JPH06158301A (en) * | 1992-11-19 | 1994-06-07 | Nec Corp | Sputtering device |
CN100424355C (en) * | 2004-06-21 | 2008-10-08 | 乐金电子(天津)电器有限公司 | Discharge valve device of rotary compressor |
Also Published As
Publication number | Publication date |
---|---|
JPH0152596B2 (en) | 1989-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4566863A (en) | Rotary compressor operable under a partial delivery capacity | |
US4846632A (en) | Variable displacement vane compressor | |
EP1394418A2 (en) | Vane compressor | |
US4447196A (en) | Rotary vane compressor with valve control of undervane pressure | |
JPS601397A (en) | Compressor of variable compression capacity type | |
KR20240090204A (en) | compressor | |
JP2019065745A (en) | Vane compressor | |
US4636153A (en) | Rotary compressor with blind hole in end wall that aligns with back pressure chamber | |
US4842490A (en) | Variable displacement vane compressor | |
US4516920A (en) | Variable capacity vane compressor capable of controlling back pressure acting upon vanes | |
JPS5879689A (en) | Variable displacement type compressor | |
JPS5968593A (en) | Variable capacity type compressor | |
JPS611887A (en) | Rotary compressor | |
JPH024796B2 (en) | ||
JPH03202691A (en) | Variable volume scroll type compressor | |
JPS6245993A (en) | Volume control mechanism for variable delivery compressor | |
JPS59113293A (en) | Compressing capacity control mechanism in compressor | |
JPS6022094A (en) | Compression capacity variable mechanish in slide vane type compressor | |
JPS5999089A (en) | Variable capacity type compressor | |
BR102013015194A2 (en) | Tandem Vane Compressor | |
JPH0247275Y2 (en) | ||
JPS60145476A (en) | Oil feeding apparatus for rotary vane type compressor | |
JPS5977095A (en) | Volumetrically variable compressor | |
JPS63280883A (en) | Variable volume type vane compressor | |
JPS6032989A (en) | Vane back pressure controller for vane compressor |