JPH0150485B2 - - Google Patents
Info
- Publication number
- JPH0150485B2 JPH0150485B2 JP58090650A JP9065083A JPH0150485B2 JP H0150485 B2 JPH0150485 B2 JP H0150485B2 JP 58090650 A JP58090650 A JP 58090650A JP 9065083 A JP9065083 A JP 9065083A JP H0150485 B2 JPH0150485 B2 JP H0150485B2
- Authority
- JP
- Japan
- Prior art keywords
- shape
- width direction
- distribution
- detector
- function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000007246 mechanism Effects 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 19
- 238000012937 correction Methods 0.000 claims description 18
- 238000011156 evaluation Methods 0.000 claims description 11
- 238000005096 rolling process Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 7
- 238000013000 roll bending Methods 0.000 claims description 3
- 238000010977 unit operation Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 2
- 238000012986 modification Methods 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/28—Control of flatness or profile during rolling of strip, sheets or plates
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Description
本発明は圧延板幅方向の複数個所の形状が検出
できる形状検出器と形状不良を修正する複数個の
形状修正機構とを有する形状制御システムにおけ
る薄板圧延の形状制御法に関するものである。 従来の薄板圧延の形状制御として板幅方向に分
布する形状検出器の出力を形状修正機構の個数に
相当する数の係数で表わされる関数で近似して、
これらの係数が最小となるような形状修正機構の
操作量を決定する方法がある。しかしながらこの
方法によると、形状修正機構の個数によつて形状
を表わす関数の次数が制限されるため制御方法が
限定されたものとなる。 又形状検出器の出力を板幅方向位置xの高次式
で近似して、この近似式の板幅端部と板幅中央部
の値差λ2と板幅の
できる形状検出器と形状不良を修正する複数個の
形状修正機構とを有する形状制御システムにおけ
る薄板圧延の形状制御法に関するものである。 従来の薄板圧延の形状制御として板幅方向に分
布する形状検出器の出力を形状修正機構の個数に
相当する数の係数で表わされる関数で近似して、
これらの係数が最小となるような形状修正機構の
操作量を決定する方法がある。しかしながらこの
方法によると、形状修正機構の個数によつて形状
を表わす関数の次数が制限されるため制御方法が
限定されたものとなる。 又形状検出器の出力を板幅方向位置xの高次式
で近似して、この近似式の板幅端部と板幅中央部
の値差λ2と板幅の
【式】の位置の値と
【式】の位置の値の平均値と板幅中央部の
位置の値の差λ4とを用い、2個の形状修正機構の
操作量δ1、δ2によるλ2とλ4の変化率∂λ2/∂δ1、
∂λ4/∂δ1、∂λ2/∂δ2、∂λ4/∂δ2を求めてお
き からδ1、δ2を求め、これに適当なゲインG1,G2
を乗じた値G1δ1、G2δ2を各形状修正機構の操作
量とする方法がある。この方法では板幅方向の5
点のみに着目しているため他の点での形状が不明
であること及び形状修正機構の数が3個以上の場
合には対応できないこととなり限られた場合にの
み適応できる方法である。従つてこれらの制御方
法では最適化が望めなかつた。 また、特開昭57−47516号公報に開示された技
術として、薄板の板幅方向に複数個所の形状を測
定し、複数の形状修正手段を用いて薄板の形状修
正を行う方法が記載されている。この技術は板幅
方向に有限の位置で形状を検出し、且つこの有限
位置に対する各形状修正手段の形状修正効果にも
とずき、個別に形状修正を行うものである。 このため、複数の形状修正手段を同時に操作す
る場合の悪影響を含む相互影響が配慮されていな
いので、この実施例に示されるように、各形状修
正手段別に個別に形状修正を行い、この形状制御
を順次実施して目標形状に修正していくものであ
る。従つてこの形状修正制御は早期に終結せず、
所望の目標形状を得るためには相当の不良部分が
発生するものであつた。 本発明はかかる欠点を解消して最適化制御を行
なう薄板圧延の形状制御法を提供することを目的
としたものである。 本発明の薄板圧延の形状制御法は、圧延板幅方
向の複数個所の形状が検出できる形状検出器と複
数個の形状修正機構と演算処理装置とを有する薄
板圧延の形状制御システムにおいて、形状検出器
の出力分布及び目標形状分布を板幅方向の位置の
関数として表わし、又各形状修正機構の単位操作
量に対する形状検出器の出力分布を板幅方向の関
数で表わし、これらの関数から板幅全体に渡る形
状を評価する評価函数を演算して、この評価関数
を最小にするような各形状修正機構の操作量を演
算処理装置で演算して、この操作量で形状を制御
するものである。 以下この発明を詳述する。 第1図は形状検出器の出力の板幅方向の分布の
一例を示したものであり、第2図は本発明の流れ
のブロツク図を示す。第1図においてYは形状検
出器の出力であり、xは板幅方向の位置である。
この出力分布Y(x)及び目標形状分布Y*(x)
は多項式φi(x)の和で近似することができる。 Y(x)=o 〓i=0 aiφi(x) ……〔〕 Y*(x)=o 〓i=0 ai *φi(x) ……〔〕 又形状修正機構の制御特性すなわち各形状修正
機構の単位操作量に対する形状検出器の出力変化
ΔYjをあらかじめ測定しておき、これを多項式φi
(x)の和で近似することができる。 ΔYj(x)=o 〓i=0 bijφi(x) ……〔〕 従つてこの各形状修正機構の操作量δjによる形
状検出器の出力変化ΔYj(x)は次式で求められ
る。 ΔYj(x)=δjfj(x) =δjo 〓i=0 bijφi(x) ……〔〕 各形状修正機構を各操作量だけ操作して、目標
形状分布Y*(x)に近い形状を得ることは Y0(x)=Y(x)−n 〓j=1 ΔYj(x) =Y(x)−o 〓i=0 n 〓j=1 δjbijφi(x) なる関数をY*(x)なる関数に近似すること
である。 この近似方法として最小自乗法を適用すること
により、板幅方向の特定の数点での形状変化を等
しくする従来方法と異なり、板幅全体の形状変化
を等しくする従来方法と異なり、板幅全体の形状
変化分布を平均的に目標形状分布に近ずけるよう
な各形状修正機構の操作量が得られる。 最小自乗法によれば、目標関数と対象関数の差
の自乗和を誤差関数又は評価関数というが、本発
明の評価関数Φは板幅寸法をWとすると次式で表
わされる。 Φ=∫W/2 -W/2{Y0(x)−Y*(x)}2dx =∫W/2 -W/2{Y(x)−Y*(x)−n 〓j=1 ΔYj (x)} 2dx この評価関数Φの値は、第3図において曲線
Y0(x)とY*(x)にかこまれた面積の自乗に相
当するものであり、この評価関数Φを最小にする
ことが曲線Y0(x)をY*(x)に最適に近ずける
ことになる。 すなわち評価関数Φより なる形状修正機構の個数すなわちm個の連立方
程式が得られ、これを解くことによりΦの値を最
小値とする各形状修正機構の最適操作量δjが得ら
れる。 Φ=∫W/2 -W/2{Y(x)−Y*(x)−n 〓j=1 ΔYj(x)}2dx =∫W/2 -W/2{o 〓i=0 aiφi(x)−o 〓i=0 ai *φi(x)−o 〓i=0 n 〓j=0 bijδjφi(x)}2dx =o 〓i=0 o 〓k=0 {ai−ai*−n 〓j=1 bijδj} {ak−ak *−n 〓j=0 bkjδj}∫W/2 -W/2φi(x)φk(x)dx =o 〓i=0 o 〓k=0 {ai−ai *−2bijδj}{ak−ak *−n 〓j=1 bkjδj}AiK ここでAik=∫W/2 -W/2φi(x)φk(x)dxを求めてお
き、これから ∂Φ/∂δl=o 〓i=0 o 〓k=0 Aik{−bil(ak−ak *−n 〓j=1 bkjδj)−bkl(ai−ai *−n 〓j=1 bijδj)} =o 〓i=0 o 〓 〓k=0 Aik[−{bil(ak−ak *)+bkl(ai−ai *)}+{bi
ln 〓j=1 bkjiδj+bkln 〓j=1 bijδj}] となる。ここで αlj=o 〓i=0 o 〓k=0 Aik(bilbkj+bklbij) Bl=o 〓i=0 o 〓k=0 Aik{bil(ak−ak *) +bkl(ai−ai *)} とおくと∂Φ/∂δl=0は次式になる。 n 〓j=1 αljδj=Bl 従つて α11δ1+α12δ2+……+α1nδn=β1 α21δ1+α22δ2+……+α2nδn=β2 : αn1δ1+αn2δ2+……+αnnδn=βn なる1次連立方程式が得られる。これを解くこと
により最適操作量δ1、δ2…δnが得られる。 なお形状分布を近似する多項式φi(x)として
直交関数を選ぶと Aik=∫W/2 -W/2φi(x)φk(x) =1 i=k =0 i≠k となり αlj=2o 〓i=0 bilbij βl =2o 〓i=0 bil(ai−ai *) となり計算が簡単になる。 次に本発明の一実施例について説明する。第4
図に本発明の一実施例の構造を示す。形状検出器
1は板幅方向に複数個の検出端があり、処理部2
で板幅方向の伸び率の分布が演算される。形状修
正機構は水平ロール曲げ機構、垂直ロールベンダ
及び圧延機左右レベリングとを組合せたものであ
り、4は垂直ロールベンダのシリンダ13の信号
変換器、5は圧延機左右レベリングすなわちロー
ルスクリユの左右差14の信号変換器、6乃至1
2は水平ロール曲げシリンダ15乃至21の信号
変換器である。演算処理装置3で前述した本発明
の演算処理を行い、各信号変換器4乃至12の操
作量を演算する。この演算された操作量により各
シリンダ13乃至21を操作する。第5図及び第
6図に板幅方向の伸び分布を示す。第5図及び第
6図において横軸は板幅方向の位置、縦軸は板幅
の伸び分布を示す。第5図は本実施例を適用しな
い場合の板幅の伸び分布を示し、第6図は本実施
例により板幅方向の形状を制御した場合の伸び分
布を示す。すなわち本実施例の適用により板幅方
向にあつた伸びの大きな分布が均一で小さな伸び
分布となつた。 また通常制御が困難といわれていた板幅1/4付
近の形状不良も良く制御されている。 以上述べたように本発明によれば、各形状修正
機構間の相互効果が十分に把握され、各形状修正
機構の総合操作量が得られるので、最短時間で目
標形状に到達する形状修正制御が実現できる。ま
た、本発明によれば形状修正機構の数と形状検出
器にて検出した点数のうち演算に用いる数又は形
状を近似した式の次数を一致させる必要はなく、
さらに板幅全体の形状を評価した最適形状制御を
行なうことができ、製品の品質の向上に寄与す
る。
操作量δ1、δ2によるλ2とλ4の変化率∂λ2/∂δ1、
∂λ4/∂δ1、∂λ2/∂δ2、∂λ4/∂δ2を求めてお
き からδ1、δ2を求め、これに適当なゲインG1,G2
を乗じた値G1δ1、G2δ2を各形状修正機構の操作
量とする方法がある。この方法では板幅方向の5
点のみに着目しているため他の点での形状が不明
であること及び形状修正機構の数が3個以上の場
合には対応できないこととなり限られた場合にの
み適応できる方法である。従つてこれらの制御方
法では最適化が望めなかつた。 また、特開昭57−47516号公報に開示された技
術として、薄板の板幅方向に複数個所の形状を測
定し、複数の形状修正手段を用いて薄板の形状修
正を行う方法が記載されている。この技術は板幅
方向に有限の位置で形状を検出し、且つこの有限
位置に対する各形状修正手段の形状修正効果にも
とずき、個別に形状修正を行うものである。 このため、複数の形状修正手段を同時に操作す
る場合の悪影響を含む相互影響が配慮されていな
いので、この実施例に示されるように、各形状修
正手段別に個別に形状修正を行い、この形状制御
を順次実施して目標形状に修正していくものであ
る。従つてこの形状修正制御は早期に終結せず、
所望の目標形状を得るためには相当の不良部分が
発生するものであつた。 本発明はかかる欠点を解消して最適化制御を行
なう薄板圧延の形状制御法を提供することを目的
としたものである。 本発明の薄板圧延の形状制御法は、圧延板幅方
向の複数個所の形状が検出できる形状検出器と複
数個の形状修正機構と演算処理装置とを有する薄
板圧延の形状制御システムにおいて、形状検出器
の出力分布及び目標形状分布を板幅方向の位置の
関数として表わし、又各形状修正機構の単位操作
量に対する形状検出器の出力分布を板幅方向の関
数で表わし、これらの関数から板幅全体に渡る形
状を評価する評価函数を演算して、この評価関数
を最小にするような各形状修正機構の操作量を演
算処理装置で演算して、この操作量で形状を制御
するものである。 以下この発明を詳述する。 第1図は形状検出器の出力の板幅方向の分布の
一例を示したものであり、第2図は本発明の流れ
のブロツク図を示す。第1図においてYは形状検
出器の出力であり、xは板幅方向の位置である。
この出力分布Y(x)及び目標形状分布Y*(x)
は多項式φi(x)の和で近似することができる。 Y(x)=o 〓i=0 aiφi(x) ……〔〕 Y*(x)=o 〓i=0 ai *φi(x) ……〔〕 又形状修正機構の制御特性すなわち各形状修正
機構の単位操作量に対する形状検出器の出力変化
ΔYjをあらかじめ測定しておき、これを多項式φi
(x)の和で近似することができる。 ΔYj(x)=o 〓i=0 bijφi(x) ……〔〕 従つてこの各形状修正機構の操作量δjによる形
状検出器の出力変化ΔYj(x)は次式で求められ
る。 ΔYj(x)=δjfj(x) =δjo 〓i=0 bijφi(x) ……〔〕 各形状修正機構を各操作量だけ操作して、目標
形状分布Y*(x)に近い形状を得ることは Y0(x)=Y(x)−n 〓j=1 ΔYj(x) =Y(x)−o 〓i=0 n 〓j=1 δjbijφi(x) なる関数をY*(x)なる関数に近似すること
である。 この近似方法として最小自乗法を適用すること
により、板幅方向の特定の数点での形状変化を等
しくする従来方法と異なり、板幅全体の形状変化
を等しくする従来方法と異なり、板幅全体の形状
変化分布を平均的に目標形状分布に近ずけるよう
な各形状修正機構の操作量が得られる。 最小自乗法によれば、目標関数と対象関数の差
の自乗和を誤差関数又は評価関数というが、本発
明の評価関数Φは板幅寸法をWとすると次式で表
わされる。 Φ=∫W/2 -W/2{Y0(x)−Y*(x)}2dx =∫W/2 -W/2{Y(x)−Y*(x)−n 〓j=1 ΔYj (x)} 2dx この評価関数Φの値は、第3図において曲線
Y0(x)とY*(x)にかこまれた面積の自乗に相
当するものであり、この評価関数Φを最小にする
ことが曲線Y0(x)をY*(x)に最適に近ずける
ことになる。 すなわち評価関数Φより なる形状修正機構の個数すなわちm個の連立方
程式が得られ、これを解くことによりΦの値を最
小値とする各形状修正機構の最適操作量δjが得ら
れる。 Φ=∫W/2 -W/2{Y(x)−Y*(x)−n 〓j=1 ΔYj(x)}2dx =∫W/2 -W/2{o 〓i=0 aiφi(x)−o 〓i=0 ai *φi(x)−o 〓i=0 n 〓j=0 bijδjφi(x)}2dx =o 〓i=0 o 〓k=0 {ai−ai*−n 〓j=1 bijδj} {ak−ak *−n 〓j=0 bkjδj}∫W/2 -W/2φi(x)φk(x)dx =o 〓i=0 o 〓k=0 {ai−ai *−2bijδj}{ak−ak *−n 〓j=1 bkjδj}AiK ここでAik=∫W/2 -W/2φi(x)φk(x)dxを求めてお
き、これから ∂Φ/∂δl=o 〓i=0 o 〓k=0 Aik{−bil(ak−ak *−n 〓j=1 bkjδj)−bkl(ai−ai *−n 〓j=1 bijδj)} =o 〓i=0 o 〓 〓k=0 Aik[−{bil(ak−ak *)+bkl(ai−ai *)}+{bi
ln 〓j=1 bkjiδj+bkln 〓j=1 bijδj}] となる。ここで αlj=o 〓i=0 o 〓k=0 Aik(bilbkj+bklbij) Bl=o 〓i=0 o 〓k=0 Aik{bil(ak−ak *) +bkl(ai−ai *)} とおくと∂Φ/∂δl=0は次式になる。 n 〓j=1 αljδj=Bl 従つて α11δ1+α12δ2+……+α1nδn=β1 α21δ1+α22δ2+……+α2nδn=β2 : αn1δ1+αn2δ2+……+αnnδn=βn なる1次連立方程式が得られる。これを解くこと
により最適操作量δ1、δ2…δnが得られる。 なお形状分布を近似する多項式φi(x)として
直交関数を選ぶと Aik=∫W/2 -W/2φi(x)φk(x) =1 i=k =0 i≠k となり αlj=2o 〓i=0 bilbij βl =2o 〓i=0 bil(ai−ai *) となり計算が簡単になる。 次に本発明の一実施例について説明する。第4
図に本発明の一実施例の構造を示す。形状検出器
1は板幅方向に複数個の検出端があり、処理部2
で板幅方向の伸び率の分布が演算される。形状修
正機構は水平ロール曲げ機構、垂直ロールベンダ
及び圧延機左右レベリングとを組合せたものであ
り、4は垂直ロールベンダのシリンダ13の信号
変換器、5は圧延機左右レベリングすなわちロー
ルスクリユの左右差14の信号変換器、6乃至1
2は水平ロール曲げシリンダ15乃至21の信号
変換器である。演算処理装置3で前述した本発明
の演算処理を行い、各信号変換器4乃至12の操
作量を演算する。この演算された操作量により各
シリンダ13乃至21を操作する。第5図及び第
6図に板幅方向の伸び分布を示す。第5図及び第
6図において横軸は板幅方向の位置、縦軸は板幅
の伸び分布を示す。第5図は本実施例を適用しな
い場合の板幅の伸び分布を示し、第6図は本実施
例により板幅方向の形状を制御した場合の伸び分
布を示す。すなわち本実施例の適用により板幅方
向にあつた伸びの大きな分布が均一で小さな伸び
分布となつた。 また通常制御が困難といわれていた板幅1/4付
近の形状不良も良く制御されている。 以上述べたように本発明によれば、各形状修正
機構間の相互効果が十分に把握され、各形状修正
機構の総合操作量が得られるので、最短時間で目
標形状に到達する形状修正制御が実現できる。ま
た、本発明によれば形状修正機構の数と形状検出
器にて検出した点数のうち演算に用いる数又は形
状を近似した式の次数を一致させる必要はなく、
さらに板幅全体の形状を評価した最適形状制御を
行なうことができ、製品の品質の向上に寄与す
る。
第1図は形状検出器の出力の板幅方向の分布
図、第2図は本発明の流れのブロツク図、第3図
は評価関数の関係を示す曲線図、第4図は本発明
の一実施例の構造図、第5図は本発明を実施しな
い場合の伸びの分布図、第6図は本実施例を実施
した場合の伸びの分布図である。 1……形状検出器、2……形状検出器の処理
部、3……演算処理装置、4乃至12……信号変
換器、13乃至21……シリンダ。
図、第2図は本発明の流れのブロツク図、第3図
は評価関数の関係を示す曲線図、第4図は本発明
の一実施例の構造図、第5図は本発明を実施しな
い場合の伸びの分布図、第6図は本実施例を実施
した場合の伸びの分布図である。 1……形状検出器、2……形状検出器の処理
部、3……演算処理装置、4乃至12……信号変
換器、13乃至21……シリンダ。
Claims (1)
- 【特許請求の範囲】 1 圧延板幅方向の複数個所の形状が検出できる
形状検出器と、3以上の形状修正機構と演算処理
装置とを有する薄板圧延の形状制御システムにお
いて、形状検出器の出力分布を板幅方向の位置x
の関数Y(x)で、目標形状分布を板幅方向の位
置xの関数Y*(x)で表わし、また3以上m個の
形状修正機構の単位操作量に対する形状検出量の
出力変化を板幅方向の位置xの関数により、それ
ぞれΔY1(x)〜ΔYn(x)と表わし、 Y(x)−Y*(x)−n 〓j=1 ΔYj(x)の2乗値を板幅
方向の位置xで積分して1つの評価関数を作成
し、この評価関数を最小にするような3以上の形
状修正機構の操作量の組合せを、前記評価関数の
各操作量による微分値を零として得られる連立方
程式を解くことによつて、同時に演算することを
演算処理装置で行なうことを特徴とする薄板圧延
の形状制御法。 2 形状検出器として板幅方向の伸びの分布を検
出する検出器と、形状修正機構として水平ロール
曲げ機構、垂直ロールベンダ及び圧延機左右レベ
リングを組合せた特許請求の範囲第1項記載の薄
板圧延の形状制御法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58090650A JPS59218206A (ja) | 1983-05-25 | 1983-05-25 | 薄板圧延の形状制御法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58090650A JPS59218206A (ja) | 1983-05-25 | 1983-05-25 | 薄板圧延の形状制御法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59218206A JPS59218206A (ja) | 1984-12-08 |
JPH0150485B2 true JPH0150485B2 (ja) | 1989-10-30 |
Family
ID=14004386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58090650A Granted JPS59218206A (ja) | 1983-05-25 | 1983-05-25 | 薄板圧延の形状制御法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59218206A (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02169119A (ja) * | 1988-12-22 | 1990-06-29 | Toshiba Corp | 板平坦度制御方法 |
CN103567228B (zh) * | 2013-09-26 | 2015-04-08 | 燕山大学 | 一种六辊轧机极薄带非常态轧制时板形与压靠预报方法 |
CN106345817B (zh) * | 2016-09-14 | 2018-09-04 | 燕山大学 | 工作辊长径比大且直径绝对值小的六辊轧机板形预报方法 |
CN106391725B (zh) * | 2016-09-28 | 2018-05-01 | 燕山大学 | 一种适用于冷轧过程轧制压力随轧制速度变化预报方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5747516A (en) * | 1980-09-05 | 1982-03-18 | Kawasaki Steel Corp | Controlling method for shape of thin sheet |
-
1983
- 1983-05-25 JP JP58090650A patent/JPS59218206A/ja active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5747516A (en) * | 1980-09-05 | 1982-03-18 | Kawasaki Steel Corp | Controlling method for shape of thin sheet |
Also Published As
Publication number | Publication date |
---|---|
JPS59218206A (ja) | 1984-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0063605B1 (en) | System for controlling the shape of a strip | |
KR920008864B1 (ko) | 변형 교정방법 | |
JPH0150485B2 (ja) | ||
US5325692A (en) | Method of controlling transverse shape of rolled strip, based on tension distribution | |
JPH0246283B2 (ja) | ||
EP0075960B1 (en) | Control device for a continuous rolling machine | |
JPH0623417A (ja) | 熱間粗圧延における板幅制御装置 | |
KR20010036626A (ko) | 열간사상압연에서의 스트립 형상제어 게인 설정방법 | |
JPH11221607A (ja) | 圧延ラインの形状制御方法 | |
JP2882363B2 (ja) | 抄紙機のシステム同定装置 | |
US6571134B1 (en) | Method and device for determining an intermediary profile of a metal strip | |
KR100293213B1 (ko) | 열간사상압연기에서의출측판두께제어방법 | |
JPS63308317A (ja) | 荷電ビ−ム露光装置 | |
JP2000126809A (ja) | 圧延機のセットアップ装置 | |
JP3327236B2 (ja) | クラスタ圧延機および板形状制御法 | |
JPH08190401A (ja) | 複数制御要素の制御方法 | |
JP3681283B2 (ja) | 圧延機のセットアップ装置 | |
JPH067819A (ja) | 圧延機におけるキャンバ、蛇行制御方法 | |
JPH02137606A (ja) | 多品種圧延時の板厚制御方法 | |
JPH02258108A (ja) | 圧延機における形状制御方法および装置 | |
JPS5815201B2 (ja) | 金属ストリツプの形状制御方法 | |
JP2000237811A (ja) | 熱間圧延機の板幅制御装置 | |
JPH04284910A (ja) | 熱間圧延機における板幅制御方法 | |
JPS6228014A (ja) | 厚板圧延における平面形状制御方法 | |
JPH06238311A (ja) | 圧延機のセットアップ方法 |