JPH0149897B2 - - Google Patents

Info

Publication number
JPH0149897B2
JPH0149897B2 JP55051661A JP5166180A JPH0149897B2 JP H0149897 B2 JPH0149897 B2 JP H0149897B2 JP 55051661 A JP55051661 A JP 55051661A JP 5166180 A JP5166180 A JP 5166180A JP H0149897 B2 JPH0149897 B2 JP H0149897B2
Authority
JP
Japan
Prior art keywords
wire rope
magnetic
magnetic pole
magnetic flux
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55051661A
Other languages
Japanese (ja)
Other versions
JPS56148052A (en
Inventor
Yutaka Hirama
Kenzo Takahashi
Sadayuki Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Elevator Engineering and Service Co Ltd
Original Assignee
Hitachi Elevator Engineering and Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Elevator Engineering and Service Co Ltd filed Critical Hitachi Elevator Engineering and Service Co Ltd
Priority to JP5166180A priority Critical patent/JPS56148052A/en
Priority to US06/256,107 priority patent/US4427940A/en
Publication of JPS56148052A publication Critical patent/JPS56148052A/en
Publication of JPH0149897B2 publication Critical patent/JPH0149897B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • B66B7/1207Checking means
    • B66B7/1215Checking means specially adapted for ropes or cables
    • B66B7/123Checking means specially adapted for ropes or cables by analysing magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • G01R31/59Testing of lines, cables or conductors while the cable continuously passes the testing apparatus, e.g. during manufacture

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

An electromagnetic inspecting apparatus for electromagnetically detecting a defect present in a magnetizable wire rope moving in its longitudinal direction is disclosed. The apparatus comprises a first magnetic pole disposed opposite to the elongate magnetic member, a second magnetic pole having a polarity different from that of the first magnetic pole and disposed opposite to the elongate magnetic member at a position spaced apart by a predetermined distance from the first magnetic pole in the longitudinal direction, a detecting core disposed opposite to the magnetizable wire rope at a position intermediate between the first and second magnetic poles, a detecting coil wound around the detecting core to make a differential response to flows of leakage flux appearing due to the presence of a defect in the magnetizable wire rope thereby generating an electrical output signal indicative of the result of its response, and a yoke magnetically coupling the first and second magnetic poles and the detecting core at the portions remote from the elongate magnetic member.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ワイヤーロープの磁気探傷装置に係
り、簡素な構成で高感度に損傷部を検出できる装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic flaw detection device for wire ropes, and relates to a device that can detect damaged parts with a simple configuration and high sensitivity.

〔従来の技術〕[Conventional technology]

一般にケーブルカーやエレベータに用いられる
ワイヤーロープは、ロープを構成する素線が長期
使用しているうちに断線したり、局部的に摩耗し
たりしてロープの残存強度が次第に低下していく
ので、定期的にロープの点検を行ない、ロープ切
断等の事故が発生する以前にその状態から判断し
てロープ交換することを原則としている。そし
て、ロープの点検は、それらの保全技術者による
目視で行なわれていたが、最近では磁気を利用し
て損傷の有無を検査する方法が実施されるように
なつてきている。その例としては、例えば特開昭
53−7290号及び特公昭43−9799号公報に開示され
た装置がある。
Generally, wire ropes used in cable cars and elevators tend to break or wear out locally during long-term use, and the remaining strength of the rope gradually decreases. As a general rule, ropes are inspected regularly and the rope is replaced based on its condition before an accident such as a rope breakage occurs. Ropes were previously inspected visually by maintenance engineers, but recently a method of inspecting for damage using magnetism has come into use. As an example, for example,
There are devices disclosed in Japanese Patent Publication No. 53-7290 and Japanese Patent Publication No. 43-9799.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記した従来技術における装置
は、感磁素子により直接に漏洩磁束を検出するよ
うにしてあるので、微弱な漏洩磁束を検出するた
めには高感度の感磁素子が必要になると共に、こ
の感磁素子を複数個設けるため構成も複雑化し、
高価となるばかりか、また、一方、特開昭53−
7290号の装置では、操作性が悪く、また、エレベ
ータはワイヤーロープを複数本使用され、そし
て、隣接のワイヤーロープの間隙が5〜6mm程度
であることから、この装置をエレベータのワイヤ
ーロープに装着し、ワイヤーロープ若くはこの装
置を走行させることは、現状、極めて困難であ
り、また、不可能に近い。即ち、この装置は、エ
レベータのように複数本のワイヤーロープや隣接
して掛けられているものには、現実、使用できな
いというのが実情である。
However, since the above-mentioned prior art device directly detects leakage magnetic flux using a magnetic sensing element, a highly sensitive magnetic sensing element is required in order to detect weak leakage magnetic flux. The configuration becomes complicated due to the provision of multiple magnetic sensing elements,
Not only is it expensive, but also, on the other hand,
The device No. 7290 has poor operability, and the elevator uses multiple wire ropes, and the gap between adjacent wire ropes is about 5 to 6 mm, so this device was attached to the elevator wire rope. However, it is currently extremely difficult and almost impossible to run a wire rope or this device. In other words, the reality is that this device cannot be used for things like elevators, which have multiple wire ropes or are hung adjacent to each other.

更に、特公昭43−9799号の装置では、対向面が
複数のストランドを撚り合せた撚りピツチのある
ワイヤーロープに使用すると、この撚りピツチに
よる凹凸で磁束変化が起り、それに基づいた揺動
ノイズと称する電圧波形が出力され、この揺動ノ
イズと損傷部による出力波形とが識別できないと
いう不都合がある。
Furthermore, when the device of Japanese Patent Publication No. 43-9799 is used for a wire rope with a twist pitch in which multiple strands are twisted together on the opposing surface, magnetic flux changes occur due to unevenness due to the twist pitch, and vibration noise and vibration are generated based on the unevenness caused by the twist pitch. However, there is a disadvantage that this oscillation noise cannot be distinguished from the output waveform due to the damaged part.

そこで、本発明は、上記した実情に鑑みてなさ
れたものであつて、その目的とするところは、簡
素な構成で、使用条件の制限を受けることなく、
安定した測定結果を得ることができるワイヤーロ
ープの磁気探傷装置を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a simple structure without being subject to any restrictions on usage conditions.
An object of the present invention is to provide a wire rope magnetic flaw detection device that can obtain stable measurement results.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の特徴は、
長手方向に走行するワイヤーロープに対して磁極
面が対向するようにし、かつ、それぞれ前記磁極
面の極性が互いに異極となるように第1の磁極と
第2の磁極を所定間隔で配置し、この第1の磁極
と第2の磁極の前記ワイヤーロープとの非対向側
を継鉄で接続すると共に、前記継鉄の中央基部に
前記ワイヤーロープと対向するように検出鉄心を
接続し、この検出鉄心の周囲に検出コイルを巻装
してなるワイヤーロープの磁気探傷装置におい
て、前記第1の磁極と前記第2の磁極及び前記検
出鉄心の前記ワイヤーロープに対向する側には
夫々前記ワイヤーロープを収容する溝を有し、こ
の溝の深さは、前記ワイヤーロープの前記長手方
向に直角な断面上で、当該ワイヤーロープが前記
溝から突出しない深さ以上に形成されていると共
に、前記第1の磁極と前記第2の磁極との間隔を
当該ワイヤーロープの撚りピツチの整数倍にして
配置した構成としている。
In order to achieve the above object, the features of the present invention are as follows:
A first magnetic pole and a second magnetic pole are arranged at a predetermined interval so that the magnetic pole faces face a wire rope running in the longitudinal direction, and the polarities of the respective magnetic pole faces are different from each other, The sides of the first magnetic pole and the second magnetic pole not facing the wire rope are connected by a yoke, and a detection core is connected to the central base of the yoke so as to face the wire rope, and the detection In a wire rope magnetic flaw detection device in which a detection coil is wound around an iron core, the first magnetic pole, the second magnetic pole, and the side of the detection iron opposite to the wire rope are each provided with the wire rope. a groove for accommodating the wire rope, and the depth of the groove is greater than or equal to a depth at which the wire rope does not protrude from the groove on a cross section perpendicular to the longitudinal direction of the wire rope; The distance between the magnetic pole and the second magnetic pole is an integral multiple of the twist pitch of the wire rope.

〔作用〕[Effect]

本発明では、上記構成されているため、ワイヤ
ーロープに対して励磁体の移動に伴なう相対位置
に拘らず、被測定個所を形成する磁束条件を常に
同一条件にすることができると共に、損傷部の位
置に関係なくその損傷部よりの漏洩磁束を捕える
ことができるので、使用条件の制限を受けること
なく、かつ、安定した測定結果を得ることができ
るワイヤーロープの磁気探傷装置が実現可能にす
ることができる。
In the present invention, because of the above configuration, the magnetic flux conditions forming the part to be measured can always be the same regardless of the relative position due to the movement of the excitation body with respect to the wire rope, and it is possible to Since leakage magnetic flux from the damaged part can be captured regardless of the location of the damaged part, it is now possible to create a wire rope magnetic flaw detection system that is not limited by usage conditions and can obtain stable measurement results. can do.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図乃至第4図に基
づいて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

この実施例にあつては、第1図において、5は
一端がエレベータの乗かごに接続され、他端が駆
動網車4A及び従動網車4Bを介して釣合い重り
3に接続されたワイヤーロープ2に対向して設置
され、かつ、容易に着脱することができるワイヤ
ーロープ2の損傷を検出するエレベータのワイヤ
ーロープの磁気探傷装置である。
In this embodiment, in FIG. 1, 5 is a wire rope 2 whose one end is connected to the elevator car and the other end is connected to the counterweight 3 via the drive sheave 4A and the driven sheave 4B. This is a magnetic flaw detection device for an elevator wire rope that detects damage to a wire rope 2 that is installed facing the elevator and can be easily attached and detached.

この磁気探傷装置5は、第2図及び第3図に示
すように、長尺磁性体であるワイヤーロープ2に
対向して磁極6A及び6Bをワイヤーロープ2の
長手方向に配置し、また、この2つの磁極6A及
び6Bの配置位置をワイヤーロープ2の撚りピツ
チSPの整数倍となる位置関係にし、そして、磁
極6A及び6Bは磁極の極性が互に異なるように
夫々の鉄心7A及び7Bに巻装される励磁コイル
8A及び8Bを有し、鉄心7A及び7Bのワイヤ
ーロープ2の非対向側を継鉄11と磁気的に接続
された鉄心9が設けられ、鉄心9には検出コイル
10が巻装された構成となつている。そして、検
出コイル10の端には図示しない記録計あるいは
表示器または警報器等が接続される。更に、励磁
コイル8A及び8Bは、共に図示しない電源にス
イツチを介して接続されている。
As shown in FIGS. 2 and 3, this magnetic flaw detection device 5 has magnetic poles 6A and 6B disposed in the longitudinal direction of the wire rope 2, facing the wire rope 2, which is a long magnetic material. The two magnetic poles 6A and 6B are arranged in a positional relationship that is an integral multiple of the twist pitch SP of the wire rope 2, and the magnetic poles 6A and 6B are wound around the respective iron cores 7A and 7B so that the polarities of the magnetic poles are different from each other. An iron core 9 is provided, which has excitation coils 8A and 8B mounted thereon, and magnetically connected to the yoke 11 on the non-opposing sides of the wire rope 2 of the iron cores 7A and 7B, and a detection coil 10 is wound around the iron core 9. It has a fully equipped configuration. A recorder, display, alarm, or the like (not shown) is connected to the end of the detection coil 10. Further, the excitation coils 8A and 8B are both connected to a power source (not shown) via a switch.

さて、長尺磁性体のワイヤーロープ2のように
断面が円形状の場合には、磁極6A,6B及び鉄
心9のワイヤーロープ2の対向面が平端である
と、それぞれ磁極6A及び6B及び鉄心9のワイ
ヤーロープ2の長手方向に対して直角方向の両端
の間隙が中央部に比べて極めて大きくなつて磁気
抵抗が増えてしまい測定結果に影響を及ぼすこと
になる。そこで、これに対応して、実用上は、ワ
イヤーロープ2に対向する磁極6A及び6B及び
鉄心9の面を当該ワイヤーロープ2の形状に対応
するように当該ワイヤーロープ2を案内するため
にそれぞれU字状溝12A,12B及び9Aを形
成し、かつ、このU字状溝12A,12B及び9
Aは当該ワイヤーロープ2が溝から突出しない深
さ以上の溝に形成されると共に、溝内面に滑り材
として例えば四フツ化エチレンのような絶縁材1
3A,13B及び13Cをそれぞれ付着してあ
る。
Now, when the cross section is circular like the long magnetic wire rope 2, if the opposing surfaces of the wire rope 2 of the magnetic poles 6A, 6B and the iron core 9 are flat ends, the magnetic poles 6A and 6B and the iron core 9, respectively. The gap at both ends of the wire rope 2 in the direction perpendicular to the longitudinal direction is much larger than that at the center, increasing magnetic resistance and affecting the measurement results. Therefore, in practice, in order to guide the wire rope 2 so that the surfaces of the magnetic poles 6A and 6B and the iron core 9 facing the wire rope 2 correspond to the shape of the wire rope 2, in practice, U The U-shaped grooves 12A, 12B and 9A are formed, and the U-shaped grooves 12A, 12B and 9
A is formed in a groove with a depth greater than the depth at which the wire rope 2 does not protrude from the groove, and an insulating material 1 such as tetrafluoroethylene is provided as a sliding material on the inner surface of the groove.
3A, 13B and 13C are attached respectively.

このように構成された磁気探傷装置5の励磁コ
イル8A及び8Bを励磁し、そして、今、説明の
都合上、励磁コイル8A及び8Bにはそれぞれ磁
極6A及び6Bのワイヤーロープ2と対向する面
の磁極がN極及びS極となるように励磁し、ワイ
ヤーロープ2を磁極6A及び6B及び鉄心9に沿
つてその長手方向に磁極6Aから磁極6Bに向か
つて(紙面左から右に矢印方向)移動させると、
第4図で示したように磁路的に磁極6Aとワイヤ
ーロープ2と磁極6Bと継鉄11により磁極6B
から磁極6Aに向かつて流れる磁束Φ0と、磁極
6Aとワイヤーロープ2と鉄心9と継鉄11によ
り磁極6Aから鉄心9に向かつて流れる磁束ΦlN
と、磁極6Bと継鉄11と鉄心9とワイヤーロー
プ2により磁極6Bから継鉄11に向かつて流れ
る磁束Φlsとが存在する。そして、磁束ΦlNと磁
束Φlsの極性は互いに相反する方向となつてい
て、ワイヤーロープ2に損傷部2Pがない場合に
は、互いに磁束ΦlNと磁束Φlsとが打消し合い、
鉄心9内には磁束が存在しないと同等となり、検
出コイル10には誘起電圧が発生しない。ところ
が、第4図Aに示したように損傷部2Pが磁極6
Aに対向すると、このときに損傷部2Pからの漏
洩磁束により鉄心9内の磁束ΦlNは減少し、一
方、鉄心9内の磁束Φlsは損傷部2Pの漏洩磁束
の影響を受けることなくその磁束は減少されない
ので、鉄心9内には磁束ΦlNと磁束Φlsの差分の
磁束が流れているようになり、しかも損傷部2P
が磁極6Aに対向したときに、前述の差分磁束の
変化が起こるので、検出コイル10はこの磁束変
化により磁束Φlsと磁束ΦlNとの差分に対応した
誘起電圧を発生させる。そして、損傷部2Pが鉄
心9に向かつて移動し、第4図Bに示すように損
傷部2Pが鉄心9と対向するまでは鉄心9内には
磁束Φlsと磁束ΦlNの差分磁束が流れているよう
になつているが、磁束の変化はないので、検出コ
イル10には誘起電圧が発生しない。更に、ワイ
ヤーロープ2が矢印方向に移動し、損傷部2Pが
第4図Bに示した位置から第4図Cに示したよう
に鉄心9を通過したとき、鉄心9内の磁束ΦlNは
損傷部2Pからの漏洩磁束の影響を受けなくなる
ので、損傷部2Pからの漏洩磁束による損失分が
なくなりワイヤーロープ2が無傷状態のときの磁
束状態に戻り、一方、鉄心9内の磁束Φlsは損傷
部2Pからの漏洩磁束の影響を受けて減少される
ために、鉄心9内では磁束ΦlNと磁束Φlsの差分
の磁束が存在するようになり、しかも損傷部2P
が鉄心9を通過するときに前述の差分磁束の変化
が起こるので、検出コイル10はこの磁束変化に
より磁束ΦlNと磁束Φlsとの差分に対応した誘起
電圧が発生させる。そして、損傷部2Pが鉄心9
を通過し、更に、磁極6Bに対向してから、この
磁極6Bを通過するまでは、鉄心9内において
は、磁束ΦlNと磁束Φlsの差分の磁束が流れてい
るようになつているが、磁束の変化はないので、
検出コイル10には誘起電圧が発生しない。ま
た、損傷部2Pが磁極6Bを通過するとき、鉄心
9内の磁束Φlsは損傷部2Pからの漏洩磁束の影
響を受けなくなるので、損傷部2Pからの漏洩磁
束による損失分がなくなり、ワイヤーロープ2が
無傷状態のときの磁束状態に戻り、鉄心9内にお
ける磁束Φlsは変化されるが、一方の磁束ΦlNと
同じ値になることから互いの磁束ΦlNと磁束Φls
とが打消し合つて、鉄心9内には磁束が流れない
状態となり、従つて、検出コイル10には誘起電
圧が発生しない。
The excitation coils 8A and 8B of the magnetic flaw detection device 5 configured in this way are excited, and for convenience of explanation, the excitation coils 8A and 8B have the surfaces of the magnetic poles 6A and 6B facing the wire rope 2, respectively. Excite the magnetic poles so that they become N and S poles, and move the wire rope 2 along the magnetic poles 6A and 6B and the iron core 9 in the longitudinal direction from the magnetic pole 6A to the magnetic pole 6B (in the direction of the arrow from left to right on the page). If you let
As shown in Fig. 4, magnetic pole 6B is formed by magnetic pole 6A, wire rope 2, magnetic pole 6B, and yoke 11 in the magnetic path.
A magnetic flux Φ 0 flows from the magnetic pole 6A toward the magnetic pole 6A, and a magnetic flux ΦlN flows from the magnetic pole 6A toward the iron core 9 due to the magnetic pole 6A, wire rope 2, iron core 9, and yoke 11.
There is a magnetic flux Φls flowing from the magnetic pole 6B toward the yoke 11 due to the magnetic pole 6B, the yoke 11, the iron core 9, and the wire rope 2. The polarities of the magnetic flux ΦlN and the magnetic flux Φls are in opposite directions, and if there is no damaged part 2P in the wire rope 2, the magnetic flux ΦlN and the magnetic flux Φls cancel each other,
This is equivalent to the case where no magnetic flux exists in the iron core 9, and no induced voltage is generated in the detection coil 10. However, as shown in FIG. 4A, the damaged part 2P is
When facing A, at this time, the magnetic flux ΦlN in the iron core 9 decreases due to the leakage magnetic flux from the damaged part 2P, while the magnetic flux Φls in the iron core 9 is not affected by the leakage magnetic flux from the damaged part 2P, and the magnetic flux decreases. Since the magnetic flux is not reduced, a magnetic flux equal to the difference between the magnetic flux ΦlN and the magnetic flux Φls flows in the iron core 9, and the damaged part 2P
When the magnetic flux Φls and the magnetic flux ΦlN face the magnetic pole 6A, the above-mentioned change in the differential magnetic flux occurs, and the detection coil 10 generates an induced voltage corresponding to the difference between the magnetic flux Φls and the magnetic flux ΦlN due to this magnetic flux change. Then, the damaged part 2P moves toward the iron core 9, and a differential magnetic flux between the magnetic flux Φls and the magnetic flux ΦlN flows in the iron core 9 until the damaged part 2P faces the iron core 9 as shown in FIG. 4B. However, since there is no change in magnetic flux, no induced voltage is generated in the detection coil 10. Furthermore, when the wire rope 2 moves in the direction of the arrow and the damaged part 2P passes through the iron core 9 as shown in Fig. 4C from the position shown in Fig. 4B, the magnetic flux ΦlN in the iron core 9 Since it is no longer affected by the leakage magnetic flux from the damaged part 2P, the loss due to the leakage magnetic flux from the damaged part 2P disappears and the wire rope 2 returns to the state of the magnetic flux when it is intact, while the magnetic flux Φls in the iron core 9 is reduced to the damaged part 2P. As a result, a magnetic flux equal to the difference between the magnetic flux ΦlN and the magnetic flux Φls exists within the iron core 9, and moreover, the magnetic flux at the damaged part 2P
When the magnetic flux passes through the iron core 9, the difference magnetic flux changes as described above, and the detection coil 10 generates an induced voltage corresponding to the difference between the magnetic flux ΦlN and the magnetic flux Φls due to this magnetic flux change. Then, the damaged part 2P is the core 9
After passing through the magnetic pole 6B and passing through the magnetic pole 6B, a magnetic flux equal to the difference between the magnetic flux ΦlN and the magnetic flux Φls flows in the iron core 9, but the magnetic flux Since there is no change in
No induced voltage is generated in the detection coil 10. Moreover, when the damaged part 2P passes the magnetic pole 6B, the magnetic flux Φls in the iron core 9 is no longer affected by the leakage magnetic flux from the damaged part 2P, so there is no loss due to the leakage magnetic flux from the damaged part 2P, and the wire rope 2 returns to the magnetic flux state when it is intact, and the magnetic flux Φls in the iron core 9 changes, but since it becomes the same value as one magnetic flux ΦlN, the magnetic flux ΦlN and magnetic flux Φls of each other
As a result, no magnetic flux flows in the iron core 9, and therefore no induced voltage is generated in the detection coil 10.

このように磁束変化によるそれぞれの磁束ΦlN
と磁束Φlsの差分に基づいた鉄心9内の磁束変化
の状態を表わすと、第5図Aのようになり、そし
て、この磁束変化に対応して検出コイル10に
は、この変化率及び変化方向に相応した電圧が誘
起し、このときの電圧波形は、第5図Bに示した
ように、先づ、磁束変化の起きたa点で、磁束変
化は負方向となり、それに対応した負方向の電圧
が発生し、次いで、b点においては、磁束変化が
正方向となり、それに対応した正方向の電圧が発
生し、このときの電圧値は、a点での変化率の2
倍となつていることから、a点の2倍の電圧が得
られ、そして、c点では磁束変化は負方向で、そ
の変化率がa点と同一であり、誘起される電圧は
a点と同一の電圧が得られる。
In this way, each magnetic flux ΦlN due to magnetic flux change
The state of magnetic flux change in the iron core 9 based on the difference between the magnetic flux and the magnetic flux Φls is shown in FIG. A voltage corresponding to the voltage is induced, and the voltage waveform at this time is as shown in Figure 5B. First, at point a, where the magnetic flux change occurs, the magnetic flux change becomes negative, and the corresponding negative direction changes. A voltage is generated, and then at point b, the magnetic flux changes in the positive direction, and a corresponding positive voltage is generated, and the voltage value at this time is 2 times the rate of change at point a.
Since the voltage is twice as high as that at point a, the magnetic flux change at point c is in the negative direction and the rate of change is the same as at point a, and the induced voltage is the same as that at point a. The same voltage is obtained.

このように、損傷部2Pが被測定範囲内に存在
すると顕著なインパルス電圧として出力されるの
で、損傷部2Pの存在を簡素な構成で容易に発見
することができる。
In this way, when the damaged part 2P exists within the measurement range, it is output as a significant impulse voltage, so the presence of the damaged part 2P can be easily discovered with a simple configuration.

第6図は無信号波形aと損傷部波形bを記録計
で記録した状態を示すものであり、この無信号波
形aは拡大したa′に示すようにワイヤーロープ2
の撚りピツチSPに対応して現われる揺動ノイズ
で、この揺動ノイズは、前述したように磁極6A
と磁極6Bの間隔をワイヤーロープ2の撚りピツ
チSPの整数倍に設定すれば、撚りピツチSPに合
せ被測定部に対して一定周期の磁路が形成される
ので、揺動ノイズは正弦波近似の波形となり、損
傷部波形bと揺動ノイズである無信号波形aとの
区別を容易にすることができ、安定した測定結果
が得られるのを実験的に確認している。
Figure 6 shows a state in which a no-signal waveform a and a damaged part waveform b are recorded by a recorder.
This is the oscillation noise that appears in response to the twist pitch SP of the magnetic pole 6A, as mentioned above.
If the spacing between the magnetic poles 6B and 6B is set to an integer multiple of the twist pitch SP of the wire rope 2, a magnetic path with a constant period will be formed to the part to be measured in line with the twist pitch SP, so the vibration noise will be approximated by a sine wave. It has been experimentally confirmed that the damaged part waveform b and the no-signal waveform a, which is vibration noise, can be easily distinguished, and stable measurement results can be obtained.

一方、損傷部波形bは鉄心9のワイヤーロープ
2の長手方向の長さlがワイヤーロープ2の直径
より大きい程に検出電圧は低くなり、小さくする
とインパルス波形の検出電圧が得られることが実
験的に確認されている。
On the other hand, it has been experimentally shown that the detected voltage of the damaged part waveform b becomes lower as the length l in the longitudinal direction of the wire rope 2 of the iron core 9 is larger than the diameter of the wire rope 2, and when it is made smaller, a detected voltage of an impulse waveform can be obtained. has been confirmed.

また、各磁極の鉄心7A及び7Bのワイヤーロ
ープ2の長手方向の長さLはワイヤーロープ2を
一様に磁化して必要な密度の磁束を与えるために
ワイヤーロープ2の径をdとすると、 π/4・d2<L2の関係式が満足する寸法にすれば
良いことも実験的に確認されている。そして、更
に、前述したようにU字状溝12A,12B及び
9Aの深さHは、ワイヤーロープ2の径以上とし
ており、被測定部におけるワイヤーロープ2を包
囲するような磁路が形成されるので、ワイヤーロ
ープ2の全周に亘つて損傷部を検出することがで
きると共に、測定時の被測定のワイヤーロープ2
に磁気探傷装置5の着脱が容易となり、操作性に
優れている。また、U字状溝12A,12B及び
9Aの溝面に前述したように絶縁材13A,13
B及び13Cを付着してあるので、各鉄心7A,
7B及び9とワイヤーロープ2との接触に起因す
る各鉄心7A,7B及び9の損傷を防止できると
共に、ワイヤーロープ2の移動を円滑にすること
ができる。
In addition, the length L in the longitudinal direction of the wire rope 2 of the iron cores 7A and 7B of each magnetic pole is given by d, which is the diameter of the wire rope 2 in order to uniformly magnetize the wire rope 2 and provide a magnetic flux of the required density. It has also been experimentally confirmed that the dimensions should satisfy the relational expression π/4·d 2 <L 2 . Furthermore, as described above, the depth H of the U-shaped grooves 12A, 12B, and 9A is set to be greater than or equal to the diameter of the wire rope 2, and a magnetic path is formed that surrounds the wire rope 2 in the part to be measured. Therefore, it is possible to detect damaged parts over the entire circumference of the wire rope 2, and the wire rope 2 to be measured during measurement can be
The magnetic flaw detection device 5 can be easily attached and detached, resulting in excellent operability. Further, as described above, insulating materials 13A, 13 are provided on the groove surfaces of the U-shaped grooves 12A, 12B, and 9A.
B and 13C are attached, so each core 7A,
Damage to each of the iron cores 7A, 7B, and 9 due to contact between the wire ropes 2 and 7B can be prevented, and the wire rope 2 can be moved smoothly.

第7図は第2図及び第3図に示す磁気探傷装置
5を取扱いが容易なように枠体14内に収納した
もので、取手15を設けて持運びできるように形
成されている。また、ここに示すものは3本の並
設されたロープ2A〜2Cに対するもので、該3
本のロープ2A〜2Cを夫々に独立して収納する
3つのU字状溝を備えた各磁極鉄心及び検出鉄心
が枠体14内にあり、切替スイツチ16により3
本のロープ2A〜2Cの損傷検出を同時に行つた
り、夫々別個に行うようにしている。17A,1
7Bは検出コイル10(第2図)の出力端子で、
この端子に記録計、表示器、警報器などが必要に
応じて接続される。
FIG. 7 shows the magnetic flaw detection device 5 shown in FIGS. 2 and 3 housed in a frame 14 for easy handling, and is provided with a handle 15 so that it can be carried. Also, what is shown here is for three ropes 2A to 2C installed in parallel.
Each magnetic pole core and detection core each having three U-shaped grooves for independently storing the ropes 2A to 2C are located in the frame 14, and the three
Damage to the ropes 2A to 2C is detected simultaneously or separately. 17A,1
7B is the output terminal of the detection coil 10 (Fig. 2);
A recorder, display, alarm, etc. are connected to this terminal as necessary.

ところで前述の実施例は測定するロープの径が
各エレベータについて共通なものであれば差支え
ないが、ロープ径が異なる場合にはそのロープ径
に合つたU字状溝を有する磁気探傷装置を用意し
ておかなければならない。
By the way, the above-mentioned embodiment can be used as long as the diameter of the rope to be measured is the same for each elevator, but if the diameter of the rope is different, a magnetic flaw detection device having a U-shaped groove matching the diameter of the rope may be prepared. I have to keep it.

また複数本のロープを同時に測定する場合でも
ロープ本数の異なる分だけ磁気探傷装置を用意し
なければならない。
Furthermore, even when measuring multiple ropes at the same time, magnetic flaw detection devices must be prepared for each different number of ropes.

このような不都合をなくすために、第8図及び
第9図に示すように、測定ロープ2の条件(径、
本数、ロープ間隔等)に合つた検出部18,19
を設け、これを共通の検出本体20に着脱自在に
取付けるようにするのである。ここで検出本体2
0は第2図における磁極鉄心7A,7Bの高さの
約半分、励磁コイル8A,8B、検出鉄心9の高
さの約半分、検出コイル10、継鉄11を備えた
ものであり、これに対し検出部18,19は前記
各鉄心の残りの半分を備えており、その配置は検
出本体20と検出部18あるいは19を接合した
際に各鉄心同志が合致するようにする必要があ
る。
In order to eliminate such inconveniences, the conditions of the measuring rope 2 (diameter,
Detection units 18 and 19 that match the number of ropes, rope spacing, etc.
is provided and is detachably attached to the common detection main body 20. Here, detection body 2
0 is equipped with approximately half the height of the magnetic pole cores 7A, 7B, excitation coils 8A, 8B, approximately half the height of the detection core 9, detection coil 10, and yoke 11 in FIG. On the other hand, the detection parts 18 and 19 are provided with the remaining half of each of the above-mentioned iron cores, and the arrangement thereof needs to be such that when the detection main body 20 and the detection part 18 or 19 are joined, the respective iron cores match each other.

前記説明において各鉄心と継鉄とは夫々別体で
あるが、これらを一体のE字状鉄心で形成しても
よく、この場合製作工数が低減でき継目がないの
で鉄心内の磁気抵抗を低減できる。一方、両磁極
6A,6Bは鉄心と励磁コイルとよりなるが、こ
れを永久磁石と置換して用いることも可能であ
る。
In the above description, each core and yoke are separate bodies, but they may be formed into an integrated E-shaped core. In this case, the manufacturing process can be reduced and there are no joints, which reduces the magnetic resistance within the core. can. On the other hand, both magnetic poles 6A and 6B are composed of an iron core and an excitation coil, but it is also possible to replace these with permanent magnets.

また前記実施例はワイヤーロープの損傷検出に
ついて説明したが、磁性材よりなる線状体、棒状
体、板状体の損傷検出にも適用できるのは勿論で
ある。
Furthermore, although the above embodiments have been described for detecting damage to wire ropes, it is of course applicable to detecting damage to linear bodies, rod-shaped bodies, and plate-shaped bodies made of magnetic materials.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、簡素な
構成で、使用条件の制限を受けることなく、か
つ、被測定個所を常に同一条件に保持させること
が可能となり、使用時の安全が確保されると共
に、安定した測定結果を得ることのできるワイヤ
ーロープの磁気探傷装置を実現させることができ
る。
As explained above, according to the present invention, with a simple configuration, it is possible to always maintain the measurement point under the same conditions without being subject to restrictions on usage conditions, and safety during use is ensured. In addition, it is possible to realize a wire rope magnetic flaw detection device that can obtain stable measurement results.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気探傷装置の適用状態を示
す概略縦断側面図、第2図は本発明による磁気探
傷装置の基本構成を示す一部破断側面図、第3図
は第2図―線に沿う断面図、第4図は本発明
による磁気探傷装置での損傷検出状態を示す概略
図、第5図は第4図による漏洩磁束と発生電圧と
の関係を示す特性図、第6図は第4図により検出
された記録波形図、第7図は磁気探傷装置の外観
を示す斜視図、第8図及び第9図は夫々磁気探傷
装置の検出部と検出本体との着脱位置を示す正面
図である。 2…ワイヤーロープ、6A,6B…磁極、9…
鉄心、10…検出コイル、11…継鉄。
Fig. 1 is a schematic longitudinal sectional side view showing the applied state of the magnetic flaw detection device of the present invention, Fig. 2 is a partially cutaway side view showing the basic configuration of the magnetic flaw detection device of the present invention, and Fig. 3 is a line drawn from Fig. 2. 4 is a schematic diagram showing the damage detection state in the magnetic flaw detection device according to the present invention, FIG. 5 is a characteristic diagram showing the relationship between leakage magnetic flux and generated voltage according to FIG. 4, and FIG. Fig. 4 is a diagram of recorded waveforms detected, Fig. 7 is a perspective view showing the external appearance of the magnetic flaw detection device, and Figs. 8 and 9 are front views showing the attachment/detachment positions of the detection section and detection body of the magnetic flaw detection device, respectively. It is a diagram. 2...Wire rope, 6A, 6B...Magnetic pole, 9...
Iron core, 10...detection coil, 11...yoke.

Claims (1)

【特許請求の範囲】 1 長手方向に走行するワイヤーロープに対して
磁極面が対向するようにし、かつ、それぞれ前記
磁極面の極性が互いに異極となるように第1の磁
極と第2の磁極を所定間隔で配置し、この第1の
磁極と第2の磁極の前記ワイヤーロープとの非対
向側を継鉄で接続すると共に、前記継鉄の中央基
部に前記ワイヤーロープと対向するように検出鉄
心を接続して、この検出鉄心の周囲に検出コイル
を巻装してなるワイヤーロープの磁気探傷装置に
おいて、前記第1の磁極と前記第2の磁極及び前
記検出鉄心の前記ワイヤーロープに対向する側に
は夫々前記ワイヤーロープを収容する溝を有し、
この溝の深さは、前記ワイヤーロープの前記長手
方向に直角な断面上で、当該ワイヤーロープが前
記溝から突出しない深さ以上に形成されていると
共に、前記第1の磁極と前記第2の磁極を、その
間隔が当該ワイヤーロープの撚りピツチの整数倍
になるようにして配置したことを特徴とするワイ
ヤーロープの磁気探傷装置。 2 特許請求の範囲第1項において、前記溝に低
摩擦の絶縁材を配設したことを特徴とするワイヤ
ーロープの磁気探傷装置。
[Scope of Claims] 1. A first magnetic pole and a second magnetic pole are arranged so that their magnetic pole faces face a wire rope running in the longitudinal direction, and the polarities of the respective magnetic pole faces are different from each other. are arranged at a predetermined interval, the sides of the first magnetic pole and the second magnetic pole that are not opposite to the wire rope are connected by a yoke, and the yoke is located at the center base of the yoke so as to face the wire rope. In a wire rope magnetic flaw detection device in which iron cores are connected and a detection coil is wound around the detection core, the first magnetic pole, the second magnetic pole, and the detection core are opposed to the wire rope. each side has a groove for accommodating the wire rope;
The depth of this groove is greater than the depth at which the wire rope does not protrude from the groove on a cross section perpendicular to the longitudinal direction of the wire rope, and the depth of the groove is greater than the depth at which the wire rope does not protrude from the groove. 1. A magnetic flaw detection device for a wire rope, characterized in that magnetic poles are arranged such that the spacing between the magnetic poles is an integral multiple of the twist pitch of the wire rope. 2. The wire rope magnetic flaw detection device according to claim 1, wherein the groove is provided with a low-friction insulating material.
JP5166180A 1980-04-21 1980-04-21 Electromagnetic flaw detector for continuous magnetic material Granted JPS56148052A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5166180A JPS56148052A (en) 1980-04-21 1980-04-21 Electromagnetic flaw detector for continuous magnetic material
US06/256,107 US4427940A (en) 1980-04-21 1981-04-21 Electromagnetic inspecting apparatus for magnetizable wire rope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5166180A JPS56148052A (en) 1980-04-21 1980-04-21 Electromagnetic flaw detector for continuous magnetic material

Publications (2)

Publication Number Publication Date
JPS56148052A JPS56148052A (en) 1981-11-17
JPH0149897B2 true JPH0149897B2 (en) 1989-10-26

Family

ID=12893051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5166180A Granted JPS56148052A (en) 1980-04-21 1980-04-21 Electromagnetic flaw detector for continuous magnetic material

Country Status (2)

Country Link
US (1) US4427940A (en)
JP (1) JPS56148052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071603A (en) * 2004-09-06 2006-03-16 Toshiba Elevator Co Ltd Rope gash detection system

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3212465A1 (en) * 1982-04-02 1983-10-20 Emag Maschinenfabrik Gmbh, 7335 Salach TRANSPORT DEVICE, ESPECIALLY LOADING DEVICE FOR MACHINING MACHINES
US4538107A (en) * 1983-01-10 1985-08-27 Varone Richard B Cable failure detection system
US4597183A (en) * 1983-02-24 1986-07-01 Standard Oil Company (Indiana) Methods and apparatus for measuring a length of cable suspending a well logging tool in a borehole
US4659991A (en) * 1983-03-31 1987-04-21 Ndt Technologies, Inc. Method and apparatus for magnetically inspecting elongated objects for structural defects
ZA871964B (en) * 1986-03-25 1987-09-07
US4929897A (en) * 1987-11-23 1990-05-29 Crucible Societe Anonyme Method and apparatus for detecting cross sectional area variations in a elongate object by measuring radial magnetic flux variations using spaced-apart coils
US5036277A (en) * 1987-11-23 1991-07-30 Crucible Societe Anonyme Method of and apparatus for detecting cross sectional area variations in an elongate object by the non-inductive measurement of radial flux variations
US5321356A (en) * 1992-05-26 1994-06-14 Ndt Technologies, Inc. Magnetic inspection device for elongated objects and inspection method
US5570017A (en) * 1992-09-30 1996-10-29 Canada Conveyor Belt Co., Inc. Apparatus and method of damage detection for magnetically permeable members using an alternating magnetic field and hall effect sensors
US5426362A (en) * 1992-09-30 1995-06-20 Ninnis; Ronald M. Damage detection apparatus and method for a conveyor belt having magnetically permeable members
US5522255A (en) 1993-08-31 1996-06-04 Boehringer Mannheim Corporation Fluid dose, flow and coagulation sensor for medical instrument
US5841023A (en) * 1993-08-31 1998-11-24 Boehringer Mannheim Corporation Magnet for medical instrument
EP0817974B1 (en) 1995-03-14 2000-11-08 Profile Technologies, Inc. Reflectometry methods for insulated pipes
EP0801304B1 (en) * 1995-10-31 2001-10-10 Nkk Corporation Magnetic flaw detection apparatus
AU1984597A (en) 1996-02-27 1997-09-16 Profile Technologies, Inc. Pipe testing apparatus and method
US5828213A (en) * 1996-10-21 1998-10-27 Hickman; Jack R. Method and apparatus for magnetically sampling the uniformity of an elongate object
CA2203601C (en) * 1997-04-24 2004-03-16 James R. Booker Apparatus and method of detecting loss of cross-sectional area of magnetic metallic strength members used in conductors such as aluminum conductor steel reinforced ("acsr") conductors
US5886308A (en) * 1997-12-22 1999-03-23 Otis Elevator Company Rope speed monitoring assembly and method
JPH11230945A (en) * 1998-02-09 1999-08-27 Hitachi Building Systems Co Ltd Magnetic flaw-detecting device of wire rope
US6222899B1 (en) 1998-07-30 2001-04-24 The United States Of America As Represented By The Secretary Of The Navy System for determining the deployed length of a flexible tension element
US6633159B1 (en) * 1999-03-29 2003-10-14 Otis Elevator Company Method and apparatus for magnetic detection of degradation of jacketed elevator rope
JP3547342B2 (en) * 1999-07-30 2004-07-28 株式会社日立ビルシステム Magnetic flaw detector for wire rope
ITTS20000006A1 (en) * 2000-08-22 2002-02-22 Security Control Srl Controlli MAGNETO-INDUCTIVE DEVICE FOR THE CONTROL OF MULTIPLE STEEL ROPES
JP4500437B2 (en) * 2000-12-15 2010-07-14 株式会社日立ビルシステム Wire rope damage detection device
US6422624B1 (en) 2001-03-20 2002-07-23 Lift-All Company, Inc. Wire rope roundsling with inspection window
FR2836107B1 (en) * 2002-02-15 2004-04-23 Pomagalski Sa METHOD FOR CONTROLLING A TRANSPORTATION INSTALLATION
US6720873B1 (en) * 2003-03-03 2004-04-13 Brett D. Tressler Method and apparatus for testing magnetic proximity detectors on ski lifts
US7642790B2 (en) * 2003-05-06 2010-01-05 Profile Technologies, Inc. Systems and methods for testing conductive members employing electromagnetic back scattering
US7196529B2 (en) * 2003-05-06 2007-03-27 Profile Technologies, Inc. Systems and methods for testing conductive members employing electromagnetic back scattering
US20050007121A1 (en) * 2003-05-06 2005-01-13 Burnett Gale D. Systems and methods for non-destructively testing conductive members employing electromagnetic back scattering
JP2005154042A (en) * 2003-11-21 2005-06-16 Toshiba Elevator Co Ltd Wire rope flaw detection device for elevator
US7409870B2 (en) * 2004-03-16 2008-08-12 Otis Elevator Company Elevator load bearing member wear and failure detection
US7410033B2 (en) * 2004-03-16 2008-08-12 Otis Elevator Company Electrical connector and restraining device for use with elevator belts
ES2356739T3 (en) * 2004-03-16 2011-04-12 Otis Elevator Company AN ELECTRICAL CONNECTOR DEVICE FOR USE WITH ELEVATOR LOAD SUPPORT MEMBERS.
US7218102B2 (en) * 2004-10-07 2007-05-15 Battelle Memorial Institute Pipeline inspection apparatus and method
EP1847501B1 (en) * 2006-04-18 2014-10-01 Inventio AG Lift installation with a surveillance device of the load carrier for monitoring the status of the load carrier and method for testing the load carrier
JP5094067B2 (en) * 2006-07-21 2012-12-12 東芝エレベータ株式会社 Rope inspection unit
JP5026440B2 (en) * 2007-01-31 2012-09-12 三菱電機株式会社 Wire rope flaw detector
JP4415041B2 (en) * 2007-10-10 2010-02-17 三菱電機ビルテクノサービス株式会社 Rope inspection method
US8476898B2 (en) * 2007-11-13 2013-07-02 Mitsubishi Electric Corporation Rope tester detection plate
ITTO20080143A1 (en) * 2008-02-28 2009-08-29 Amc Instruments S R L DEVICE FOR MONITORING MULTIFUNE SYSTEMS
JP5127919B2 (en) * 2008-04-14 2013-01-23 三菱電機株式会社 Wire rope flaw detector
US8269489B2 (en) * 2008-11-25 2012-09-18 General Electric Company System and method for eddy current inspection of parts with complex geometries
FR2940685B1 (en) * 2008-12-31 2011-03-18 Michelin Soc Tech DEVICE FOR CONTROLLING METALLIC WIRES
JP4686612B2 (en) * 2009-01-22 2011-05-25 三菱電機株式会社 Wire rope flaw detector
JP5574809B2 (en) * 2010-05-07 2014-08-20 三菱電機株式会社 Wire rope flaw detector and detection method using wire rope flaw detector
JP5444145B2 (en) * 2010-07-14 2014-03-19 三菱電機株式会社 Rope tester
CN103896122A (en) * 2013-06-27 2014-07-02 洛阳威尔若普检测技术有限公司 Elevator steel wire rope breakage monitoring device based on electromagnetic induction
US20150239708A1 (en) * 2014-02-25 2015-08-27 Thyssenkrupp Elevator Ag System and Method for Monitoring a Load Bearing Member
JP6145573B2 (en) * 2014-04-28 2017-06-14 東京製綱株式会社 Wire rope inspection equipment
US9658297B2 (en) * 2015-01-05 2017-05-23 The Boeing Company Magnetic permeability measurement of ferromagnetic wires
DE112015006493B4 (en) * 2015-04-27 2023-08-03 Mitsubishi Electric Corporation DEVICE FOR DETECTING WIRE ROPE DAMAGE
CN107850572B (en) * 2015-08-06 2021-06-15 三菱电机株式会社 Cable flaw detection device
KR102008172B1 (en) * 2015-08-19 2019-08-07 미쓰비시덴키 가부시키가이샤 Wire rope damage detection device and adjusting jig
KR102177903B1 (en) * 2016-03-24 2020-11-12 미쓰비시덴키 가부시키가이샤 Wire rope flaw detection device and adjustment method of wire rope flaw detection device
US11513169B2 (en) * 2019-04-05 2022-11-29 Apple Inc. Magnetometer with integrated reset coils
JP7260512B2 (en) * 2020-08-17 2023-04-18 株式会社日立ビルシステム Wire rope inspection method and device
CN112456271B (en) * 2020-12-14 2023-12-19 中铁第四勘察设计院集团有限公司 Real-time online encircling elevator steel wire rope distribution quadrant monitoring system and method
CN112326781A (en) * 2021-01-04 2021-02-05 四川大学 Bearing needle magnetic leakage detection device
JP7491244B2 (en) 2021-03-10 2024-05-28 株式会社島津製作所 Wire rope inspection device and wire rope inspection system
JP7533391B2 (en) * 2021-07-15 2024-08-14 株式会社島津製作所 Wire rope inspection system and method for positioning a wire rope inspection system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537290A (en) * 1976-07-08 1978-01-23 Mitsui Miike Machinery Co Ltd Magnetic inspection apparatus using magnetismmsensitive element for steel wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537290A (en) * 1976-07-08 1978-01-23 Mitsui Miike Machinery Co Ltd Magnetic inspection apparatus using magnetismmsensitive element for steel wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071603A (en) * 2004-09-06 2006-03-16 Toshiba Elevator Co Ltd Rope gash detection system

Also Published As

Publication number Publication date
JPS56148052A (en) 1981-11-17
US4427940A (en) 1984-01-24

Similar Documents

Publication Publication Date Title
JPH0149897B2 (en)
JP5031528B2 (en) Wire rope flaw detector
EP0239537B1 (en) Method of and apparatus for testing a wire rope
US8164329B2 (en) Wire rope flaw detector
JPH0149898B2 (en)
JPH09210968A (en) Damage sensor for wire rope
JP2019015656A (en) Magnetic material inspection device
JP4450594B2 (en) Rope tester
US11016060B2 (en) Method and apparatus for evaluating damage to magnetic linear body
US11016061B2 (en) Method and apparatus for evaluating damage to magnetic linear body
PL130932B1 (en) Apparatus for non-destructive testing of elongated ferromagnetic articles
JPH02257055A (en) Magnetic flaw detector for wire rope
JPH1019852A (en) Flaw detecting apparatus for wire rope
JPH06294776A (en) Detecting device for break of strand of stranded wire
JPS5840700B2 (en) Wire rope damage detection device
JP3645634B2 (en) Anti-vibration probe for wire rope electromagnetic flaw detector and wire rope anti-vibration flaw detection method using anti-vibration probe.
JP3186326B2 (en) Escalator handrail damage detector
KR840002360B1 (en) Electro magnetic damage detecting instrument of long magnetic substance
JP5129014B2 (en) Wire rope flaw detector
CN112730600A (en) Electromagnetic sensor for detecting defects of traction steel belt and detection method
JPH04151551A (en) Magnetic flaw detecting device for wire rope
JP3786790B2 (en) Method and apparatus for detecting magnetic powder
JP2005164423A (en) Magnetic flaw detection apparatus for wire rope, and pulley with magnetic flaw detection apparatus
JP3530472B2 (en) Bar detection system
JP3186329B2 (en) Escalator handrail damage detector