JPH0149634B2 - - Google Patents

Info

Publication number
JPH0149634B2
JPH0149634B2 JP56073896A JP7389681A JPH0149634B2 JP H0149634 B2 JPH0149634 B2 JP H0149634B2 JP 56073896 A JP56073896 A JP 56073896A JP 7389681 A JP7389681 A JP 7389681A JP H0149634 B2 JPH0149634 B2 JP H0149634B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin powder
particle size
foam
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56073896A
Other languages
Japanese (ja)
Other versions
JPS57188391A (en
Inventor
Keizo Nonaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP7389681A priority Critical patent/JPS57188391A/en
Publication of JPS57188391A publication Critical patent/JPS57188391A/en
Publication of JPH0149634B2 publication Critical patent/JPH0149634B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N7/00Shells for rollers of printing machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N2207/00Location or type of the layers in shells for rollers of printing machines
    • B41N2207/02Top layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N2207/00Location or type of the layers in shells for rollers of printing machines
    • B41N2207/14Location or type of the layers in shells for rollers of printing machines characterised by macromolecular organic compounds

Landscapes

  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 本発明は、印字部とインク吸蔵部との二層構造
である多孔性印材およびその製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a porous printing material having a two-layer structure of a printing part and an ink storage part, and a method for manufacturing the same.

従来、多孔性印材の製造方法として、熱可塑性
樹脂粉末を焼結してなる印字部を、該印字部に融
着可能で、かつ予め強度が発現された多孔質体で
あるインク吸蔵部に熱融着させるものが知られて
いる(特開昭53−136080号公報、特開昭55−
22962号公報参照)。
Conventionally, as a manufacturing method for porous stamp materials, a printed part made by sintering thermoplastic resin powder is heated to an ink storage part, which is a porous body that can be fused to the printed part and has already developed strength. There are known methods that fuse the
(See Publication No. 22962).

このような製造方法には、次のような問題点が
ある。
Such a manufacturing method has the following problems.

(i) インク吸蔵部を構成する多孔質体が、熱可塑
的性質を具有するため、成型用親型としてベー
クライトのような樹脂製の親型が用いられる
と、加熱加圧成型時における加熱→冷却といつ
た温度サイクルによつて該樹脂製親型が反り変
形し、それによつて成型後の多孔性印材(特
に、インク吸蔵部)の厚みが不均一となりやす
い。その結果、捺印した場合、一定の捺印特性
(例えば、印影の濃淡)が得られない。すなわ
ち一つの親型で複数個成型した場合には各印材
間において、1つの親型で一個成型した場合に
は一つの印材内で捺印特性が安定していない。
そのため、従来は、親型(凹版)の中央部に、
所望の印材と同一厚さのスペーサを設ける手
法、あるいは親型の成型面積を小さくして前記
「反り」を逃がすという手法が採用されていた
が、工程が増加するとか、プレス1回当たりに
製造できる印材の個数、あるいは印材の大きさ
が制約を受けるという不具合があつた。
(i) Since the porous body constituting the ink storage part has thermoplastic properties, if a resin mold such as Bakelite is used as the molding mold, heating during heating and pressure molding → The resin master mold is warped and deformed by temperature cycles such as cooling, and as a result, the thickness of the porous stamp material after molding (particularly, the ink storage portion) tends to be non-uniform. As a result, when stamping is performed, certain stamping characteristics (for example, shading of the stamp) cannot be obtained. That is, when a plurality of stamps are molded using one parent mold, the stamping characteristics are not stable between each stamp material, and when one stamp material is molded using one parent mold, the stamping characteristics are not stable within one stamp material.
Therefore, conventionally, in the center of the master mold (intaglio),
Techniques that have been adopted include providing a spacer with the same thickness as the desired stamp material, or decreasing the molding area of the parent mold to release the warpage, but these methods increase the number of steps and increase the production time per press. There was a problem that there were restrictions on the number of stamp materials that could be made or the size of the stamp materials.

(ii) また、インク吸蔵部を構成する多孔質体が熱
可塑性を具有するため、加圧加熱時に、上側金
型に前記多孔質体が融着し、それによつて金型
分解時に、印字部とインク吸蔵部とが剥離する
傾向があるので、特別の離型処理を施さねばな
らなかつた。
(ii) In addition, since the porous body constituting the ink storage part has thermoplasticity, the porous body fuses to the upper mold during pressurization and heating, and as a result, when the mold is disassembled, the printing area Since the ink absorbing portion and the ink storage portion tend to separate, a special mold release treatment had to be applied.

(iii) さらに、親型(凹版)に「反り」変形が生じ
ないにしても、インク吸蔵部が熱可塑性フオー
ムで構成されているため、加熱→冷却の温度サ
イクルによつて、寸法収縮が生じ、所定の厚み
に成型できず、また、同一親型内における厚み
に大きな寸法のバラツキが生じる傾向があつ
た。
(iii) Furthermore, even if the master mold (intaglio) does not undergo "warping" deformation, the ink storage part is composed of thermoplastic foam, so dimensional shrinkage occurs due to the temperature cycle of heating → cooling. , it was not possible to mold to a predetermined thickness, and there was a tendency for large dimensional variations in thickness to occur within the same parent mold.

本発明はかかる点に鑑みてなされたもので、製
造が容易で、かつ捺印特性が優れた多孔性印材お
よびその製造方法を提供することを主目的とす
る。
The present invention has been made in view of the above, and its main object is to provide a porous stamp material that is easy to manufacture and has excellent stamping properties, and a method for producing the same.

本発明の多孔性印材は、熱可塑性樹脂粉末の焼
結フオームからなる印字部と、前記熱可塑性樹脂
粉末の焼結温度において弾性を維持する架橋フオ
ームからなり前記印字部よりも空隙率が大きいイ
ンク吸蔵部とが熱融着されてなり、さらに、前記
印字部は、インク吸蔵部に融着された薄層部と、
該薄層部より突設された活字部とからなり、前記
印字部の活字部を形成する第1熱可塑性樹脂粉末
の粒度は300メツシユ以下で、薄層部を形成する
第2熱可塑性樹脂粉末の粒度は150〜300メツシユ
であり、第2熱可塑性樹脂粉末の粒度が第1熱可
塑性樹脂粉末の粒度よりも大きいことを特徴とす
る。
The porous stamp material of the present invention comprises a printed part made of a sintered foam of thermoplastic resin powder, and a crosslinked foam that maintains elasticity at the sintering temperature of the thermoplastic resin powder, and an ink having a larger porosity than the printed part. The printing part is formed by heat-sealing the ink-storage part to the ink-storage part, and the printing part further includes a thin layer part fused to the ink-storage part;
a first thermoplastic resin powder that forms the printed characters of the printed part has a particle size of 300 mesh or less, and a second thermoplastic resin powder that forms the thin layered part; The particle size of the second thermoplastic resin powder is 150 to 300 mesh, and the particle size of the second thermoplastic resin powder is larger than that of the first thermoplastic resin powder.

すなわち、第1図に示すように、多孔性印材1
は、印字部2と、該印字部2より厚さの厚いイン
ク吸蔵部3とが互いに、界面におけるインク流通
性を損うことなく、熱融着されてなり、そして印
字部2が、薄層部2aと、該薄層部2aより突出
した活字部2bとで構成されてなる。この薄層部
2aは、印字部2とインク吸蔵部3との融着性を
高めるものである。
That is, as shown in FIG.
The printing part 2 and the ink storage part 3, which is thicker than the printing part 2, are heat-sealed to each other without impairing the ink circulation at the interface, and the printing part 2 is made of a thin layer. It is composed of a portion 2a and a type portion 2b protruding from the thin layer portion 2a. This thin layer portion 2a enhances the fusion property between the printing portion 2 and the ink storage portion 3.

前記印字部2を構成する熱可塑性樹脂粉末とし
ては、焼結特性の良好なものであつて、刻印成形
用親型の文字凹部には粒度が300メツシユ以下の
第1熱可塑性樹脂粉末が、その文字凹部および親
型の頂面の上側には粒度が150〜300メツシユで第
1熱可塑樹脂粉末よりも粒度が大きい第2熱可塑
樹脂粉末が用いられる。具体的には、例えば、可
塑化ポリ塩化ビニル系樹脂粉末、熱可塑ウレタン
エラストマー粉末、熱可塑ポリエステル系エラス
トマー粉末、スチレン−ブタジエン・ブロツク共
重合体エラストマー粉末などで、印材の成型条件
下では、永久歪がほとんど生じない材質のもの
で、インク吸蔵層3に用いられる弾性体である多
孔質体との関係において、適宜選択される。
The thermoplastic resin powder constituting the printing part 2 is one with good sintering properties, and the first thermoplastic resin powder with a particle size of 300 mesh or less is used in the character recesses of the parent die for stamping molding. A second thermoplastic resin powder having a particle size of 150 to 300 mesh and larger in particle size than the first thermoplastic resin powder is used in the character recesses and above the top surface of the parent mold. Specifically, for example, plasticized polyvinyl chloride resin powder, thermoplastic urethane elastomer powder, thermoplastic polyester elastomer powder, styrene-butadiene block copolymer elastomer powder, etc., can be used permanently under the molding conditions of the stamp material. The material is made of a material that causes almost no distortion, and is appropriately selected in relation to the porous body which is an elastic body used for the ink storage layer 3.

また、印字部2を構成する薄層部2aと活字部
2bとは、異なる粒度の粉末を用い、活字部2b
を形成する熱可塑性樹脂粉末の粒度が薄層部2a
を形成する熱可塑性樹脂粉末の粒度よりも小さい
ことが、インク流通性の点から、望ましい(例え
ば、前者は300メツシユ以下、後者は150〜300メ
ツシユ)。このようにすれば、一体化された後の
多孔性印材1において、気孔径(毛細管径)が、
インク吸蔵部3、薄層部2a、活字部2bの順に
小さくなり、それによつて毛細管現象によるイン
クの移行をスムーズにできるとともに、印材成形
後における活字部2bの活字面の平滑性、緻密性
に優れるという利点がある。
Further, the thin layer portion 2a and the type portion 2b constituting the printing portion 2 are made of powder with different particle sizes, and the type portion 2b
The particle size of the thermoplastic resin powder forming the thin layer portion 2a
From the viewpoint of ink flowability, it is desirable that the particle size be smaller than the particle size of the thermoplastic resin powder forming the ink (for example, the former is 300 mesh or less, the latter is 150 to 300 mesh). In this way, in the porous stamp material 1 after being integrated, the pore diameter (capillary diameter) is
The ink storage part 3, the thin layer part 2a, and the type part 2b are made smaller in this order, which allows for smooth ink transfer due to capillary action, and improves the smoothness and denseness of the type surface of the type part 2b after molding the printing material. It has the advantage of being superior.

前記インク吸蔵部3を構成する多孔質体として
は熱可塑性を具有しない架橋フオームが用いられ
る。前記架橋フオームとしては、架橋ウレタンフ
オーム、架橋NBRフオームなどが油性インクに
より膨潤性が少ない点で望ましい。なお、インク
吸蔵部3は、成型後、永久歪が5%以下であれば
実用上差支えない。
As the porous body constituting the ink storage section 3, a crosslinked foam without thermoplasticity is used. As the crosslinked foam, crosslinked urethane foam, crosslinked NBR foam, etc. are preferable because they are less swellable with oil-based ink. Note that there is no problem in practical use as long as the ink storage portion 3 has a permanent deformation of 5% or less after molding.

本発明に係る第1の多孔性印材の製造方法は、
刻印成形用親型の文字凹部に粒度が300メツシユ
以下の第1熱可塑性樹脂粉末を充填し、さらにそ
の文字凹部および親型の頂面の上側に粒度が150
〜300メツシユで第1熱可塑性樹脂粉末よりも粒
度が大きい第2熱可塑性樹脂粉末を充積し、該第
1および第2熱可塑樹脂粉末を加熱加圧あるいは
無加熱加圧した後、その上に、前記第1および第
2熱可塑性樹脂粉末の焼結温度において弾性を維
持する架橋フオームよりなる基材を重積して加熱
加圧することにより、前記第1および第2熱可塑
性樹脂粉末を焼結させて前記文字凹部に沿つた形
状の印字面を有する焼結フオームを形成する共
に、該焼結フオーム上に前記基材を、界面におけ
るインク流通性を損ねることなく、一体的に熱融
着せしめることを特徴とする。
The first method for manufacturing a porous stamp material according to the present invention includes:
A first thermoplastic resin powder with a particle size of 300 mesh or less is filled into the character recess of the parent mold for stamping molding, and a powder with a grain size of 150 mesh is further filled in the character recess and the upper side of the top surface of the parent mold.
A second thermoplastic resin powder having a particle size larger than that of the first thermoplastic resin powder is filled in ~300 meshes, and the first and second thermoplastic resin powders are heated and pressed or non-heated and pressed, and then The first and second thermoplastic resin powders are sintered by stacking base materials made of crosslinked foam that maintains elasticity at the sintering temperature of the first and second thermoplastic resin powders and heating and pressurizing them. A sintered form having a printing surface having a shape that follows the character recesses is formed by sintering, and the base material is integrally heat-sealed onto the sintered form without impairing ink flowability at the interface. Characterized by urging.

前記熱可塑性樹脂粉末は、所定の材質の熱可塑
性樹脂を、グラインダーで粉砕するか、または化
学的若しくは物理的に発泡させた後、例えば冷凍
粉砕することにより得られる。
The thermoplastic resin powder is obtained by grinding a thermoplastic resin of a predetermined material with a grinder, or by foaming it chemically or physically, and then freezing and grinding it, for example.

さらに、第1の製造方法について、第2図乃至
第6図に沿つて詳述する。
Furthermore, the first manufacturing method will be described in detail with reference to FIGS. 2 to 6.

(工程 1) 第2図に示すように、刻印成型用親型11を下
側金型12内に載置し、しかして該親型11の文
字凹部11a内に一様に熱可塑性樹脂粉末13を
充填する。この粉末13は、通常、300メツシユ
以下である。
(Step 1) As shown in FIG. 2, the parent mold 11 for stamping molding is placed in the lower mold 12, and the thermoplastic resin powder 13 is uniformly distributed in the character concave portion 11a of the parent mold 11. Fill it with. This powder 13 is usually 300 mesh or less.

(工程 2) 続いて、第3図に示すように、親型11の頂面
側に、(工程1)で用いた粉末13と同質の熱可
塑性樹脂粉末14を一様厚さに充積して、該粉末
14の薄層を形成する。この工程において用いる
粉末14は(工程1)で用いる粉末13よりも粒
度が大きく、150〜300メツシユである。
(Step 2) Next, as shown in FIG. 3, the top surface side of the parent mold 11 is filled with thermoplastic resin powder 14 of the same quality as the powder 13 used in (Step 1) to a uniform thickness. to form a thin layer of the powder 14. The powder 14 used in this step has a larger particle size than the powder 13 used in (step 1), and is 150 to 300 mesh.

(工程 3) 第4図に示すように、下側金型12に、上側金
型15を取付け、それによつて(工程2)で形成
された粉末14の薄層を加圧する(この加圧は、
加熱状態で、あるいは無加熱状態で行う)。この
加圧によつて、前記粉末14の薄層が圧縮され
る。
(Step 3) As shown in FIG. 4, the upper mold 15 is attached to the lower mold 12, thereby pressurizing the thin layer of powder 14 formed in (step 2). ,
(performed with or without heating). This pressure compresses the thin layer of powder 14.

また、この加圧は、加熱加圧の場合には印字部
2の厚さが決定されるが、無加熱加圧の場合には
一旦圧縮してもその厚みが復元されるので、大き
い文字の活字部2bを有するものに適用する場合
には、前者が望ましい。なお、無加熱加圧の代わ
りに、若干冷却された状態で加圧してもよい。
In addition, this pressure determines the thickness of the printed part 2 in the case of heating and pressing, but in the case of non-heating and pressing, the thickness is restored even if it is compressed once, so it is possible to print large characters. The former is preferable when applied to a device having a type portion 2b. Note that instead of applying pressure without heating, pressure may be applied in a slightly cooled state.

(工程 4) 第5図に示すように、上側金型15を下側金型
12より取外して、前記圧縮された薄層上に、架
橋フオームからなるインク吸蔵部3(シート状の
多孔質体)を重積する。この工程は、(工程3)
が加熱状態で行われた場合には冷却状態で、無加
熱状態で行われた場合には無冷却状態で行われ
る。なお、インク吸蔵部3は、前記粉末13,1
4の焼結温度においては、弾性を示すものであ
る。
(Step 4) As shown in FIG. 5, the upper mold 15 is removed from the lower mold 12, and the ink storage part 3 (sheet-like porous material) made of crosslinked foam is placed on the compressed thin layer. ). This process is (Process 3)
If it is carried out in a heated state, it is carried out in a cooled state, and if it is carried out in an unheated state, it is carried out in a non-cooled state. Incidentally, the ink storage section 3 contains the powder 13, 1.
At the sintering temperature of No. 4, it exhibits elasticity.

(工程 5) 第6図に示すように、下側金型12上に、所定
高さhの耳枠17を介して上側金型15を取付け
て、加熱加圧を行う。ここで、耳枠17の高さh
は、インク吸蔵部3が圧縮されるように(望まし
くは、10〜30%の圧縮率でもつて)設定されてい
る。
(Step 5) As shown in FIG. 6, the upper mold 15 is mounted on the lower mold 12 via the ear frame 17 having a predetermined height h, and heated and pressurized. Here, the height h of the ear frame 17
is set so that the ink storage section 3 is compressed (preferably at a compression ratio of 10 to 30%).

かくして、第1図に示される多孔性印材1が形
成される。
In this way, the porous stamp material 1 shown in FIG. 1 is formed.

この第1の製造方法によれば、(工程3)にお
いて、インク吸蔵部3に融着接合される平担な面
を印字部2(薄層部2a)に形成しているため、
印字部2とインク吸蔵部3とが安定して接合さ
れ、活字部2bが大きい場合にも、該活字部2b
が変形するということはなく、容易にしかも短時
間に成形できる。
According to this first manufacturing method, in (step 3), a flat surface that is fused and bonded to the ink storage section 3 is formed on the printing section 2 (thin layer section 2a).
Even when the printing part 2 and the ink storage part 3 are stably joined and the printing part 2b is large, the printing part 2b
It does not deform and can be molded easily and in a short time.

なお、印字部2とインク吸蔵部3とがインク流
通性を損うことなく、有効に熱融着されるために
は、印字部2(焼結部)に部分的にも全体的にも
溶融が生ずることは望ましくないので、(工程3)
における加熱あるいは無加熱加圧により圧縮、
(工程5)における加熱加圧の加熱は、許容範囲
内におさまるようにする必要があるのは言うまで
もない。
Note that in order for the printing part 2 and the ink storage part 3 to be effectively thermally fused without impairing ink circulation, it is necessary to melt the printing part 2 (sintered part) both partially and completely. (Step 3)
compressed by heating or non-heating pressure,
It goes without saying that the heating during heating and pressurization in (Step 5) needs to be within an allowable range.

本発明に係る第2の多孔性印材の製造方法は、
刻印成型用親型の文字凹部に粒度が300メツシユ
以下の第1熱可塑性樹脂粉末を充填し、さらにそ
の文字凹部および親型の頂面の上側に粒度が150
〜300メツシユで第1熱可塑性樹脂粉末よりも粒
度が大きい第2熱可塑性樹脂粉末を充積した後
に、その上に、前記第1および第2熱可塑性樹脂
粉末の焼結温度において弾性を維持する架橋フオ
ームよりなる基材を重積して加熱加圧することに
より、前記第1および第2熱可塑性樹脂粉末を焼
結させて前記文字凹部に沿つた形状の印字面を有
する焼結フオームを形成するとともに、該焼結フ
オーム上に前記基材を、界面におけるインク流通
性を損ねることなく、一体的に熱融着せしめるこ
とを特徴とする。
The second method for manufacturing a porous stamp material according to the present invention includes:
A first thermoplastic resin powder with a grain size of 300 mesh or less is filled into the character recesses of the parent mold for stamping molding, and a powder with a grain size of 150 mesh is further filled in the character recesses and the upper side of the top surface of the parent mold.
After filling a second thermoplastic resin powder with a particle size larger than the first thermoplastic resin powder in ~300 meshes, a second thermoplastic resin powder that maintains elasticity at the sintering temperature of the first and second thermoplastic resin powders is placed thereon. By stacking base materials made of cross-linked foam and applying heat and pressure, the first and second thermoplastic resin powders are sintered to form a sintered foam having a printing surface shaped along the character recesses. In addition, the base material is integrally heat-sealed onto the sintered foam without impairing ink flowability at the interface.

すなわち、第2の製造方法は、1回の加熱加圧
→冷却除圧のサイクルで、成型を完了してしまう
ものである。
In other words, in the second manufacturing method, molding is completed in one cycle of heating and pressurizing→cooling and depressurizing.

この第2の製造方法によれば、第1の製造方法
に比べて、インク吸蔵部3(多孔質体)の厚い場
合には接合力が若干劣るが、インク吸蔵部3の厚
さの比較的薄い場合にはほとんど変わらない。
According to the second manufacturing method, the bonding force is slightly inferior when the ink storage section 3 (porous body) is thicker than the first manufacturing method, but the bonding force is slightly inferior when the ink storage section 3 is thicker. There is almost no difference when it is thin.

次に、本発明の構成を、実施例について、具体
的に説明する。
Next, the configuration of the present invention will be specifically described with reference to embodiments.

(実施例 1) 先ず、印字部を構成する熱可塑性ウレタン樹脂
としてのアジピン酸エステル系熱可塑性ウレタン
樹脂(日本エラストラン株式会社製E−185)を、
グラインダーを用いてバフイングし、それによつ
て粉末化した。続いて、このようにして得られた
粉末を、篩により、150メツシユ以上のもの(A)、
150〜300メツシユのもの(B)、および300メツシユ
以下のもの(C)の3種類に分級した。このうち、粉
末の平均カサ比重は、粉末(B)が0.153で、粉末C
が0.128である。なお、粉末(A)は用いない。
(Example 1) First, an adipic acid ester thermoplastic urethane resin (E-185 manufactured by Nippon Elastolan Co., Ltd.) was used as the thermoplastic urethane resin constituting the printed part.
It was buffed using a grinder and thereby powdered. Next, the powder obtained in this way is sieved to 150 mesh or more (A),
It was classified into three types: those with 150 to 300 meshes (B) and those with less than 300 meshes (C). Among these, the average bulk specific gravity of the powders is 0.153 for powder (B) and 0.153 for powder C.
is 0.128. Note that powder (A) is not used.

次いで、予め形成されたベークライト製親型
(例えば、有効面積が150mm×200mmで、20mm×60
mmの印材が18コ取れる)をアルミニウム合金製の
成型用金型に装設し、しかして前記粉末(C)を親型
の文字凹部に充填した(この場合、文字凹部にて
成形される活字部分の空隙率が35%になるように
設定)。さらに、その上に、前記粉末(B)をほぼ2.5
mmの厚さの層状に積層する。
A pre-formed Bakelite master mold (e.g. with an effective area of 150 mm x 200 mm and a 20 mm x 60
The powder (C) was then filled into the character recesses of the parent mold (in this case, the type molded in the character recesses (Set so that the porosity of the part is 35%). Furthermore, approximately 2.5% of the powder (B) is added on top of it.
Laminated in layers with a thickness of mm.

続いて、上盤を取付けて、前記粉末(B)の薄層が
ほぼ0.6mmの厚さになるまで圧縮して、温度150℃
でもつて約3分間加熱した。なお、上記加熱加圧
時には、粉末Bの薄層と上盤との間にポリエステ
ルフイルム(厚さ1mm程度)が介装され、離型が
容易に行なえるようになつている。
Next, the upper plate was attached, the powder (B) was compressed until the thin layer became approximately 0.6 mm thick, and the temperature was 150°C.
But it was heated for about 3 minutes. Incidentally, during the heating and pressing, a polyester film (about 1 mm thick) is interposed between the thin layer of powder B and the upper plate to facilitate release from the mold.

その後、冷却プレスでもつて、約5分間の間、
加圧冷却する。
After that, press it in a cooling press for about 5 minutes.
Cool under pressure.

このようにして圧縮された粉末Bの薄層上に、
厚さ2.5mm程度の架橋ウレタンフオーム(ブリジ
ストン株式会社、スコツトフエルトPH−20、密
度0.29g/cm3、気孔率76%)からなる多孔質体を
積層し、しかして該多孔質体の厚さが2.5mm→2.0
mm、すなわち圧縮率が20%になるように圧縮した
状態で、温度150℃でもつて6分間加熱し、それ
によつて前記粉末を完全に焼結させるとともに、
該焼結によつて構成される印字部がインク吸蔵部
に熱融着された。
On a thin layer of powder B compressed in this way,
A porous body made of cross-linked urethane foam (Bridgestone Co., Ltd., Scott Felt PH-20, density 0.29 g/cm 3 , porosity 76%) with a thickness of about 2.5 mm is laminated, and the thickness of the porous body is Saga 2.5mm→2.0
mm, that is, the compressibility is 20%, and heated at a temperature of 150°C for 6 minutes, thereby completely sintering the powder, and
The printed portion formed by the sintering was thermally fused to the ink storage portion.

この後、冷却プレスで約5分間加圧冷却し、し
かして金型を分解して、所定寸法に裁断して所望
の印材を得た。
Thereafter, the mold was cooled under pressure for about 5 minutes using a cooling press, and then the mold was disassembled and cut to a predetermined size to obtain a desired stamp material.

かくして得られた18コの印材の厚さを測定する
と、最大値3.05mm、最小値2.90mm、平均値=
2.87mmであり、バラツキは極めて小さく、標準偏
差σ=0.045であつた。
When we measured the thickness of the 18 stamp materials obtained in this way, the maximum value was 3.05 mm, the minimum value was 2.90 mm, and the average value =
It was 2.87 mm, and the variation was extremely small, with a standard deviation σ = 0.045.

(実施例 2) 本例は、実施例1における多孔質体であるスコ
ツトフエルトPH−20(インク吸蔵部)の厚さを
9.5mmとし、しかして該多孔質体の厚さが9.5mm→
6.5mm、すなわち圧縮率が約32%になる圧縮状態
で、温度150℃でもつて約6分間加熱して印材を
得た。なお、その他の構成は、実施例1と同様で
ある。
(Example 2) In this example, the thickness of Scotstofel PH-20 (ink storage part), which is the porous body in Example 1, was
9.5mm, and the thickness of the porous body is 9.5mm→
A stamp material was obtained by heating at a temperature of 150° C. for about 6 minutes in a compressed state of 6.5 mm, that is, a compression ratio of about 32%. Note that the other configurations are the same as in the first embodiment.

かくして、得られた18コの印材の厚さは、平均
値=9.85mm、標準偏差σ=0.065であつた。
The thickness of the 18 stamp materials thus obtained was an average value of 9.85 mm and a standard deviation σ = 0.065.

(実施例 3) 本例は、多孔質体として、実施例2のスコツト
フエルトPH−20の代わりに、同一形状のスコツ
トフエルトPF−20(密度0.13g/cm3、気孔率90
%)を用い、該多孔質体の厚さが9.5mm→8.0mm、
すなわち圧縮率が約15.8%になる圧縮状態で、温
度150℃でもつて約8分間加熱して、印材を得た。
なお、その他の構成は、実施例2と同様である。
(Example 3) In this example, instead of Scotstofel PH-20 in Example 2, Scotstofel PF-20 (density 0.13 g/cm 3 , porosity 90
%), the thickness of the porous body is 9.5 mm → 8.0 mm,
That is, a stamp material was obtained by heating at a temperature of 150° C. for about 8 minutes in a compressed state with a compression rate of about 15.8%.
Note that the other configurations are the same as in the second embodiment.

得られた印材の厚さを測定すると、平均値=
9.8mmで、標準偏差σ=0.051であつた。
When the thickness of the obtained stamp material was measured, the average value =
The diameter was 9.8 mm, and the standard deviation σ was 0.051.

(実施例 4) 本例は、実施例1において、親型の文字凹部に
熱可塑性樹脂粉末(C)を充填し、その上に粉末Bを
層状に積層した後、直ちに、多孔質体であるスコ
ツトフエルトPH−20(実施例1と同一)をその
上に積層し、しかして実施例1と同様に、圧縮率
20%の圧縮状態で、温度150℃でもつて約8分間
加圧して、印材を得た。すなわち、一回だけの加
熱加圧によつて印材を得た。
(Example 4) In this example, after filling thermoplastic resin powder (C) into the character recesses of the parent mold in Example 1 and layering powder B on top of it, a porous body was immediately prepared. Scotstofel PH-20 (same as Example 1) was laminated thereon, and as in Example 1, the compressibility
A stamp material was obtained by pressurizing at 20% compression for about 8 minutes at a temperature of 150°C. That is, a stamp material was obtained by heating and pressing only once.

その結果、実施例1と同様に、厚さのバラツキ
の小さい印材が得られた。すなわち、印材の厚さ
の平均値=2.85mmで、標準偏差σ=0.062であ
つた。
As a result, as in Example 1, a stamp material with small variation in thickness was obtained. That is, the average thickness of the stamp material was 2.85 mm, and the standard deviation σ was 0.062.

上記実施例1〜4は、全て、印字部(焼結フオ
ーム)とインク吸蔵部(架橋ウレタンフオーム)
との融着力は十分であつて、両者を分離しようと
すると、印字部が凝集破壊した。
In all of the above Examples 1 to 4, the printing part (sintered foam) and the ink storage part (crosslinked urethane foam)
The adhesion force between the two was sufficient, and when attempting to separate the two, the printed portion suffered cohesive failure.

また、印字部の活字部分は、親型の文字凹部に
密着するので、シヤープであつた。
In addition, the typed portion of the printed portion was sharp because it was in close contact with the character recessed portion of the parent mold.

さらに、実施例2,3の印材に、油性染料イン
ク(インク粘度3000cps)を吸蔵せしめて、連続
捺印テストを行つたところ、それぞれ5万回、8
万回の鮮明な捺印が可能であつた。
Furthermore, when the stamp materials of Examples 2 and 3 were made to absorb oil-based dye ink (ink viscosity: 3,000 cps) and a continuous stamp test was conducted, the results were as follows: 50,000 times and 8 times, respectively.
It was possible to make ten thousand clear stamps.

続いて、上記各実施例を、比較例に基づいて検
討する。
Next, each of the above embodiments will be discussed based on comparative examples.

(比較例) 本例は、多孔質体として、実施例1で用いた熱
可塑性ウレタン樹脂の粉末(B)を、アルミニウム合
金製の金型内に均一に充填し(厚さが3.0mm密度
0.25g/cm3となるように粉末の充填量を調整す
る)、しかして温度150℃でもつて約3分間加熱
し、それによつて得られた熱可塑性ウレタンフオ
ームを用いたものである。
(Comparative example) In this example, the thermoplastic urethane resin powder (B) used in Example 1 was uniformly filled into an aluminum alloy mold (with a thickness of 3.0 mm and a density of
The powder filling amount was adjusted to 0.25 g/cm 3 ), and the resulting thermoplastic urethane foam was heated at 150° C. for about 3 minutes.

印材は、スコツトフエルトPH−20の代わり
に、上記熱可塑性ウレタンフオームを用いて、実
施例1と同様にして製造した。ただし、加熱加圧
は、熱可塑性ウレタンフオームの厚さが、3.0mm
→2.5mmになる圧縮状態で行つた。
A stamp material was produced in the same manner as in Example 1, using the above thermoplastic urethane foam instead of Scott Felt PH-20. However, when applying heat and pressure, the thickness of the thermoplastic urethane foam is 3.0 mm.
→This was done in a compressed state of 2.5mm.

その結果得られた18コの印材は、厚さが3.0mm
〜2.55mmの範囲に亘り、そのバラツキ量は実施例
1のほぼ3倍である。すなわち、平均値=2.78
mmで、標準偏差σ=0.15であつた。なお、このよ
うにバラツキ量が大きくなるのは、インク吸蔵部
となる多孔質体が、その熱可塑性のために、加熱
→冷却の温度変化のサイクルによつて、寸法がセ
ツトされ、親型の文字凹部の反り変形、多孔質体
の収縮が、成型完了後においても、印材の厚さに
残存するためと考えられる。
The resulting 18 stamps had a thickness of 3.0 mm.
-2.55 mm, and the amount of variation is approximately three times that of Example 1. That is, average value = 2.78
mm, and the standard deviation σ = 0.15. The reason for this large amount of variation is that due to the thermoplasticity of the porous material that serves as the ink storage section, the dimensions are set through the cycle of temperature changes from heating to cooling, and the dimensions of the porous material that becomes the ink storage section are set due to the temperature change cycle of heating → cooling. This is thought to be because the warpage of the character recesses and the shrinkage of the porous body remain in the thickness of the stamp material even after molding is completed.

本発明は、上記のように、インク吸蔵部となる
架橋フオームが、印字部を形成する熱可塑性樹脂
粉末の焼結温度において弾性を維持するものであ
るから、刻印成型時に加熱加圧しても、冷却除圧
後には元の厚さに復元され、寸法精度の良好な印
材が得られる。
In the present invention, as described above, the crosslinked foam that becomes the ink storage part maintains elasticity at the sintering temperature of the thermoplastic resin powder that forms the printing part, so even if heated and pressurized during stamp molding, After cooling and depressurizing, the original thickness is restored and a stamp material with good dimensional accuracy is obtained.

また、このような架橋フオームを用いているた
め、成型時(熱可塑性樹脂粉末の焼結時)におい
て、圧縮状態、すなわち熱可塑性樹脂粉末を加圧
している状態にあるため、印字部とインク吸蔵部
との熱融着性が良く、しかも親型の文字凹部内の
粉末が該文字凹部に密着するように加圧されて焼
結されることとなり、活字部分が精度よくシヤー
プで、捺印特性の優れた印材が得られる。
In addition, since such a crosslinked foam is used, during molding (sintering the thermoplastic resin powder), the thermoplastic resin powder is in a compressed state, which means that the printing area and the ink storage are in a compressed state. In addition, the powder in the character recesses of the parent mold is pressurized and sintered so that it comes into close contact with the character recesses, and the type part is accurately sharp and the printing characteristics are improved. Excellent printing material can be obtained.

焼結する部分は、親型の文字凹部表面に近い印
字部のみで、その容積は小さいから、焼結性が良
く、短時間に、安定して、強度に優れた印材が得
られる。
The only part to be sintered is the printed part close to the surface of the character concave part of the parent mold, and since its volume is small, the sintering property is good, and a stamp material with excellent strength can be obtained stably in a short time.

特に、印字部とインク吸蔵部との空隙率のみな
らず、印字部の活字部および薄層部を形成する熱
可塑性樹脂粉末の粒度も考慮しているので、気孔
径(毛細管径)が、インク吸蔵部、薄層部、活字
部の順に小さくなり、それによつて毛細管現象に
よるインクの移行をスムーズにできると共に、印
材成形後における活字部の活字面の平滑性、緻密
性に優れる。
In particular, we take into account not only the porosity of the printing part and the ink storage part, but also the particle size of the thermoplastic resin powder that forms the type part and thin layer part of the printing part, so that the pore diameter (capillary diameter) The storage part, the thin layer part, and the type part become smaller in this order, which allows for smooth ink transfer due to capillary action, and also provides excellent smoothness and denseness of the type surface of the type part after molding of the printing material.

インク吸蔵部を構成する架橋フオームは、如何
なる厚みのものでも適用でき、また、印字部の空
隙率は、親型の文字凹部への粉末の充填量と、該
粉末に加わる加圧力(架橋フオームの圧縮率)と
を変えることによつて、一方、インク吸蔵部は、
架橋フオームの空隙率(密度)を変えることによ
つて、それぞれ調整されて、インクの消費性が制
御できるため、印材のサイズ、捺印時の圧力など
使用条件に応じて、多様な設計が可能である。
The cross-linked foam constituting the ink storage section can be of any thickness, and the porosity of the printing section is determined by the amount of powder filled into the character recesses of the parent mold and the pressing force applied to the powder (of the cross-linked foam). On the other hand, by changing the compression ratio), the ink storage section
By changing the porosity (density) of the crosslinked foam, the ink consumption can be adjusted and the ink consumption can be controlled, making it possible to create a variety of designs depending on usage conditions such as the size of the printing material and the pressure during printing. be.

さらに、インク吸蔵部は、印字部を構成する熱
可塑性樹脂粉末の焼結温度において弾性を維持す
る架橋フオームで形成されるため、成型時に、金
型への粘着もなく、したがつて離型処理も不要で
ある。
Furthermore, since the ink storage part is formed of a cross-linked foam that maintains elasticity at the sintering temperature of the thermoplastic resin powder that makes up the printing part, it does not stick to the mold during molding, and therefore can be easily removed during the mold release process. is also unnecessary.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施態様を例示するもので、第
1図は多孔性印材の断面図、第2図乃至第6図は
それぞれ多孔性印材の製造工程を示す概略工程図
である。 1……多孔性印材、2……印字部、2a……薄
層部、2b……活字部、3……インク吸蔵部、1
1……刻印成型用親型、12……下側金型、11
a……文字凹部、13,14……熱可塑性樹脂粉
末、15……上側金型、17……耳枠。
The drawings illustrate embodiments of the present invention, and FIG. 1 is a sectional view of a porous stamp material, and FIGS. 2 to 6 are schematic process diagrams showing the manufacturing process of the porous stamp material. DESCRIPTION OF SYMBOLS 1... Porous stamp material, 2... Printing part, 2a... Thin layer part, 2b... Character part, 3... Ink storage part, 1
1... Master mold for stamping molding, 12... Lower mold, 11
a...Character recess, 13, 14...Thermoplastic resin powder, 15...Upper mold, 17...Ear frame.

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂粉末の焼結フオームからなる印
字部と、前記熱可塑性樹脂粉末の焼結温度におい
て弾性を維持する架橋フオームからなり前記印字
部よりも空隙率が大きいインク吸蔵部とが熱融着
されてなり、さらに前記印字部は、インク吸蔵部
に融着された薄層部と、該薄層部より突設された
活字部とからなり、前記印字部の活字部を形成す
る第1熱可塑性樹脂粉末の粒度は300メツシユ以
下で、薄層部を形成する第2熱可塑性樹脂粉末の
粒度は150〜300メツシユであり、第2熱可塑性樹
脂粉末の粒度が第1熱可塑性樹脂粉末の粒度より
も大きいことを特徴とする多孔性印材。 2 架橋フオームは、ポリウレタン架橋フオーム
である特許請求の範囲第1項記載の多孔性印材。 3 刻印成型用親型の文字凹部に粒度が300メツ
シユ以下の第1熱可塑性樹脂粉末を充填し、さら
にその文字凹部および親型の頂面の上側に粒度が
150〜300メツシユで第1熱可塑性樹脂粉末よりも
粒度が大きい第2熱可塑性樹脂粉末を充積し、該
第1および第2熱可塑樹脂粉末を加熱加圧、ある
いは無加熱加圧した後に、その上に、前記第1お
よび第2熱可塑性樹脂粉末の焼結温度において弾
性を維持する架橋フオームよりなる基材を重積し
て加熱加圧することにより、前記第1および第2
熱可塑性樹脂粉末を焼結させて前記文字凹部に沿
つた形状の印字面を有する焼結フオームを形成す
るともに、該焼結フオーム上に前記基材を、界面
におけるインク流通性を損ねることなく、一体的
に熱融着せしめることを特徴とする多孔性印材の
製造方法。 4 架橋フオームは、ポリウレタン架橋フオーム
である特許請求の範囲第3項記載の多孔性印材の
製造方法。 5 刻印成型用親型の文字凹部に粒度が300メツ
シユ以下の第1熱可塑性樹脂粉末を充填し、さら
にその文字凹部および親型の頂面の上側に粒度が
150〜300メツシユで第1熱可塑性樹脂粉末よりも
粒度が大きい第2熱可塑性樹脂粉末を充積した後
に、その上に、前記第1および第2熱可塑性樹脂
粉末の焼結温度において弾性を維持する架橋フオ
ームよりなる基材を重積して加熱加圧することに
より、前記第1および第2熱可塑性樹脂粉末を焼
結させて前記文字凹部に沿つた形状の印字面を有
する焼結フオームを形成するとともに、該焼結フ
オーム上に前記基材を、界面におけるインク流通
性を損ねることなく、一体的に熱融着せしめるこ
とを特徴とする多孔性印材の製造方法。 6 架橋フオームは、ポリウレタン架橋フオーム
である特許請求の範囲第5項記載の多孔性印材の
製造方法。
[Scope of Claims] 1. A printed part made of a sintered foam of thermoplastic resin powder, and an ink storage part made of a crosslinked foam that maintains elasticity at the sintering temperature of the thermoplastic resin powder and has a higher porosity than the printed part. Further, the printing part includes a thin layer part fused to the ink storage part and a type part protruding from the thin layer part, and the type part of the printing part The particle size of the first thermoplastic resin powder forming the thin layer portion is 300 mesh or less, the particle size of the second thermoplastic resin powder forming the thin layer portion is 150 to 300 mesh, and the particle size of the second thermoplastic resin powder is 300 mesh or less. A porous stamp material characterized by a particle size larger than that of thermoplastic resin powder. 2. The porous stamp material according to claim 1, wherein the crosslinked foam is a polyurethane crosslinked foam. 3 The first thermoplastic resin powder with a particle size of 300 mesh or less is filled into the character recesses of the parent mold for stamping molding, and the particle size is further added to the upper side of the character recesses and the top surface of the parent mold.
After filling a second thermoplastic resin powder with a particle size of 150 to 300 meshes and having a particle size larger than that of the first thermoplastic resin powder, and heating and pressing the first and second thermoplastic resin powders or pressing them without heating, On top of that, a base material made of a crosslinked foam that maintains elasticity at the sintering temperature of the first and second thermoplastic resin powders is stacked and heated and pressurized.
sintering the thermoplastic resin powder to form a sintered form having a printing surface shaped along the character recesses, and placing the base material on the sintered form without impairing ink flowability at the interface; A method for producing a porous stamp material characterized by integrally heat-sealing it. 4. The method for producing a porous stamp material according to claim 3, wherein the crosslinked foam is a polyurethane crosslinked foam. 5 Fill the character recesses of the parent mold for stamping molding with a first thermoplastic resin powder with a particle size of 300 mesh or less, and then fill the character recesses and the upper side of the top surface of the parent mold with a particle size of 300 mesh or less.
After filling a second thermoplastic resin powder with a particle size larger than that of the first thermoplastic resin powder at 150 to 300 meshes, a second thermoplastic resin powder that maintains elasticity at the sintering temperature of the first and second thermoplastic resin powders is placed thereon. By stacking base materials made of cross-linked foams and heating and pressurizing them, the first and second thermoplastic resin powders are sintered to form a sintered foam having a printed surface shaped along the character recesses. A method for producing a porous stamp material, characterized in that the base material is integrally heat-sealed onto the sintered foam without impairing ink flowability at the interface. 6. The method for producing a porous stamp material according to claim 5, wherein the crosslinked foam is a polyurethane crosslinked foam.
JP7389681A 1981-05-15 1981-05-15 Porous material for stamp and manufacture thereof Granted JPS57188391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7389681A JPS57188391A (en) 1981-05-15 1981-05-15 Porous material for stamp and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7389681A JPS57188391A (en) 1981-05-15 1981-05-15 Porous material for stamp and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS57188391A JPS57188391A (en) 1982-11-19
JPH0149634B2 true JPH0149634B2 (en) 1989-10-25

Family

ID=13531418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7389681A Granted JPS57188391A (en) 1981-05-15 1981-05-15 Porous material for stamp and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS57188391A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056586A (en) * 1983-09-07 1985-04-02 Showa Gomme Kk Porous composite stamp material
JPS6442274A (en) * 1987-07-29 1989-02-14 Yuushiyou Kin Stamp
JP4495425B2 (en) * 2003-08-28 2010-07-07 シヤチハタ株式会社 Porous printed material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522962A (en) * 1978-08-07 1980-02-19 Bando Chem Ind Ltd Ink containing mark material
JPS56151586A (en) * 1980-04-28 1981-11-24 Bando Chem Ind Ltd Hard porous stamp material and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522962A (en) * 1978-08-07 1980-02-19 Bando Chem Ind Ltd Ink containing mark material
JPS56151586A (en) * 1980-04-28 1981-11-24 Bando Chem Ind Ltd Hard porous stamp material and its manufacture

Also Published As

Publication number Publication date
JPS57188391A (en) 1982-11-19

Similar Documents

Publication Publication Date Title
JP6205731B2 (en) Porous stamp manufacturing method, porous stamp, and porous stamp manufacturing apparatus
US2392521A (en) Porous resilient printing plate
JPH10501475A (en) Electronic module manufacturing method and electronic module obtained by this method
JP5521175B2 (en) Press molding apparatus and press molding method
CN105280507A (en) Electronic component, bump-formed plate-like member, and producing method
JPH0149634B2 (en)
CN1973927B (en) Plastic skis making process
JPH0618715B2 (en) Pressurization method with elastomeric spheres for adhesive bonding of aggregates
US3931762A (en) Method for preparing a plastic relief printing plate
JPH0224231B2 (en)
JPS61188130A (en) Synthetic resin sintered body
JPS5916945B2 (en) Ink-containing stamp material
US5213751A (en) Method of producing a felted porous polychloroprene latex foam
JP4753221B2 (en) Sheet fiber assembly and method for producing the same
JP3228826B2 (en) Manufacturing method of interior parts
JPS6253811A (en) Manufacture of laminated material
JPH0245027Y2 (en)
JP4097863B2 (en) Molded resin mold
JPS60193686A (en) Stamp and its manufacture
JPH056762A (en) Manufacture of spongy metal porous body for electrode plate
JP3601212B2 (en) Ink cartridges for ink-jet recording devices and their production
JPS60228186A (en) Production of cellular stamp having open cells
JPH0957494A (en) Forming method for formed body having smooth surface
TW314455B (en) The manufacturing method of air-through shoes pad and its product
JPS6144054B2 (en)