JPH0147924B2 - - Google Patents

Info

Publication number
JPH0147924B2
JPH0147924B2 JP56000993A JP99381A JPH0147924B2 JP H0147924 B2 JPH0147924 B2 JP H0147924B2 JP 56000993 A JP56000993 A JP 56000993A JP 99381 A JP99381 A JP 99381A JP H0147924 B2 JPH0147924 B2 JP H0147924B2
Authority
JP
Japan
Prior art keywords
mosfet
source
electrode
drain electrode
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56000993A
Other languages
Japanese (ja)
Other versions
JPS57115007A (en
Inventor
Masunori Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56000993A priority Critical patent/JPS57115007A/en
Publication of JPS57115007A publication Critical patent/JPS57115007A/en
Publication of JPH0147924B2 publication Critical patent/JPH0147924B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Description

【発明の詳細な説明】 本発明は出力バツフア回路に関する。[Detailed description of the invention] The present invention relates to an output buffer circuit.

演算増幅器などのようなリニア回路に於ては、
他の回路との接続を容易にするなどのため出力低
抗が低い出力バツフア回路を必要とすることが多
い。MOSFETを構成素子とする出力回路に於
て、出力抵抗を低くする方法としてソース接地回
路に負帰還を施す方法がある。この方法による出
力バツフア回路として従来より広く用いられてい
る1例を第1図に示す。
In linear circuits such as operational amplifiers,
In order to facilitate connection with other circuits, an output buffer circuit with low output resistance is often required. One way to lower the output resistance of an output circuit including MOSFETs is to provide negative feedback to the common source circuit. An example of an output buffer circuit based on this method that has been widely used in the past is shown in FIG.

第1図においてMOSFET1はMOSFET2を
負荷とするソース接地回路を構成しており、該
MOSFET1のゲート電極に加えられる信号V1
増幅して出力端子6に出力信号V0を出力する。
このうちMOSFET2は負荷素子の動作をする他
の素子であつても差支えない。MOSFET3は出
力信号V0を入力としMOSFET4を負荷とするソ
ースホロア回路であり、出力信号V0を前記ソー
ス接地回路を構成するMOSFET1のゲート電極
に帰還する働きをする。一方MOSFET4は入力
信号VINに対してはMOSFET3を負荷とするソ
ース接地回路として動作し、MOSFET4のドレ
イン電極側に増幅された信号を出力する。入力信
号VINに対するソース接地回路を構成する
MOSFET4の出力と、出力信号V0に対するソー
スホロア回路を構成するMOSFET3の出力は、
MOSFET4のドレイン電極とMOSFET3のソ
ース電極の接続点7において合成される。この場
合ソース接地回路は入力信号電圧の位相を反転し
て出力するが、ソースホロア回路は入出力同位相
であるから、前記接続点7で合成される
MOSFET3,4の出力信号は互いに逆位相で、
MOSFET3,4からなるソースホロア回路によ
る帰還は電圧負帰還となり、その結果この出力バ
ツフア回路の出力抵抗は低くなる。また
MOSFET3のソースホロアによる負帰還量がほ
ぼ1であるため、MOSFET1,2,3で構成さ
れる負帰還増幅回路の電圧利得もほぼ1であつ
て、第1図の出力バツフア回路の入力信号VIN
出力信号V0間の電圧利得はMOSFET3,4から
なるソース接地回路の利得にほぼ等しくなる。こ
のMOSFET3,4のソース接地回路の電圧利得
は、MOSFET3,4のそれぞれの動作点におけ
る相互コンダクタンスをgm3,gm4とすれば
ほゞgm4/gm3であらわされることがよく知ら
れており、その結果この出力バツフア回路の電圧
利得は前記MOSFET3,4のそれぞれの動作点
における相互コンダクタンスgm3,gm4により
決定されることとなる。
In Figure 1, MOSFET1 constitutes a source-grounded circuit with MOSFET2 as the load.
The signal V 1 applied to the gate electrode of MOSFET 1 is amplified and an output signal V 0 is output to the output terminal 6.
Among these, the MOSFET 2 may be another element that operates as a load element. The MOSFET 3 is a source follower circuit that receives the output signal V 0 as an input and uses the MOSFET 4 as a load, and functions to feed back the output signal V 0 to the gate electrode of the MOSFET 1 forming the source common circuit. On the other hand, MOSFET 4 operates as a source-grounded circuit with MOSFET 3 as a load for input signal V IN , and outputs an amplified signal to the drain electrode side of MOSFET 4. Configure a source common circuit for input signal V IN
The output of MOSFET 4 and the output of MOSFET 3 which constitutes the source follower circuit for the output signal V 0 are as follows:
They are synthesized at the connection point 7 between the drain electrode of MOSFET 4 and the source electrode of MOSFET 3. In this case, the source common circuit inverts the phase of the input signal voltage and outputs it, but since the input and output of the source follower circuit have the same phase, they are combined at the connection point 7.
The output signals of MOSFETs 3 and 4 are in opposite phase to each other,
Feedback by the source follower circuit consisting of MOSFETs 3 and 4 becomes negative voltage feedback, and as a result, the output resistance of this output buffer circuit becomes low. Also
Since the amount of negative feedback due to the source follower of MOSFET 3 is approximately 1, the voltage gain of the negative feedback amplifier circuit composed of MOSFETs 1, 2, and 3 is also approximately 1, and the input signal V IN of the output buffer circuit in FIG.
The voltage gain between the output signals V0 is approximately equal to the gain of the common source circuit composed of MOSFETs 3 and 4. It is well known that the voltage gain of the common source circuit of MOSFETs 3 and 4 is approximately expressed as gm4/gm3, where gm3 and gm4 are the mutual conductances at the operating points of MOSFETs 3 and 4, respectively. The voltage gain of the output buffer circuit is determined by the mutual conductances gm3 and gm4 of the MOSFETs 3 and 4 at their respective operating points.

しかしながら、このような出力バツフア回路に
おいては、入力信号VINおよび出力信号V0の動作
点および動作範囲が、外部に接続される回路の条
件により決定されるためMOSFET3,4の動作
点をそれぞれ最適に保つことが困難であり、結果
としてこのような出力バツフア回路の電圧利得は
比較的低く制限されることが多く、先行する回路
などに高利得のものを必要とする欠点があつた。
However, in such an output buffer circuit, the operating points and operating ranges of the input signal V IN and output signal V 0 are determined by the conditions of the externally connected circuit, so the operating points of MOSFETs 3 and 4 must be optimized. As a result, the voltage gain of such output buffer circuits is often limited to a relatively low value, a disadvantage of previous circuits requiring high gain.

本発明はこの欠点を解決し、出力抵抗は従来と
同様に低く保ちながら、従来のものよりもはるか
に大きい電圧利得をもつ出力バツフア回路を提供
することを目的とする。
The present invention aims to overcome this drawback and provide an output buffer circuit with a voltage gain much greater than that of the prior art, while keeping the output resistance as low as before.

本発明によれば、一端を第1の電源に接続した
第1の負荷素子と、ドレイン電極を前記第1の負
荷素子の他の一端に接続しソース電極を第2の電
源に接続した第1のMOSFETと、ドレイン電極
を前記第1の電源に接続しゲート電極を前記第1
のMOSFETのドレイン電極に接続しソース電極
を前記第1のMOSFETのゲート電極に接続した
第2のMOSFETと、ドレイン電極を前記第2の
MOSFETのソース電極に接続しゲート電極を第
3の電源に接続した第3のMOSFETと、ドレイ
ン電極を前記第3のMOSFETのソース電極に接
続しソース電極を前記第2の電源に接続した第4
のMOSFETと、一端を前記第1の電源に接続し
他の一端を前記第4のMOSFETのドレイン電極
に接続した第2の負荷素子を備えることにより、
前記第4のMOSFETのゲート電極を入力端子と
し前記第1のMOSFETのドレイン電極を出力端
子とする出力バツフア回路が得られる。
According to the present invention, the first load element has one end connected to a first power source, and the first load element has a drain electrode connected to the other end of the first load element and a source electrode connected to the second power source. MOSFET with a drain electrode connected to the first power source and a gate electrode connected to the first power source.
a second MOSFET whose drain electrode is connected to the drain electrode of the first MOSFET and whose source electrode is connected to the gate electrode of the first MOSFET;
a third MOSFET whose drain electrode is connected to the source electrode of the MOSFET and whose gate electrode is connected to the third power supply; and a fourth MOSFET whose drain electrode is connected to the source electrode of the third MOSFET and whose source electrode is connected to the second power supply.
MOSFET, and a second load element having one end connected to the first power supply and the other end connected to the drain electrode of the fourth MOSFET,
An output buffer circuit is obtained in which the gate electrode of the fourth MOSFET serves as an input terminal and the drain electrode of the first MOSFET serves as an output terminal.

以下、本発明を一実施例につき図面を参照して
説明する。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.

第2図は本発明の一実施例の簡略化した回路構
成を示したもので、第1図の従来例との対照を容
易にするため相対応する参照番号に10番台の同番
号を使用してある。
FIG. 2 shows a simplified circuit configuration of an embodiment of the present invention, and in order to facilitate comparison with the conventional example shown in FIG. 1, the same numbers in the 10s are used for corresponding reference numbers. There is.

第2図においてMOSFET12は第1の負荷素
子としてドレイン電極およびゲート電極を第1の
電源としてのドレイン電極VDDに接続され、第1
のMOSFET11のドレイン電極およびソース電
極はそれぞれ前記MOSFET12のソース電極お
よび第2の電源としてのソース電源VSSに接続さ
れている。第2のMOSFET13のドレイン電極
は前記ドレイン電極VDDに、ゲート電極およびソ
ース電極はそれぞれ前記MOSFET11のドレイ
ン電極およびゲート電極に接続され、第3の
MOSFET20のドレイン電極は前記MOSFET
13のソース電極に、ゲート電極は第3の電源と
してのバイアス電源VBに接続され、第4の
MOSFET14のドレイン電極は前記MOSFET
20のソース電極に、ソース電極は前記ソース電
源VSSに接続されている。またMOSFET21は
第2の負荷素子としてドレイン電極およびゲート
電極を前記ドレイン電源VDDに、ソース電極を前
記MOSFET14のドレイン電極に接続され、前
記MOSFET14のゲート電極は入力端子15に
接続されて入力信号を受け、前記MOSFET11
のドレイン電極は出力端子16に接続されて出力
信号を送出する。
In FIG. 2, the MOSFET 12 has its drain electrode and gate electrode connected as a first load element to a drain electrode V DD as a first power source, and
A drain electrode and a source electrode of the MOSFET 11 are respectively connected to a source electrode of the MOSFET 12 and a source power source V SS serving as a second power source. The drain electrode of the second MOSFET 13 is connected to the drain electrode VDD , the gate electrode and the source electrode are connected to the drain electrode and the gate electrode of the third MOSFET 11, respectively.
The drain electrode of MOSFET 20 is connected to the MOSFET 20.
The gate electrode is connected to the bias power supply V B as the third power supply, and the gate electrode is connected to the third source electrode, and the fourth
The drain electrode of MOSFET 14 is connected to the MOSFET 14.
20, the source electrode is connected to the source power supply V SS . The MOSFET 21 serves as a second load element, with its drain electrode and gate electrode connected to the drain power supply V DD , and its source electrode connected to the drain electrode of the MOSFET 14. The gate electrode of the MOSFET 14 is connected to the input terminal 15 to receive an input signal. receiving, said MOSFET11
The drain electrode of is connected to the output terminal 16 to send out an output signal.

第2図に見られる如くMOSFET11,12,
13は第1図のMOSFET1,2,3と同様に接
続せられ、その動作も全く同様である。従つてこ
れらMOSFET11,12,13によつて構成さ
れる回路の出力抵抗、電圧利得については第1図
の対応する回路の場合と同様である。MOSFET
14は入力信号VINに対しソース接地回路として
動作するよう構成され、MOSFET20は適当な
バイアス電源VBによりゲート電極を固定された
ゲート接地回路で、そのソース電極、ドレイン電
極はそれぞれMOSFET14のドレイン電極、
MOSFET13のソース電極に接続されている。
すなわちMOSFET14,20はMOSFET13
を負荷としたカスコード増幅回路として動作し、
入力信号VINを増幅してMOSFET13,20の
接続点17に出力する。このカスコート増幅回路
の電圧利得は前記第1図におけるMOSFET3,
4によるソース接地回路の電圧利得と同様、
MOSFET13,14のそれぞれの動作点におけ
る相互コンダクタンスをgm13,gm14とすれ
ばほぼgm14/gm13であらわされる。またこ
の接続点17における信号V11が前記MOSFET
14,20,13によるカスコード増幅回路の出
力と、MOSFET13により出力信号V0に対する
ソースホロア回路の出力との合成信号、すなわち
出力信号V0からの電圧負帰還を加えられたもの
であることも第1図のMOSFET3,4の接続点
7における信号V1と同様である。MOSFET21
はMOSFET14にドレイン電流を増加供給する
負荷素子として動作する。
As seen in Figure 2, MOSFET11, 12,
MOSFET 13 is connected in the same way as MOSFETs 1, 2, and 3 in FIG. 1, and its operation is completely the same. Therefore, the output resistance and voltage gain of the circuit constituted by these MOSFETs 11, 12, and 13 are the same as those of the corresponding circuit shown in FIG. MOSFET
14 is configured to operate as a source-grounded circuit for the input signal V IN , and MOSFET 20 is a gate-grounded circuit whose gate electrode is fixed by an appropriate bias power supply V B , and its source electrode and drain electrode are connected to the drain electrode of MOSFET 14, respectively. ,
It is connected to the source electrode of MOSFET13.
In other words, MOSFET14 and 20 are MOSFET13
It operates as a cascode amplifier circuit with a load of
The input signal V IN is amplified and output to the connection point 17 between the MOSFETs 13 and 20. The voltage gain of this cascade amplifier circuit is MOSFET 3 in FIG.
Similar to the voltage gain of the common source circuit by 4,
If the mutual conductances at the respective operating points of MOSFETs 13 and 14 are gm13 and gm14, they are approximately expressed as gm14/gm13. Also, the signal V 11 at this connection point 17 is connected to the MOSFET.
14, 20, and 13 and the output of the source follower circuit for the output signal V 0 by MOSFET 13, that is, the signal to which voltage negative feedback from the output signal V 0 is added is also the first. This is similar to the signal V 1 at the connection point 7 of MOSFETs 3 and 4 in the figure. MOSFET21
operates as a load element that increases the drain current to the MOSFET 14.

以上の説明より明らかな如く、第2図による出
力バツフア回路は基本的な動作機能は第1図によ
る従来例と同様であるが、MOSFET20,21
を付加することにより電圧利得を決定する増幅回
路の動作、特にMOSFET14によるソース接地
回路の動作を改善することができ、外部に接続さ
れる回路の影響を受けること少く高性能を発揮す
る。すなわち、ゲート電極を適当な電圧VBに定
したMOSFET20のゲート接地回路を挿入する
ことにより、MOSFET13,14の動作を相互
に切りはなすと共に、MOSFET21による負荷
素子でMOSFET14のドレイン電流を適当に増
加することができるようにしたことにより、
MOSFET13,14として使用する素子の選定
に自由度が増すばかりでなく、両者の動作状態を
最適に近く設定することが可能となり、更に
MOSFET14のその動作状態における相互コン
ダクタンスgm14も、そのドレイン電流の増加
に比例して増加するので、この出力バツフア回路
の電圧利得を決定する前記MOSFET3,14の
相互コンダクタンスの比gm14/gm13を第1
図の従来例の場合のgm4/gm3よりもかるかに
大きくすることが可能となる。
As is clear from the above explanation, the basic operation function of the output buffer circuit shown in FIG. 2 is the same as that of the conventional example shown in FIG.
By adding , it is possible to improve the operation of the amplifier circuit that determines the voltage gain, especially the operation of the source common circuit using the MOSFET 14, and achieves high performance with less influence from externally connected circuits. That is, by inserting a gate grounding circuit for MOSFET 20 with its gate electrode set to an appropriate voltage V B , the operations of MOSFETs 13 and 14 are mutually isolated, and the drain current of MOSFET 14 is appropriately increased by the load element of MOSFET 21. By making it possible to
This not only increases the degree of freedom in selecting the elements used as MOSFETs 13 and 14, but also allows the operating conditions of both to be set close to the optimum.
Since the mutual conductance gm14 of MOSFET 14 in its operating state also increases in proportion to the increase in its drain current, the ratio gm14/gm13 of the mutual conductance of MOSFETs 3 and 14, which determines the voltage gain of this output buffer circuit, is
It is possible to make it much larger than gm4/gm3 in the conventional example shown in the figure.

なお、第2図に於てMOSFET12,21は負
荷素子の働きをする他の素子に置き換えても同様
の効果が得られることはいうまでもない。
It goes without saying that the same effect can be obtained even if the MOSFETs 12 and 21 in FIG. 2 are replaced with other elements that function as load elements.

以上説明した如く本発明によれば、出力抵抗は
従来と同程度でありながら、はるかに電圧利得の
大きい出力バツフア回路を得ることができる。
As described above, according to the present invention, it is possible to obtain an output buffer circuit having a much larger voltage gain while having an output resistance comparable to that of the conventional circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の例を示す回路構成図、第2図は
本発明の一実施例の回路構成図である。 図において、1,2,3,4,11,12,1
3,14,20,21……MOSFET、5,15
……入力端子、6,16……出力端子、7,17
……接続点、8,9,18,19,22……電圧
源。
FIG. 1 is a circuit configuration diagram showing a conventional example, and FIG. 2 is a circuit configuration diagram of an embodiment of the present invention. In the figure, 1, 2, 3, 4, 11, 12, 1
3, 14, 20, 21...MOSFET, 5, 15
...Input terminal, 6,16...Output terminal, 7,17
... Connection point, 8, 9, 18, 19, 22 ... Voltage source.

Claims (1)

【特許請求の範囲】[Claims] 1 一端を第1の電源に接続した第1の負荷素子
と、ドレイン電極を前記第1の負荷素子の他の一
端に接続しソース電極を第2の電源に接続した第
1の絶縁ゲート型電界効果トランジスタ(以下
MOS FETと略称する)と、ドレイン電極を前
記第1の電源に接続しゲート電極を前記第1の
MOSFETのドレイン電極に接続しソース電極を
前記第1のMOSFETのゲート電極に接続した第
2のMOSFETと、ドレイン電極を前記第2の
MOSFETのソース電極に接続しゲート電極を第
3の電源に接続した第3のMOSFETと、ドレイ
ン電極を前記第3のMOSFETのソース電極に接
続しソース電極を前記第2の電源に接続した第4
のMOSFETと、1端を前記第1の電源に接続し
他の一端を前記第4のMOSFETのドレイン電極
に接続した第2の負荷素子を具備し、前記第4の
MOSFETのゲート電極を入力端子とし前記第1
のMOSFETのドレイン電極を出力端子とするこ
とを特徴とする出力バツフア回路。
1 A first load element having one end connected to a first power source, and a first insulated gate electric field having a drain electrode connected to the other end of the first load element and a source electrode connected to a second power source. effect transistor (hereinafter
(abbreviated as MOS FET), the drain electrode is connected to the first power supply, and the gate electrode is connected to the first power supply.
a second MOSFET connected to the drain electrode of the MOSFET and a source electrode connected to the gate electrode of the first MOSFET;
a third MOSFET whose drain electrode is connected to the source electrode of the MOSFET and whose gate electrode is connected to the third power supply; and a fourth MOSFET whose drain electrode is connected to the source electrode of the third MOSFET and whose source electrode is connected to the second power supply.
MOSFET, and a second load element having one end connected to the first power supply and the other end connected to the drain electrode of the fourth MOSFET,
The gate electrode of the MOSFET is used as the input terminal and the first
An output buffer circuit characterized by using the drain electrode of a MOSFET as an output terminal.
JP56000993A 1981-01-07 1981-01-07 Output buffer circuit Granted JPS57115007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56000993A JPS57115007A (en) 1981-01-07 1981-01-07 Output buffer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56000993A JPS57115007A (en) 1981-01-07 1981-01-07 Output buffer circuit

Publications (2)

Publication Number Publication Date
JPS57115007A JPS57115007A (en) 1982-07-17
JPH0147924B2 true JPH0147924B2 (en) 1989-10-17

Family

ID=11489115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56000993A Granted JPS57115007A (en) 1981-01-07 1981-01-07 Output buffer circuit

Country Status (1)

Country Link
JP (1) JPS57115007A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107749743A (en) * 2017-10-10 2018-03-02 天津大学 Active feedback cascode trans-impedance amplifier based on SiGe BiCMOS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193147A (en) * 1975-02-12 1976-08-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193147A (en) * 1975-02-12 1976-08-16

Also Published As

Publication number Publication date
JPS57115007A (en) 1982-07-17

Similar Documents

Publication Publication Date Title
US4554515A (en) CMOS Operational amplifier
EP0139078B1 (en) Amplifier transistor circuit
US4335355A (en) CMOS Operational amplifier with reduced power dissipation
US4284957A (en) CMOS Operational amplifier with reduced power dissipation
JP3347359B2 (en) Output buffer amplifier
US4152663A (en) Amplifier arrangement
US4045747A (en) Complementary field effect transistor amplifier
JPS59212009A (en) Current amplifying device
US4736117A (en) VDS clamp for limiting impact ionization in high density CMOS devices
US4010425A (en) Current mirror amplifier
US4647872A (en) Cascode amplifier
US4241314A (en) Transistor amplifier circuits
US4603267A (en) Low offset single ended MOS comparator
JPS6313571B2 (en)
JPH0147924B2 (en)
US4008442A (en) Signal amplifier circuit with a field effect transistor having current unsaturated triode vacuum tube characteristics
US4333057A (en) Differential-input complementary field-effect transistor amplifier
JPH0471365B2 (en)
JPH0318119A (en) Complementary type metallic-oxide semiconductor translator
JP3341945B2 (en) Operational amplifier
JPS6117408B2 (en)
JP3074972B2 (en) Hysteresis circuit
JPS60217709A (en) Operational amplifier circuit
JPH05136637A (en) Error amplifier
IE902894A1 (en) Integrable differential amplifier