JPH0146822B2 - - Google Patents
Info
- Publication number
- JPH0146822B2 JPH0146822B2 JP53134388A JP13438878A JPH0146822B2 JP H0146822 B2 JPH0146822 B2 JP H0146822B2 JP 53134388 A JP53134388 A JP 53134388A JP 13438878 A JP13438878 A JP 13438878A JP H0146822 B2 JPH0146822 B2 JP H0146822B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- signal
- ray
- detector
- rays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013078 crystal Substances 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 12
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/207—Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Description
【発明の詳細な説明】
本発明は、多数の結晶粒から成る試料の微小領
域のX線回折像を取得することのできる微小領域
X線デイフラクトメーターに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a micro-area X-ray diffractometer that can obtain an X-ray diffraction image of a micro-area of a sample consisting of a large number of crystal grains.
[従来の技術]
従来より、物質の構造解析、特に多数の結晶粒
から成る物質の構造決定には、X線回折装置が使
用されている。この様なX線回折を行うとき、し
ばしば直径100μm以下の微小領域の情報のみが
必要になることがある。このように分析乃至は測
定領域が微小になつた場合、X線照射領域中に存
在する結晶粒は比較的小数になる。そのため、も
し試料7が固定されていたり、あるいはφ軸の回
りにしか回転していない場合、照射領域中の結晶
粒によつてブラツグ反射が生ずる確率は小さなも
のとなる。又、ブラツグ反射が生じたとしても反
射X線が試料を取囲んで配置される帯状の検出領
域に入射する確率は更に小さなものとなる。従つ
て、このような従来の場合には、多数の結晶粒か
ら成る試料の微小領域にX線を照射した際に、太
いX線を試料に照射した場合に得られるところの
検出漏れのない回折スペクトルを得ることはでき
なかつた。特に、試料中の結晶粒の結晶格子面の
方向分布に偏りがある場合にはこの検出漏れの可
能性は更に大きなものとなるため、満足のゆく測
定は更に困難であつた。[Prior Art] Conventionally, an X-ray diffraction apparatus has been used for structural analysis of substances, particularly for determining the structure of substances consisting of a large number of crystal grains. When performing such X-ray diffraction, it is often necessary to obtain only information on a minute region with a diameter of 100 μm or less. When the analysis or measurement area becomes minute in this way, the number of crystal grains present in the X-ray irradiation area becomes relatively small. Therefore, if the sample 7 is fixed or rotates only around the φ axis, the probability that a Bragg reflection will occur due to crystal grains in the irradiated area is small. Furthermore, even if Bragg reflection occurs, the probability that the reflected X-rays will enter the band-shaped detection area surrounding the sample is even smaller. Therefore, in conventional cases like this, when X-rays are irradiated to a minute area of a sample made up of many crystal grains, diffraction without any missed detections is obtained when the sample is irradiated with thick X-rays. It was not possible to obtain a spectrum. In particular, if there is a bias in the directional distribution of the crystal lattice planes of crystal grains in the sample, the possibility of this detection failure becomes even greater, making it even more difficult to perform satisfactory measurements.
[発明が解決しようとする問題点]
本発明は上記の点に鑑みてなされたもので、多
数の結晶粒から成る試料の所望の微小領域からの
回折X線の測定を、回折線の検出漏れを生ずるこ
となく比較的短時間に行うことのできる微小領域
X線デイフラクトメーターを提供することを目的
としている。[Problems to be Solved by the Invention] The present invention has been made in view of the above points. The object of the present invention is to provide a micro-area X-ray diffractometer that can be used in a relatively short period of time without causing problems.
[問題点を解決するための手段]
そのため本発明は、多数の結晶粒から成る試料
と、X線源と、該X線源からのX線をコリメート
して前記試料上の微小領域に照射するための手段
と、前記試料上のX線照射位置を観察するための
光学顕微鏡と、前記X線の光路を含む面内に前記
試料によつて回折されるX線の所望角度範囲をカ
バーするように配置された位置感応型X線検出器
と、前記光学顕微鏡を用いて試料の所望の微小領
域を測定位置に位置付けるため前記試料の位置を
微調整するための調整機構と、前記検出器からの
信号を処理し位置情報を得る回路と、この信号を
一定期間積算的に記憶する手段と、該信号を積算
的に記憶する測定期間中、その先端に前記試料を
保持する回転軸(φ)を連続的に回転させると共
に該試料を前記回転軸(φ)とは垂直なχ軸の回
りに連続的に回転させるための試料駆動機構と、
前記記憶された信号を読み出し、表示する手段と
から構成したことを特徴としている。[Means for Solving the Problems] Therefore, the present invention provides a sample consisting of a large number of crystal grains, an X-ray source, and collimating the X-rays from the X-ray source to irradiate a minute area on the sample. an optical microscope for observing the X-ray irradiation position on the sample; a position-sensitive X-ray detector disposed in the detector, an adjustment mechanism for finely adjusting the position of the sample in order to position a desired micro region of the sample at a measurement position using the optical microscope; A circuit for processing a signal to obtain position information, a means for cumulatively storing this signal for a certain period of time, and a rotating shaft (φ) for holding the sample at its tip during the measurement period for storing the signal cumulatively. a sample drive mechanism for continuously rotating the sample and continuously rotating the sample around a χ axis perpendicular to the rotation axis (φ);
It is characterized by comprising means for reading out and displaying the stored signal.
[実施例] 以下、図面に基づき本発明を詳述する。[Example] Hereinafter, the present invention will be explained in detail based on the drawings.
第1図は、本発明の一実施例を示す略図で、1
は微小焦点X線源である。このX線源は、電子銃
2、集束レンズ3及び4、ターゲツト5から構成
されており、例えば数10μmの微小焦点に集束さ
れた電子線がターゲツトに衝突することによつて
X線を発生する。このX線はコリメーター6によ
り細束にされ、多数の結晶粒から成つている試料
7上に例えば直径100μm程度のスポツトで照射
される。試料7とコリメータ6との間には第2図
から分かるように、ミラー8が挿脱できるように
備えられている。ミラー8は保持器10に保持さ
れており、保持器10はつまみ11を有する回転
軸12に結合されており、つまみ11を回転させ
ることにより、ミラー8はX線光軸から容易に挿
脱させることができる。そして、試料の位置合わ
せのときのみ第2図に示すように、ミラー8はコ
リメーター6から試料7に至るX線の光路と45゜
を成すように配置される。図示していないが、試
料の位置合わせ用の試料位置微調整機構が備えら
れており、前記ミラー8を介して光学顕微鏡9に
より試料面を観察し、顕微鏡内に設けられた十字
線のクロス位置に測定したい試料の微小領域が重
なり、且つ光学顕微鏡像が鮮明となるように前記
調整機構を用いて測定位置合わせを行う。この合
わせ位置は後述するφ軸とχ軸の回りの試料回転
によつても位置が不変となる位置となつている。
13は第3図に示すように、帯状又は線状を成
し、且つ試料7の回りに半円状を成して配置され
た位置感応型X線検出器で、その出力は処理回路
14に送られ、位置情報信号となり、メモリ15
に記憶される。この記憶された信号は、表示装置
16上に読み出されて表示される。 FIG. 1 is a schematic diagram showing one embodiment of the present invention.
is a fine focus X-ray source. This X-ray source is composed of an electron gun 2, focusing lenses 3 and 4, and a target 5, and generates X-rays by colliding an electron beam focused to a minute focus of, for example, several tens of micrometers with the target. . The X-rays are made into a fine bundle by a collimator 6, and are irradiated onto a sample 7, which is made up of a large number of crystal grains, with a spot having a diameter of, for example, about 100 μm. As can be seen from FIG. 2, a mirror 8 is provided between the sample 7 and the collimator 6 so that it can be inserted and removed. The mirror 8 is held by a holder 10, and the holder 10 is connected to a rotating shaft 12 having a knob 11. By rotating the knob 11, the mirror 8 can be easily inserted and removed from the X-ray optical axis. be able to. Only when positioning the sample, as shown in FIG. 2, the mirror 8 is arranged so as to form an angle of 45 degrees with the optical path of the X-rays from the collimator 6 to the sample 7. Although not shown, a sample position fine adjustment mechanism for positioning the sample is provided, and the sample surface is observed with an optical microscope 9 through the mirror 8, and the cross position of the crosshair provided in the microscope is Measurement positioning is performed using the adjustment mechanism so that the minute regions of the sample to be measured overlap and the optical microscope image is clear. This alignment position remains unchanged even when the sample is rotated around the φ axis and the χ axis, which will be described later.
As shown in FIG. 3, 13 is a position-sensitive X-ray detector in the form of a belt or line and arranged in a semicircle around the sample 7, and its output is sent to the processing circuit 14. is sent, becomes a position information signal, and is stored in the memory 15.
is memorized. This stored signal is read out and displayed on the display device 16.
上記検出器13及び処理回路について、第3図
及び第4図に従つて詳述する。検出器13は外筒
17にX線入射窓18を有しており、この入射窓
に沿う方向にタングステンやステンレスワイヤか
らなるドリフト電場設定用陰極19、グリツド2
0及びアノード21が張られ、これら電極とは垂
直な方向に一定間隔を成して多数の読み出し用の
陰極22a,22b,…,22nが設けられてい
る。該陰極22a,22b,…,22nの夫々は
遅延線23に一定間隔で接続されており、遅延線
23の両端より信号が取り出される。前記外筒1
7内には流入口24より所定の反応ガスが導入さ
れており、流出口25より排出されている。今、
窓18よりX線が入射すると、ガス分子がイオン
化され、この初期イオン化により生じた電子が各
電極間の静電場で加速され、アノード21付近に
達し、局所的ななだれ現象を生じてアノードに捕
獲される。このなだれが生ずると、近接する読み
出し用陰極には、正のパルス電圧が誘起され、そ
の信号は遅延線23の両端から取り出される。然
して、なだれが生ずる位置、つまりX線の入射位
置が遅延線23の両端から等しくないときは、該
遅延線の両端からの信号は、時間的にずれて取り
出されることになる。この信号は増幅器26a,
26bを介して波形整形回路27a,27bに送
られ、シヤープな立ち上がりを示す信号に整形さ
れた後、時間差強度変換回路28にスタート又は
ストツプ信号として送り込まれる。この回路28
の出力は、両回路27a,27bからの信号の時
間差に対応した強度を有しており、この信号はA
−D変換器29によつてデジタル化され、位置信
号としてメモリー30に記憶される。該メモリー
はA−D変換された信号が同じ強度の場合、同一
アドレスに積分して記憶するようになつており、
従つてX線検出器13の同一点にX線光子が多く
入射すれば、その数に応じてメモリー30は積分
した信号が記憶される。このメモリーの信号は測
定終了後、読み出されてコンピユータに送られ及
び若しくは表示装置31に送られ、スペクトルと
して表示される。 The detector 13 and processing circuit will be described in detail with reference to FIGS. 3 and 4. The detector 13 has an X-ray entrance window 18 in an outer cylinder 17, and a drift electric field setting cathode 19 made of tungsten or stainless steel wire, and a grid 2 in the direction along this entrance window.
A large number of reading cathodes 22a, 22b, . . . , 22n are provided at regular intervals in a direction perpendicular to these electrodes. Each of the cathodes 22a, 22b, . Said outer cylinder 1
A predetermined reaction gas is introduced into the chamber 7 through an inlet 24 and discharged through an outlet 25 . now,
When X-rays enter through the window 18, gas molecules are ionized, and electrons generated by this initial ionization are accelerated by the electrostatic field between the electrodes, reach the vicinity of the anode 21, cause a local avalanche phenomenon, and are captured by the anode. be done. When this avalanche occurs, a positive pulse voltage is induced in the adjacent readout cathode, and the signal is extracted from both ends of the delay line 23. However, if the positions where the avalanche occurs, that is, the X-ray incident positions are not equal from both ends of the delay line 23, the signals from both ends of the delay line will be extracted with a time lag. This signal is transmitted to the amplifier 26a,
The signal is sent to the waveform shaping circuits 27a and 27b via the signal line 26b, where it is shaped into a signal showing a sharp rise, and then sent to the time difference intensity conversion circuit 28 as a start or stop signal. This circuit 28
The output of A has an intensity corresponding to the time difference between the signals from both circuits 27a and 27b, and this signal is
- It is digitized by the D converter 29 and stored in the memory 30 as a position signal. If the A-D converted signals have the same strength, the memory integrates and stores them at the same address.
Therefore, if a large number of X-ray photons are incident on the same point on the X-ray detector 13, the integrated signal is stored in the memory 30 according to the number of X-ray photons. After the measurement is completed, the signal in this memory is read out and sent to the computer and/or to the display device 31, where it is displayed as a spectrum.
第5図及び第6図において、34は前記回転軸
(φ)に相当する回転軸であり、軸34の先端に
試料が保持されている。軸34と垂直な軸χの回
りにも試料7を回転させるため軸34を支持する
摺動体33は環状のガイド32に沿つて回転でき
るようになつており、これら軸34及び摺動体3
3は前記検出器13よりの信号を積算的に記憶す
る測定期間中、第5図の矢印で示すように、回転
の向きを変えながら一定角度範囲内で連続的に回
転できるようになつている。 In FIGS. 5 and 6, 34 is a rotating shaft corresponding to the rotating shaft (φ), and a sample is held at the tip of the shaft 34. In order to rotate the sample 7 also around an axis χ perpendicular to the axis 34, the slider 33 supporting the axis 34 can rotate along an annular guide 32.
3 is designed to be able to rotate continuously within a certain angle range while changing the direction of rotation, as shown by the arrow in FIG. 5, during the measurement period in which the signals from the detector 13 are stored cumulatively .
このような構成において、試料7は軸34及び
摺動体33が検出器13よりの信号を積算的に記
憶する測定期間中連続的に回転する。 In such a configuration, the sample 7 rotates continuously during the measurement period during which the shaft 34 and the sliding body 33 accumulate the signals from the detector 13.
さて、第5図において、紙面を第1の基準面と
してφ軸の回りの回転角φを考え、検出器13を
含む紙面に垂直な第2の基準面を考えて、χ軸の
回りの回転角χを考えると、試料7の状態は前記
角度φ、χの組み(φ、χ)を用いて表すことが
できる。いま、φがある角度φaとなり、χがあ
る角度χaとなるある状態(φa、χa)において、
紙面に垂直に試料7に入射したX線に基づき照射
領域中のある結晶粒によつてブラツグ反射が生
じ、この反射X線が、入射X線を含み且つ前記第
2の基準面と角度αを成す面に沿つて進行したと
すれば、この反射X線は検出器13によつて検出
されることが無いため、検出洩れとなるが、φと
χの組み合わせが種々生じるように(即ち非同期
で)前記回転を行つているため、比較的短時間の
測定期間中に上記φ軸とχ軸の回りの回転を繰り
返しているうちに、(φa、χa−α)なる状態も生
ずることになる。この状態では前記X線は検出器
13が存在する第2の基準面内を進むため検出窓
を通過して検出器13によつて検出されることに
なる。このように、φ軸の回りの回転によつてブ
ラツグ反射の確率を増加させてブラツグ反射X線
の発生確率を増加させた場合に、反射X線が検出
器13が存在する面内に進行しないことにより検
出洩れとなつていた反射X線をχ軸の回りに試料
7を併せて回転させることにより反射X線が検出
器13に検出される確率をかなり増加させること
ができる。その結果、試料のX線照射領域中に比
較的小数の結晶粒しか存在しないにもかかわら
ず、前記測定期間中を通して見れば、X線照射領
域中にランダムな方向分布を有する多数の結晶粒
が存在するのと同等となり、従つて、検出器13
の信号を蓄積して得られた信号は、その場合に得
られるようなピークの検出洩れが無い連続した回
折スペクトル信号となる。従つて、この信号を表
示することにより、多数の結晶粒から成る試料の
微小領域におけるX線回折分析を良好に行うこと
ができる。特に、微小領域内の結晶粒の結晶格子
面の方向分布に偏りがある場合であつても、前記
φ軸とχ軸の回りの回転によりこの偏りがあるこ
とによる検出洩れの発生を大きく改善できるた
め、充分測定が可能となる。 Now, in FIG. 5, the rotation angle φ around the φ axis is considered with the plane of paper as the first reference plane, and the rotation angle φ around the χ axis is considered as the second reference plane perpendicular to the plane of paper including the detector 13. Considering the angle χ, the state of the sample 7 can be expressed using a set (φ, χ) of the angles φ and χ. Now, in a certain state (φa, χa) where φ becomes a certain angle φa and χ becomes a certain angle χa,
Based on the X-rays incident on the sample 7 perpendicularly to the plane of the paper, a blurred reflection occurs by a certain crystal grain in the irradiation area, and this reflected X-ray contains the incident X-rays and forms an angle α with the second reference plane. If the reflected X-rays travel along the plane formed by the ) Since the above rotation is performed, the state (φa, χa−α) also occurs while the rotations about the φ and χ axes are repeated during a relatively short measurement period. In this state, the X-rays travel within the second reference plane where the detector 13 is present, so they pass through the detection window and are detected by the detector 13. In this way, when the probability of Bragg reflection is increased by rotation around the φ axis and the probability of occurrence of Bragg reflection X-rays is increased, the reflected X-rays do not proceed into the plane where the detector 13 is present. By rotating the sample 7 around the χ axis, the probability that the reflected X-rays will be detected by the detector 13 can be considerably increased. As a result, although only a relatively small number of crystal grains exist in the X-ray irradiated area of the sample, a large number of crystal grains with a random directional distribution are found in the X-ray irradiated area throughout the measurement period. Therefore, the detector 13
The signal obtained by accumulating the signals becomes a continuous diffraction spectrum signal with no missing peaks as would be obtained in that case. Therefore, by displaying this signal, X-ray diffraction analysis can be performed satisfactorily in a minute region of a sample consisting of many crystal grains. In particular, even if there is a bias in the directional distribution of the crystal lattice planes of crystal grains within a microscopic region, the rotation around the φ and χ axes can greatly improve the occurrence of missed detection due to this bias. Therefore, sufficient measurement is possible.
第7図は位置感応型X線検出器13の設置の他
の例について説明するためのものであり、第1
図、第2図の如く試料の側面に置く場合に限ら
ず、13′,13″で示す如く試料の後方や前方に
おいても良い。又、13a,13bに示す如く、
半円状ではなく、直線状の検出器でも使用でき
る。 FIG. 7 is for explaining another example of the installation of the position-sensitive X-ray detector 13.
It is not limited to the case where it is placed on the side of the sample as shown in FIG.
It can also be used with a linear detector instead of a semicircular one.
[発明の効果]
以上詳述したように、本発明においては、多数
の結晶粒から成る試料と、微小焦点X線源と、該
X線源からのX線をコリメートして前記試料上の
微小領域に照射するための手段と、前記試料上の
X線照射位置を観察するための光学顕微鏡と、前
記X線の光路を含む面内に前記試料によつて回折
されるX線の所望角度範囲をカバーするように配
置された位置感応型X線検出器と、前記光学顕微
鏡を用いて試料の所望の微小領域を測定位置に位
置付けるため前記試料の位置を微調整するための
調整機構と、前記検出器からの信号を処理し位置
情報を得る回路と、この信号を一定期間積算的に
記憶する手段と、該信号を積算的に記憶する測定
期間中、その先端に前記試料を保持する回転軸
(φ)を連続的に回転させると共に該試料を前記
回転軸(φ)とは垂直なχ軸の回りに連続的に回
転させるための試料駆動機構と、前記記憶された
信号を読み出し、表示する手段を備えるようにし
たため、比較的短時間な測定期間内において考え
れば、X線照射微小領域内の結晶粒の結晶格子面
の方向分布は充分ランダマイズでき、試料のX線
照射領域中に比較的小数の結晶粒しか存在しない
にもかかわらず、検出器の信号を蓄積して得られ
た信号は、X線照射領域中にランダムな方向分布
を有する多数の結晶粒が存在する場合に得られる
ようなピーク検出の漏れがない連続した回折スペ
クトル信号となる。従つて、多数の結晶粒から成
る試料の微小領域のX線回折分析を比較的短時間
のうちに良好に行うことができる。特に、結晶粒
の結晶格子面の方向の分布に偏りがある場合であ
つても、前記φ軸とχ軸の回りの回転によりこの
偏りがあることによる検出洩れの発生を大きく改
善できるため、充分測定が可能となる。[Effects of the Invention] As described in detail above, in the present invention, a sample consisting of a large number of crystal grains, a microfocus X-ray source, and a microfocus on the sample by collimating the X-rays from the X-ray source are provided. means for irradiating a region, an optical microscope for observing an X-ray irradiation position on the sample, and a desired angular range of X-rays diffracted by the sample in a plane containing the optical path of the X-rays. a position-sensitive X-ray detector arranged to cover the sample; an adjustment mechanism for finely adjusting the position of the sample in order to position a desired minute region of the sample at a measurement position using the optical microscope; A circuit for processing signals from the detector to obtain position information, means for cumulatively storing this signal for a certain period of time, and a rotating shaft that holds the sample at its tip during the measurement period for storing the signal cumulatively. (φ) and the sample drive mechanism for continuously rotating the sample around a χ axis perpendicular to the rotation axis (φ), and reading and displaying the stored signal. Since the means is provided, the directional distribution of the crystal lattice planes of crystal grains within the X-ray irradiated micro region can be sufficiently randomized within a relatively short measurement period, and the Despite the presence of only a small number of grains, the signal obtained by accumulating the detector signal is similar to that obtained when a large number of grains with a random directional distribution are present in the X-ray irradiation area. This results in a continuous diffraction spectrum signal with no missing peaks. Therefore, X-ray diffraction analysis of a minute region of a sample consisting of a large number of crystal grains can be performed satisfactorily in a relatively short time. In particular, even if there is a bias in the distribution of the crystal lattice plane directions of the crystal grains, the rotation around the φ and χ axes can greatly reduce the occurrence of detection errors due to this bias, and this is sufficient. Measurement becomes possible.
第1図は本発明の一実施例を示すための図、第
2図は第1図を右方向から見た図、第3図は第1
図において使用する検出器の一例を示す図、第4
図は同じく信号処理回路の一例を示す図、第5図
及び第6図は第1図の装置の試料駆動装置の一例
を示す図、第7図は検出器の配置について説明す
るための図である。
1:微小焦点X線源、2:電子銃、3,4:集
束レンズ、5:ターゲツト、6:コリメーター、
7:試料、8:ミラー、9:光学顕微鏡、10:
ミラー保持器、11:つまみ、12:回転軸、1
3:位置感応型X線検出器、14:処理回路、1
5:メモリー、16:表示装置。
FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram of FIG. 1 viewed from the right, and FIG. 3 is a diagram showing one embodiment of the present invention.
Figure 4 showing an example of the detector used in Figure 4.
The figure also shows an example of the signal processing circuit, Figures 5 and 6 are diagrams showing an example of the sample drive device of the apparatus in Figure 1, and Figure 7 is a diagram for explaining the arrangement of the detector. be. 1: Microfocus X-ray source, 2: Electron gun, 3, 4: Focusing lens, 5: Target, 6: Collimator,
7: Sample, 8: Mirror, 9: Optical microscope, 10:
Mirror holder, 11: Knob, 12: Rotation shaft, 1
3: Position sensitive X-ray detector, 14: Processing circuit, 1
5: Memory, 16: Display device.
Claims (1)
X線源からのX線をコリメートして前記試料上の
微小領域に照射するための手段と、前記試料上の
X線照射位置を観察するための光学顕微鏡と、前
記X線の光路を含む面内に前記試料によつて回折
されるX線の所望角度範囲をカバーするように配
置された位置感応型X線検出器と、前記光学顕微
鏡を用いて試料の所望の微小領域を測定位置に位
置付けるため前記試料の位置を微調整するための
調整機構と、前記検出器からの信号を処理し位置
情報を得る回路と、この信号を一定期間積算的に
記憶する手段と、該信号を積算的に記憶する測定
期間中、その先端に前記試料を保持する回転軸
(φ)を連続的に回転させると共に該試料を前記
回転軸(φ)とは垂直なχ軸の回りに連続的に回
転させるための試料駆動機構と、前記記憶された
信号を読み出し、表示する手段とから構成したこ
とを特徴とする微小領域X線デイフラクトメータ
ー。1 A sample consisting of a large number of crystal grains, an X-ray source, a means for collimating the X-rays from the X-ray source and irradiating a minute area on the sample, and a means for determining the X-ray irradiation position on the sample. an optical microscope for observation; a position-sensitive X-ray detector arranged to cover a desired angular range of X-rays diffracted by the sample in a plane including the optical path of the X-rays; an adjustment mechanism for finely adjusting the position of the sample in order to locate a desired micro region of the sample at a measurement position using an optical microscope; a circuit for processing the signal from the detector to obtain position information; and a circuit for processing the signal from the detector to obtain position information. means for cumulatively storing the signal for a certain period of time; and during the measurement period for cumulatively storing the signal, a rotating shaft (φ) that holds the sample at its tip is continuously rotated, and the sample is held on the rotating shaft (φ). ) is a micro-area X-ray diffractometer characterized by comprising a sample drive mechanism for continuously rotating the sample around a vertical χ axis, and means for reading and displaying the stored signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13438878A JPS5560843A (en) | 1978-10-30 | 1978-10-30 | Minute region x-ray diffractometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13438878A JPS5560843A (en) | 1978-10-30 | 1978-10-30 | Minute region x-ray diffractometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5560843A JPS5560843A (en) | 1980-05-08 |
JPH0146822B2 true JPH0146822B2 (en) | 1989-10-11 |
Family
ID=15127225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13438878A Granted JPS5560843A (en) | 1978-10-30 | 1978-10-30 | Minute region x-ray diffractometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5560843A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0235343A (en) * | 1988-07-26 | 1990-02-05 | Rigaku Corp | X-ray diffraction apparatus for minute region and specimen setting method for the apparatus |
JP2535480Y2 (en) * | 1989-08-16 | 1997-05-14 | 日本電子株式会社 | X-ray diffractometer |
-
1978
- 1978-10-30 JP JP13438878A patent/JPS5560843A/en active Granted
Non-Patent Citations (2)
Title |
---|
ADVANCES IN X-RAY ANALYSIS=1977 * |
TRANSACTIONS OF THE AMERIAN CRYSTALLOGRAPHIC ASSOCIATION=1976 * |
Also Published As
Publication number | Publication date |
---|---|
JPS5560843A (en) | 1980-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3641288B2 (en) | Sample surface analyzer | |
JP6757036B2 (en) | Electrostatic lens, parallel beam generator and parallel beam converging device using the lens and collimator | |
EP0457317B1 (en) | Electron microscope, electron microscope specimen actuator and method for observing microscopic image | |
US20170038321A1 (en) | Analyzing an object using a particle beam apparatus | |
JP2017223539A (en) | X-ray diffraction device | |
JP2008268105A (en) | X-ray beam source, x-ray beam irradiator, x-ray beam radiographic device, x-ray beam computer tomography device, x-ray element mapping examination apparatus and x-ray beam forming method | |
CN102779713B (en) | With the particle beams instrument of detector means | |
RU137951U1 (en) | DEVICE FOR X-RAY MICROANALYSIS | |
US20030080292A1 (en) | System and method for depth profiling | |
JPH06258260A (en) | X-ray diffraction device | |
JPH0146822B2 (en) | ||
JP2000146872A (en) | X-ray diffractometer | |
JPH05281161A (en) | X-ray diffraction apparatus | |
JP3392550B2 (en) | Method for measuring deflection angle of charged particle beam and charged particle beam apparatus | |
JP4349146B2 (en) | X-ray analyzer | |
JPS62106352A (en) | Scanning type x-ray microscope | |
JPS599850B2 (en) | X | |
RU2164081C2 (en) | Limited-angle x-ray tomograph | |
JPH08105846A (en) | X-ray analyzer | |
US11821852B2 (en) | Method of investigating a specimen using a tomographic imaging apparatus | |
JP4623879B2 (en) | Beam evaluation method and apparatus | |
JPH07243996A (en) | X-ray microanalysis method | |
JPH04161843A (en) | X-ray measuring apparatus | |
JP2010197187A (en) | X-ray analyzer | |
JP3353488B2 (en) | Ion scattering spectrometer |