JPH07243996A - X-ray microanalysis method - Google Patents

X-ray microanalysis method

Info

Publication number
JPH07243996A
JPH07243996A JP6038105A JP3810594A JPH07243996A JP H07243996 A JPH07243996 A JP H07243996A JP 6038105 A JP6038105 A JP 6038105A JP 3810594 A JP3810594 A JP 3810594A JP H07243996 A JPH07243996 A JP H07243996A
Authority
JP
Japan
Prior art keywords
probe
sample
scanning
ray
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6038105A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakahara
仁 中原
Juichi Shimada
寿一 嶋田
Masakazu Ichikawa
昌和 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6038105A priority Critical patent/JPH07243996A/en
Publication of JPH07243996A publication Critical patent/JPH07243996A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To provide an X-ray scanned micro-image having a resolution higher than that in the conventional method by scanning X-rays serving as a probe on a sample. CONSTITUTION:This device is constituted of a probe scanning mechanism 10 for scanning a conducting probe 1 along the sample face directly above the surface of a sample 2, an electron beam source 11 capable of focusing electrons in a range smaller than the width of the tip section of the probe 1, and a means measuring the diffracted X-rays 5 or photoelectrons 6 from the sample 2 by the characteristic X-rays 4 generated by an electron beam 3 radiated onto the probe 1. The X-ray analysis information from a region smaller than before can be collected while the surface of the sample 2 is observed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は物質の微小領域の原子構
造など各種物性を計測するX線微小分析法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray microanalysis method for measuring various physical properties such as an atomic structure of a minute region of a substance.

【0002】[0002]

【従来の技術】従来のX線をプローブとして用いた微小
領域の分析法は、図2に示すように、X線源100によ
って発生したX線102をゾーンプレートや斜入射鏡な
どの収光装置101を用いて微少領域へ収光しこの領域
のX線分析を行うものである。収光装置の加工技術によ
る制限から、一般にはX線を収光できる領域の大きさは
ゾーンプレートを用いた場合で数百nm程度、斜入射鏡
では数μ程度である。ほとんどの場合にX線源に軌道放
射光を用い、単結晶の回折板で単色化している。X線源
としてX線管を用いている場合には、特性X線を単色化
するために、特性X線のうちKα線とKβ線との間に吸
収端を持つ物質でできたX線フィルタ103をX線の通過
する空間に配置することもある。X線は電場や磁場では
偏向できず、また、X線源の規模は一般に大きく移動は
困難なため、試料位置の選択は試料自体を移動すること
によって行っている。
2. Description of the Related Art A conventional method for analyzing a minute area using an X-ray as a probe is, as shown in FIG. 101 is used to collect light in a very small area and X-ray analysis of this area is performed. Due to the limitation of the processing technology of the light collecting device, the size of the region capable of collecting X-rays is generally about several hundred nm when using the zone plate, and about several μ when using the oblique incidence mirror. In most cases, orbital synchrotron radiation is used as the X-ray source, and a monocrystalline diffractive plate is used for monochromatization. When an X-ray tube is used as the X-ray source, an X-ray filter made of a substance having an absorption edge between the Kα and Kβ rays of the characteristic X-rays in order to monochromate the characteristic X-rays. 103 may be arranged in a space through which X-rays pass. Since X-rays cannot be deflected by an electric field or a magnetic field, and the scale of an X-ray source is generally large and difficult to move, the sample position is selected by moving the sample itself.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の方法で
は得られた分析情報が試料上のどの位置に正確に対応し
ているかを知ることが困難である。また収光装置の制限
による分解能の限界も問題である。
However, it is difficult for the conventional method to know to which position on the sample the obtained analytical information corresponds exactly. In addition, there is a problem in the resolution limit due to the limitation of the light collecting device.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明は導電性の探針を試料の表面直上で上記試料
面に沿って走査するための探針走査機構と、上記探針の
先端部の幅より小さな範囲に電子を収束することが可能
な電子線源と、上記探針に照射した電子線によって発生
した特性X線による試料からの回折X線、或いは、光電
子を計測することで試料の微小領域の物性情報を得る。
In order to solve the above problems, the present invention provides a probe scanning mechanism for scanning a conductive probe along the surface of a sample just above the surface of the sample, and the probe. An electron beam source capable of converging electrons in a range smaller than the width of the tip of the probe and a characteristic X-ray generated by the electron beam applied to the probe are used to measure diffracted X-rays from the sample or photoelectrons By doing so, information on the physical properties of the minute region of the sample is obtained.

【0005】[0005]

【作用】図3(a)を用いて本発明を説明する。一般に
物質に数十KeVのエネルギを持った電子線を照射する
とその物質を構成している原子の種類に特有の特性X線
を発生する。図3にあるように探針1の先端部に電子線
3を照射した場合にも特性X線4が発生する。電子線を
探針の先端部から100nm以内の最先端部に照射した
場合、特性X線のうち探針1上方へ放射されたものは探
針1自体に吸収されるため、特性X線は実質的に探針か
ら試料2に向かって放射されることになる。発生した特
性X線は球面波でありその強度は発生中心点からの距離
の2乗に反比例して弱くなるため、電子線を照射した範
囲の半径の十倍の位置では強度は1/100になる。従
って探針と試料との間隙を1nm以下にした場合には、
特性X線によって励起された回折X線5や光電子6は主
に探針先端部近傍の試料表面の情報を持っていると考え
てよい。このとき特性X線の強度1/10までの範囲を
位置分解能と定義すると、通常の走査電子顕微鏡で用い
るビーム径数nm程度の電子線源を用いた場合でも分解
能は十数nm程度となり、従来方法と比べ約一桁小さい
値を実現することが可能になる。
The present invention will be described with reference to FIG. In general, when a substance is irradiated with an electron beam having an energy of several tens of KeV, a characteristic X-ray that is peculiar to the type of atoms constituting the substance is generated. As shown in FIG. 3, characteristic X-rays 4 are also generated when the tip of the probe 1 is irradiated with the electron beam 3. When the tip of the probe is irradiated with an electron beam within 100 nm from the tip, the characteristic X-rays emitted above the probe 1 are absorbed by the probe 1 itself. The light is emitted from the probe toward the sample 2. Since the generated characteristic X-ray is a spherical wave and its intensity weakens in inverse proportion to the square of the distance from the generation center point, the intensity becomes 1/100 at the position of ten times the radius of the range irradiated with the electron beam. Become. Therefore, when the gap between the probe and the sample is 1 nm or less,
It can be considered that the diffracted X-rays 5 and the photoelectrons 6 excited by the characteristic X-rays mainly have information on the sample surface near the tip of the probe. At this time, if the range of the characteristic X-ray intensity up to 1/10 is defined as the position resolution, the resolution becomes about a dozen nm even when an electron beam source having a beam diameter of about several nm used in a normal scanning electron microscope is used. It is possible to realize a value that is about an order of magnitude smaller than the method.

【0006】探針1を試料2表面で二次元的に走査し、
同時に電子線3も常にその収束点が探針先端部にあるよ
うに走査すれば、走査X線顕微鏡像を得ることが可能で
ある。これは探針を走査するための走査回路13と電子
線を走査するための電子線走査回路12を同期すること
で実現できる。探針1と試料2との関係は、いわゆる、
走査プローブ顕微鏡のものと同じ構成をしているので、
探針の走査に際して探針と試料との間に流れるトンネル
電流および/または探針と試料間に作用している力が一
定になるように探針と試料との間隙を制御しながら探針
を走査することで、走査プローブ顕微鏡像と走査X線顕
微鏡像とを同時に得ることもできる。
[0006] The probe 1 is two-dimensionally scanned on the surface of the sample 2,
At the same time, if the electron beam 3 is also scanned so that its convergence point is always at the tip of the probe, a scanning X-ray microscope image can be obtained. This can be realized by synchronizing the scanning circuit 13 for scanning the probe and the electron beam scanning circuit 12 for scanning the electron beam. The relationship between the probe 1 and the sample 2 is so-called
Since it has the same configuration as that of the scanning probe microscope,
While scanning the probe, while controlling the gap between the probe and the sample so that the tunnel current flowing between the probe and the sample and / or the force acting between the probe and the sample are constant, By scanning, a scanning probe microscope image and a scanning X-ray microscope image can be simultaneously obtained.

【0007】電子線を探針の動きとは独立に走査し、二
次電子検出器および/または反射電子検出器を備えてお
くと試料の走査電子顕微鏡像を得ることも可能である。
走査電子顕微鏡像は走査X線顕微鏡像とは同時に観察で
きないが、試料表面の状態と探針位置および探針先端部
の形状を確認しながら計測を行えるという利点がある。
It is also possible to obtain a scanning electron microscope image of a sample by scanning the electron beam independently of the movement of the probe and providing a secondary electron detector and / or a backscattered electron detector.
Although the scanning electron microscope image cannot be observed simultaneously with the scanning X-ray microscope image, there is an advantage that the measurement can be performed while confirming the state of the sample surface, the probe position, and the shape of the probe tip.

【0008】X線管で用いるターゲット金属にはさまざ
まなものが用いられるが、中でもアルミニウム,ジルコ
ニウム,銅,モリブデンはよく用いられており、データ
の蓄積も多い。またタングステンは電界研磨によって極
めて小さな曲率半径を持つ先端を形成できることが知ら
れており、探針材料としてはもっとも適した材料であ
る。これらのことから探針の材料としては銅,モリブデ
ン、或るいはタングステンを用いることが望ましい。
Various target metals are used in the X-ray tube, but among them, aluminum, zirconium, copper and molybdenum are often used and much data is accumulated. It is also known that tungsten can form a tip having an extremely small radius of curvature by electropolishing, and is the most suitable material as a probe material. For these reasons, it is desirable to use copper, molybdenum, or tungsten as the material of the probe.

【0009】本発明による構成で発生した特性X線を単
色化するためには、図3(b)にあるように探針1の先
端部に探針によって発生する特性X線のうちKα線とK
β線との間に吸収端を持つフィルタ物質7を蒸着し、電
子線を物質の被覆のなされていない部分に当てればよ
い。このようにすることでKαX線のみを効率よく利用
したX線分光を行うことができる。
In order to convert the characteristic X-rays generated by the structure according to the present invention into a monochromatic color, as shown in FIG. 3B, the characteristic X-rays of the characteristic X-rays generated by the probe at the tip of the probe 1 are changed to Kα rays. K
The filter substance 7 having an absorption edge between the β-ray and the electron beam may be vapor-deposited, and the electron beam may be applied to the uncoated portion of the substance. By doing so, X-ray spectroscopy can be performed efficiently using only Kα X-rays.

【0010】電子線3が試料2表面に直接当たることは
望ましくなく、また探針先端部に電子線を当てるために
は電子線は試料に平行に入射することが望ましい。しか
し走査電子顕微鏡像の観察には、電子線は試料2に対し
てある程度の角度で入射する必要がある。このため、電
子線の入射方向と試料面とのなす角度は30度以下であ
ることが適当である。
It is not desirable that the electron beam 3 directly strikes the surface of the sample 2, and it is desirable that the electron beam be incident parallel to the sample in order to hit the tip of the probe. However, in order to observe the scanning electron microscope image, the electron beam needs to enter the sample 2 at a certain angle. Therefore, it is appropriate that the angle between the incident direction of the electron beam and the sample surface is 30 degrees or less.

【0011】[0011]

【実施例】本発明の一実施例を図1を用いて説明する。
本実施例では電子線源11から得られた電子線3を探針
1の先端部に照射する。このとき発生した特性X線4は
試料2に当たり、回折X線5および光電子6を放出す
る。これらの回折X線や光電子をそれぞれX線検出器2
0およびエネルギ分析器21によって検出する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.
In this embodiment, the tip of the probe 1 is irradiated with the electron beam 3 obtained from the electron beam source 11. The characteristic X-rays 4 generated at this time hit the sample 2 and emit diffracted X-rays 5 and photoelectrons 6. These diffracted X-rays and photoelectrons are detected by the X-ray detector 2 respectively.
0 and detected by the energy analyzer 21.

【0012】本発明の第二の一実施例を図4を用いて説
明する。本実施例では探針走査回路13と電子線走査回
路12とは同期して動作するようになっており電子線3
は常に探針1の先端部に収束するようになっている。タ
ングステン探針1はX線源となっていて走査トンネル顕
微鏡プローブになっており、走査X線顕微鏡像16と走
査トンネル顕微鏡像15を同時観察することが可能であ
る。探針1の材料はタングステンの他、モリブデン,銅
或いは他の金属でもよい。
A second embodiment of the present invention will be described with reference to FIG. In this embodiment, the probe scanning circuit 13 and the electron beam scanning circuit 12 operate in synchronization with each other, and the electron beam 3
Is always converged on the tip of the probe 1. The tungsten probe 1 serves as an X-ray source and a scanning tunneling microscope probe, and can simultaneously observe the scanning X-ray microscope image 16 and the scanning tunneling microscope image 15. The material of the probe 1 may be molybdenum, copper or other metal other than tungsten.

【0013】本発明の第三の実施例を図5を用いて示
す。本実施例では走査トンネル顕微鏡像ではなく原子間
力顕微鏡像25を得ることができるようになっている。
一般には磁気力顕微鏡なども含めた走査プローブ顕微鏡
を構成しているものは、本発明に使用可能である。ま
た、本実施例では二次電子検出器22,反射電子検出器
23を備え、走査電子顕微鏡像24によって試料表面や
探針の形状を確認しながらX線顕微鏡像16を得ること
が可能である。本実施例では二次電子像或いは反射電子
像を得るために電子線走査回路12は探針走査回路13
とは独立に電子線3を走査することも可能になってい
る。また、反射電子をより効率よく検出して試料表面の
情報を得るために電子線3の入射角度は0度から30度
まで変えられるようになっている。
A third embodiment of the present invention will be shown with reference to FIG. In this embodiment, the atomic force microscope image 25 can be obtained instead of the scanning tunneling microscope image.
In general, a scanning probe microscope including a magnetic force microscope can be used in the present invention. Further, in this embodiment, the secondary electron detector 22 and the backscattered electron detector 23 are provided, and the X-ray microscope image 16 can be obtained while confirming the shape of the sample surface and the probe by the scanning electron microscope image 24. . In this embodiment, the electron beam scanning circuit 12 is provided with a probe scanning circuit 13 in order to obtain a secondary electron image or a backscattered electron image.
It is also possible to scan the electron beam 3 independently of. Further, the incident angle of the electron beam 3 can be changed from 0 degree to 30 degrees in order to detect the reflected electrons more efficiently and obtain information on the sample surface.

【0014】本発明の第四の実施例を図6を用いて示
す。本実施例では銅製の探針1先端部にはニッケルを蒸
着してあり、その一部が電子線3を入射するために開口
部8となっている。開口部に電子線3を収束することで
Cu(Kα)線のみを用いたX線分光が可能である。
A fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, nickel is vapor-deposited on the tip of the probe 1 made of copper, and a part of the nickel is used as the opening 8 for the electron beam 3 to enter. Focusing the electron beam 3 on the opening enables X-ray spectroscopy using only Cu (Kα) rays.

【0015】[0015]

【発明の効果】本発明によって物質の局所的な物性を試
料表面を確認しながらX線分析することが可能になる。
According to the present invention, it becomes possible to carry out X-ray analysis of local physical properties of a substance while confirming the sample surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す説明図。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】従来の局所X線分析法を示す説明図。FIG. 2 is an explanatory diagram showing a conventional local X-ray analysis method.

【図3】本発明の作用を示す説明図。FIG. 3 is an explanatory view showing the operation of the present invention.

【図4】本発明の第二の実施例を示す説明図。FIG. 4 is an explanatory diagram showing a second embodiment of the present invention.

【図5】本発明の第三の実施例を示す説明図。FIG. 5 is an explanatory diagram showing a third embodiment of the present invention.

【図6】本発明の第四の実施例を示す説明図。FIG. 6 is an explanatory diagram showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…探針、2…試料、3…電子線、4…特性X線、5…
回折X線、6…光電子、10…探針走査機構、11…電
子線源、20…X線検出器、21…エネルギ分析器。
1 ... Probe, 2 ... Sample, 3 ... Electron beam, 4 ... Characteristic X-ray, 5 ...
Diffracted X-rays, 6 ... Photoelectrons, 10 ... Probe scanning mechanism, 11 ... Electron beam source, 20 ... X-ray detector, 21 ... Energy analyzer.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】導電性の探針を試料の表面直上で上記試料
面に沿って走査するための探針走査機構と、上記探針の
先端部の幅より小さな範囲に電子を収束することが可能
な電子線源とを有し、上記探針の先端部に照射した電子
線によって発生した特性X線による試料からの回折X線
或いは上記特性X線によって励起された光電子を計測す
ることで試料の微小領域の物性情報を得ることを特徴と
するX線微小分析法。
1. A probe scanning mechanism for scanning a conductive probe along the surface of a sample just above the surface of the sample, and an electron focusing device in a range smaller than the width of the tip of the probe. And a photoelectron excited by the characteristic X-ray from the sample by the characteristic X-ray generated by the electron beam applied to the tip of the probe. An X-ray microanalysis method characterized by obtaining physical property information of the microscopic region.
【請求項2】請求項1において、上記探針走査機構を駆
動する探針走査回路と上記電子線を上記探針上へ照射す
るための電子線走査回路とを同期することで上記探針を
走査中も上記電子線を常に上記探針の先端部に収束し、
上記試料の表面の上記探針の位置に対応する物性情報を
得ることによって、走査X線顕微鏡像を得るX線微小分
析法。
2. The probe according to claim 1, wherein the probe scanning circuit for driving the probe scanning mechanism is synchronized with an electron beam scanning circuit for irradiating the probe with the electron beam. Even during scanning, the electron beam is always focused on the tip of the probe,
An X-ray microanalysis method for obtaining a scanning X-ray microscope image by obtaining physical property information corresponding to the position of the probe on the surface of the sample.
【請求項3】請求項2において、上記探針と上記試料間
に流れるトンネル電流或いは上記探針と上記試料間に作
用している力が一定になるように上記探針と上記試料間
の間隙を制御することによって得られる走査プローブ顕
微鏡像と上記走査X線顕微鏡像とを同時に得るX線微小
分析法。
3. The gap between the probe and the sample according to claim 2, wherein the tunnel current flowing between the probe and the sample or the force acting between the probe and the sample is constant. An X-ray microanalysis method for simultaneously obtaining a scanning probe microscope image and the scanning X-ray microscope image obtained by controlling
【請求項4】請求項1,2または3において、上記探針
を構成する主たる元素がアルミニウム,ジルコニウム,
銅,モリブデン、或いはタングステンであるX線微小分
析法。
4. The method according to claim 1, 2 or 3, wherein the main elements constituting the probe are aluminum, zirconium,
X-ray microanalysis method that is copper, molybdenum, or tungsten.
【請求項5】請求項1,2,3または4において、上記
電子線の入射方向と上記試料の表面とのなす角度が30
度以下であるX線微小分析法。
5. The angle between the incident direction of the electron beam and the surface of the sample is 30 according to claim 1, 2, 3 or 4.
X-ray microanalysis, which is sub-degree.
【請求項6】請求項1,2,3,4または5において、
上記探針の最先端部表面に上記探針を構成する主たる元
素の特性X線のうちKα線とKβ線との間に吸収端を持
つ元素でできたフィルタ物質を固着し、上記電子線を上
記探針の上記フィルタ物質が固着されていない部分に照
射するX線微小分析法。
6. The method according to claim 1, 2, 3, 4 or 5.
A filter substance made of an element having an absorption edge between the Kα line and the Kβ line of the characteristic X-rays of the main elements forming the probe is fixed to the surface of the tip of the probe, and the electron beam is absorbed. An X-ray microanalysis method of irradiating a portion of the probe where the filter substance is not fixed.
【請求項7】請求項6において、上記探針と上記フィル
タ物質の材料の組合せとしてそれぞれ銅とニッケル,モ
リブデンとジルコニウム、或いはタングステンとハフニ
ウムを用いるX線微小分析法。
7. The X-ray microanalysis method according to claim 6, wherein copper and nickel, molybdenum and zirconium, or tungsten and hafnium are used as a combination of the material of the probe and the filter substance, respectively.
JP6038105A 1994-03-09 1994-03-09 X-ray microanalysis method Pending JPH07243996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6038105A JPH07243996A (en) 1994-03-09 1994-03-09 X-ray microanalysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6038105A JPH07243996A (en) 1994-03-09 1994-03-09 X-ray microanalysis method

Publications (1)

Publication Number Publication Date
JPH07243996A true JPH07243996A (en) 1995-09-19

Family

ID=12516198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6038105A Pending JPH07243996A (en) 1994-03-09 1994-03-09 X-ray microanalysis method

Country Status (1)

Country Link
JP (1) JPH07243996A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098168A (en) * 2011-10-28 2013-05-20 Gamc Biotec Development Co Ltd Transmission type x-ray tube and reflection type x-ray tube
WO2014174997A1 (en) * 2013-04-22 2014-10-30 東京エレクトロン株式会社 Cantilever, manufacturing process, detection device, and detection method
JP2016085232A (en) * 2016-02-15 2016-05-19 株式会社島津製作所 Poly-capillary optical element and x-ray diffraction device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098168A (en) * 2011-10-28 2013-05-20 Gamc Biotec Development Co Ltd Transmission type x-ray tube and reflection type x-ray tube
WO2014174997A1 (en) * 2013-04-22 2014-10-30 東京エレクトロン株式会社 Cantilever, manufacturing process, detection device, and detection method
JP2016085232A (en) * 2016-02-15 2016-05-19 株式会社島津製作所 Poly-capillary optical element and x-ray diffraction device

Similar Documents

Publication Publication Date Title
JP6937380B2 (en) Methods for performing X-ray spectroscopy and X-ray absorption spectroscopy systems
US7899154B2 (en) Small spot and high energy resolution XRF system for valence state determination
JP3752252B2 (en) Electrically isolated specimen surface analyzer
US7221731B2 (en) X-ray microscopic inspection apparatus
US6548810B2 (en) Scanning confocal electron microscope
US7991116B2 (en) Monochromatic x-ray micro beam for trace element mapping
US20150055745A1 (en) Phase Contrast Imaging Using Patterned Illumination/Detector and Phase Mask
WO2005098871A1 (en) X-ray-use target and device using it
JP7182749B2 (en) System and method for computed tomography fluorescence X-ray imaging
JP6851107B2 (en) X-ray analyzer
US6577705B1 (en) Combinatorial material analysis using X-ray capillary optics
CN110621986B (en) Method of performing x-ray spectral analysis and x-ray absorption spectrometer system
JPH07243996A (en) X-ray microanalysis method
EP1557864A1 (en) X-ray microscopic inspection apparatus
CN113218974A (en) X-ray absorption spectrum measuring system
Ko et al. Development of a second generation scanning photoemission microscope with a zone plate generated microprobe at the National Synchrotron Light Source
Cazaux Prospects in high resolution X-ray photoelectron microscopy
JP5347559B2 (en) X-ray analyzer
JPS62106352A (en) Scanning type x-ray microscope
Kelly et al. Proposed configurations for a high-repetition-rate position-sensitive atom probe
JPS599850B2 (en) X
JPH0560702A (en) Method and device for picking up sectional image using x rays
Chen Recent development of doubly curved crystal focusing optics and their applications for micro XRF
JP3368643B2 (en) Photoelectron spectrometer
JPH07218454A (en) Method and instrument for measuring intermediate speed electron diffraction