JPS62106352A - Scanning type x-ray microscope - Google Patents

Scanning type x-ray microscope

Info

Publication number
JPS62106352A
JPS62106352A JP24651085A JP24651085A JPS62106352A JP S62106352 A JPS62106352 A JP S62106352A JP 24651085 A JP24651085 A JP 24651085A JP 24651085 A JP24651085 A JP 24651085A JP S62106352 A JPS62106352 A JP S62106352A
Authority
JP
Japan
Prior art keywords
ray
image
rays
sample
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24651085A
Other languages
Japanese (ja)
Other versions
JPH0543080B2 (en
Inventor
Hiromoto Nakazawa
中沢 弘基
Koji Nozaki
浩司 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP24651085A priority Critical patent/JPS62106352A/en
Publication of JPS62106352A publication Critical patent/JPS62106352A/en
Publication of JPH0543080B2 publication Critical patent/JPH0543080B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K7/00Gamma- or X-ray microscopes

Abstract

PURPOSE:To make it possible to observe the various X-ray images of a metal or ceramics, by irradiating the minute part of a specimen with X-ray fine flux and scattering, diffracting and transmitting the irradiated fine flux to measure secondary X-ray intensities which are, in turn, displayed in synchronous relation to the movement of a measuring area. CONSTITUTION:All of X-ray scattered, diffracted or generated from a minute area are attenuated in the intensities thereof along with their distances by the diffusion thereof. In order to prevent this phenomenon, a light receiving side X-ray conduit of a long rotary parabolic surface type having an extremely small focus is used. As an X-ray detector 13, a solid detector having the resolving power of X-ray energy, for example, SSD is used in order to observe various X-ray images such as a scattered X-ray image, a diffracted X-ray image, a secondary X-ray image and a transmitted X-ray image etc. A computer 2 performs the storing of the position and measured value of each measuring point and the operational control of the XZ surface of a specimen and forms an image on the basis of the memory thereof to display the same on a cathode ray tube or an XY plotter or to display the same as a numerical value matrix.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は走査型X線類!ffiに関する。[Detailed description of the invention] Industrial applications The present invention is a scanning type X-ray! Regarding ffi.

従来技術 従来、X線を曲げる適当なレンズが存在しない。Conventional technology Conventionally, there is no suitable lens for bending X-rays.

従って光学顕微鏡と同じ原理のX線類@鏡に存在しない
。完全性の高い結晶の内部欠陥を観察するためには、X
線トポダラフの手法が顕微鏡としての役割を果している
が、−殺性は極めて少ない。
Therefore, it does not exist in X-rays @ mirrors, which have the same principle as optical microscopes. In order to observe internal defects in highly perfect crystals,
Although the method of ray topodaraf plays the role of a microscope, it has extremely low killing potential.

また点状のX線発生装置から発生するX線を、薄板状の
試料で受けて、その後方のフィルム上に一拡大された憑
過像(影絵)を撮影したりあるいはフィルム上に薄い生
体片を張付けて、X線に露光し、試料を除去、現像後、
光学顕微鏡で観察する一ラジオグラフィーの手法も知ら
れている。しかし、これらはいずれも観察対象となり得
る試料の形状が、極端に限定されて一般性がない。
In addition, X-rays generated from a point-shaped X-ray generator are received by a thin plate-shaped sample, and a magnified possession image (shadow picture) is taken on the film behind it, or a thin biological specimen is placed on the film. After attaching the sample and exposing it to X-rays, removing the sample and developing it,
A radiographic method for observation using an optical microscope is also known. However, in all of these methods, the shape of the sample that can be observed is extremely limited and is not general.

発明の目的 本発明は従来のX線顕微鏡の問題点を解消すべくなされ
たもので、その目的は、金属やセラミックスのX線の散
乱1回折、吸収、二次X線の発輝等による像を観察した
り検査することが可能な走査型X線類微繞を提供するに
ある。
Purpose of the Invention The present invention was made to solve the problems of conventional X-ray microscopes. The purpose of the present invention is to provide a scanning type X-ray microscope capable of observing and inspecting.

発明の構成 本発明の走査型X線顕微鏡は、試料の微小領域にX線導
管を用いて細束高輝度X線を入射し、その微小領域から
生ずる散乱7回折、透過、二次X線を測定し、それらの
値と試料位置パラメターを記憶するようにすると共に、
逐次試料を移動させて測定する微小領域を移動させ、同
様に測定し、これら全測定値および試料位置パラメター
を集積771>、て散乱X線像!回折X線像、透過X線
像1螢光jki線像・またはそれらの断層像を形成させ
るように構成したことを特徴とするものである。
Structure of the Invention The scanning X-ray microscope of the present invention uses an X-ray conduit to inject a narrow bundle of high-intensity X-rays into a microscopic region of a sample, and then collects scattered, transmitted, and secondary X-rays generated from the microscopic region. as well as to measure and memorize their values and sample position parameters;
Sequentially move the sample to move the minute area to be measured, measure in the same way, and accumulate all these measured values and sample position parameters 771 > to create a scattered X-ray image! The present invention is characterized in that it is configured to form a diffraction X-ray image, a transmission X-ray image, a fluorescence jki-ray image, or a tomographic image thereof.

−−゛−″なお、測定点即ち入射X線の方向と、X線検
出器の方向との交点が、試料の表面より内部にある試料
位置を選べば、走査型X線断層顕微鏡となる。
--''-'' Note that if a sample position is selected where the measurement point, that is, the intersection of the direction of the incident X-ray and the direction of the X-ray detector is inside the surface of the sample, a scanning X-ray tomographic microscope is obtained.

本発明の原理の一部は走査型電子顕微鏡に相当する。電
子顕微鏡の発達の歴史の中で、透過型と走査型は平行し
て発達して来た。前者は電子線が磁場中で曲けられるこ
とを利用した電子レンズを用いて光学顕微鏡と類似した
像の拡大手法である。
Part of the principle of the invention corresponds to a scanning electron microscope. In the history of the development of electron microscopes, transmission type and scanning type have developed in parallel. The former is an image magnification method similar to an optical microscope that uses an electron lens that takes advantage of the fact that electron beams are bent in a magnetic field.

これに対し後者は電子線束を可能な限り細くし、試料部
に生ずる各種相互作用(例えば、二次電子・螢光X線、
後方散乱電子等)の強度を計測し、電子線束の移動と同
期してブラウン管上に表示し像とする。従って、前者の
像の分解能は電子レンズの収差、後者は電子線束の太さ
によって決定される。
On the other hand, the latter makes the electron beam as narrow as possible, and various interactions that occur in the sample (e.g., secondary electrons, fluorescent X-rays, etc.)
The intensity of backscattered electrons, etc.) is measured and displayed on a cathode ray tube as an image in synchronization with the movement of the electron beam. Therefore, the resolution of the former image is determined by the aberration of the electron lens, and the latter is determined by the thickness of the electron beam.

本発明の走査型X線顕微鏡においては、X線導管を用い
てX線の細束を作り試料の微小部分に照射し、散乱9回
折、透過すニ次X線強度を測定し、測定部位の移動と同
期させてそれらの強度を表示して拡大像を作る。従って
、細線束を用いた測定と、測定部の移動を同期させてい
る沖においては、走査型電子顕微鏡の像拡大機構と同じ
であり、解像度の限界が、X線細束の太さによって決め
られる点においても同じである。
In the scanning X-ray microscope of the present invention, an X-ray conduit is used to create a fine bundle of X-rays, which is irradiated onto a minute part of the sample, and the scattered 9-diffraction and transmitted secondary X-ray intensity are measured. Display their intensity in synchronization with movement to create a magnified image. Therefore, in Oki, which synchronizes the measurement using a thin beam bundle with the movement of the measurement unit, it is the same as the image magnification mechanism of a scanning electron microscope, and the resolution limit is determined by the thickness of the thin X-ray beam. The same is true in terms of what can be done.

しかし、走査の機構は、本発明の場合は、試料を微小移
動させるのに対し、走査型電子顕微鏡の場合は、入射電
子線束な撮っている。この走査電子顕微鏡に用いられて
いる描像と像拡大の機構の大略をX線に応用し、かつこ
の応用を可能にするX線導管によるX線細束を実現させ
るようにしたのが本発明である。
However, in the case of the present invention, the scanning mechanism moves the sample minutely, whereas in the case of a scanning electron microscope, a flux of incident electron beams is photographed. The present invention applies the outline of the imaging and image magnification mechanism used in scanning electron microscopes to X-rays, and also realizes a narrow beam of X-rays using an X-ray conduit that makes this application possible. be.

本発明の走査型X線顕微鏡の実施態様の一例を図面によ
って説明する。
An example of an embodiment of the scanning X-ray microscope of the present invention will be described with reference to the drawings.

第1図は一部断面図を含む平面図、第2図は一部断面図
を含む側面図である。図中、 1はパルスまたは連続X線を発生するためのパルス発生
器及び高電圧発生器、 二、2は計測、試料移動9画像処理のためのコンピュー
ター、 3は試料移動、検出器の位置制御用のパルスモ゛;′タ
ー制御器、 4は固体検出器用波高分析器、 5はパルスまたは連続の微小焦点高輝度X線発生装置、 6は入射側X線導管姿勢制御器、 7は入射側X線導管、 8は受光側X線導管、 9は試料X方向(水平、X線の方向に対し垂直)微小移
動機構、 10は試料水平面内回転機構、 11は試料2方向(高さ)微小移動機構、12は定盤、 13はX線検出器(固体検出器/5SD14はX線検出
器用プリアンプ、 15は受光側X′M導管姿勢制御機構、16はX線検出
器水平面内回転機構、 17は試料傾斜制御機構(X線の方向に平行)−: 、
−18は   同    (X線の方向に垂直)を表わ
す。
FIG. 1 is a plan view including a partially sectional view, and FIG. 2 is a side view including a partially sectional view. In the figure, 1 is a pulse generator and high voltage generator for generating pulsed or continuous X-rays, 2, 2 is a computer for measurement, sample movement 9, image processing, 3 is sample movement and detector position control 4 is a pulse height analyzer for a solid-state detector, 5 is a pulsed or continuous micro-focus high-intensity X-ray generator, 6 is an entrance side X-ray conduit attitude controller, 7 is an entrance side ray conduit, 8 is the receiving side X-ray conduit, 9 is the sample X direction (horizontal, perpendicular to the direction of the X-ray) minute movement mechanism, 10 is the sample rotation mechanism in the horizontal plane, 11 is the sample 2 direction (height) minute movement mechanism, 12 is a surface plate, 13 is an X-ray detector (solid state detector/5SD14 is a preamplifier for the X-ray detector, 15 is a light-receiving side X'M conduit attitude control mechanism, 16 is an X-ray detector horizontal plane rotation mechanism, 17 is the sample tilt control mechanism (parallel to the X-ray direction) -: ,
-18 represents the same (perpendicular to the direction of the X-ray).

微小焦点X#J発生装置5は、金属製の対陰極に一’6
’O〜300 kVに加速した電子線を衝突させる型式
の通常のX線発生装置と類似した装置である。
The microfocus X#J generator 5 has a metal anticathode with a
This device is similar to a normal X-ray generator that collides with electron beams accelerated to 0~300 kV.

微小焦点高輝度X線を得るためには、例えば図に示すよ
うに電子コイル18で電子線を対陰極上に集束させる。
In order to obtain finely focused, high-intensity X-rays, the electron beam is focused onto the anticathode using an electronic coil 18, for example, as shown in the figure.

パルス発生器lからのパルス状の電源供給を得て、パル
ス状のX線発生が出来る型式のものであれば更に効率が
よい。ただし、パルスX線の発生は、試料位置の移動と
同期させ、移動期間を休止期とし、測定時のみX線を発
生させる。
It is even more efficient if it is of a type that can generate pulsed X-rays by receiving a pulsed power supply from the pulse generator l. However, the generation of pulsed X-rays is synchronized with the movement of the sample position, the movement period is a rest period, and X-rays are generated only during measurement.

パルスX線の発生と試料移動の同期Fi制御用のコンピ
ューター2を用いて行う。
A computer 2 for synchronized Fi control of pulsed X-ray generation and sample movement is used.

微小、壱で発生した高輝度X線を効率よく試料上の一点
(試料および測定装置の回転の中心)に導くためには入
射側X線導管7を用いる。図では回転長楕円型X線導管
で示す。これに代え長円錐X線導W1円筒状X線導管、
放物面X線導管・あるいはこれに近似した中空細管であ
ってもよい。
The incident-side X-ray conduit 7 is used to efficiently guide the minute, high-intensity X-rays generated to a single point on the sample (the center of rotation of the sample and the measuring device). In the figure, it is shown as a rotating elliptical X-ray conduit. Instead of this, a long conical X-ray guide W1 cylindrical X-ray guide,
It may be a parabolic X-ray conduit or a hollow tube similar to this.

−二!例えば、X線導管は次のようなものが挙げられ;
る゛。
-Two! Examples of X-ray conduits include:
Ru゛.

1)電子線照射によるX線の発生点及び固定した゛2パ
パ測定点の二貞を焦点とする長い回転楕円体の両端を切
断した形状を内壁面の形状とする中空細管、 2)長い円錐体の両端を切断した形状または円筒形状を
内壁面の形状とする中空細管、 3)焦点の値が小さい長い回転放物面体の先端を切断し
た形状を内壁面の形状とする中空細管であって、X線発
生点から発したX線が該中空細管の入射端でX線全反射
臨界角を満たし、がつ内壁面がX線全j射を生じ得る滑
らかなものである。
1) A hollow tube whose inner wall shape is a shape obtained by cutting both ends of a long spheroid whose focal point is the point where X-rays are generated by electron beam irradiation and the two fixed measurement points; 2) A long cone. 3) A hollow tube whose inner wall surface has a shape in which both ends of the body are cut off or a cylindrical shape; 3) A hollow tube whose inner wall surface has a shape in which the tip of a long paraboloid of revolution with a small focus value is cut off; , the X-rays emitted from the X-ray generation point satisfy the critical angle for total X-ray reflection at the incident end of the hollow tube, and the inner wall surface of the hollow tube is smooth enough to cause total X-ray reflection.

入射側X線導管7の方位の調整は入射側X@導管姿勢制
褐器6を用いて行う。
The orientation of the incident side X-ray conduit 7 is adjusted using the incident side X@conduit attitude control device 6.

試料水平面内回転機構10及びX線検出器水平面内回転
機構16の回転中心は即ち測定点であって、試料上ある
いは試料中の測定しようとする位置を、この回転中心に
、試料X方向微小移動機構9、I試料2方向微小移動機
構11及び試料傾斜制御機構17.18を用いて一致さ
せる。同測定点から発生または透過するX線を、目的に
応じて任□意の角度で測定するためには、X線検出器水
平面内回転機構16を用いる。
The centers of rotation of the sample horizontal plane rotation mechanism 10 and the X-ray detector horizontal plane rotation mechanism 16 are measurement points, and the position to be measured on or in the sample is minutely moved in the X direction of the sample around this rotation center. The mechanism 9, the I-sample two-direction fine movement mechanism 11, and the sample tilt control mechanism 17 and 18 are used to match the sample. In order to measure the X-rays generated or transmitted from the measurement point at any angle depending on the purpose, an X-ray detector horizontal rotation mechanism 16 is used.

第1図は、散乱2回折、または二次X線を測定するため
の配置で、検出器はX線の入射方向を零とすると約12
00の位置にある。第2図は透過x&!量を測定する配
置で、検出器0°にある。
Figure 1 shows the arrangement for measuring second-order scattered diffraction or secondary X-rays, and the detector is approximately 12
It is at position 00. Figure 2 is transparent x&! The detector is at 0° in the arrangement for measuring the quantity.

微小領域から散乱2回折または発生するX線は、いずれ
もその発散により、距離と共に強度が減衰する。
The intensity of the X-rays that are scattered or generated from a minute region is attenuated with distance due to their divergence.

それを防ぐ目的で本装置では受光側X線導管8を用いる
。第1図及び第2図では、焦点の極端に小さな長い回転
放物面型のX1lj!導管で示している。
In order to prevent this, the present apparatus uses an X-ray conduit 8 on the light receiving side. In FIGS. 1 and 2, X1lj! is a long paraboloid of revolution with an extremely small focal point. Shown as a conduit.

これに代え、回転長楕円型・長円雌型・あるいは円筒型
のものであってもよい。
Alternatively, it may be of a rotating oblong shape, an oblong female shape, or a cylindrical shape.

X線検出器13としては、散乱X線像1回折X線像、二
次X線(螢光X線)像あるいは透過X線儂等多様なXI
s像を目的に応じて観察するために、は、X線エネルギ
ー分解能のある固体検出器(例えばSSD )を用いる
。ただし、余り精度を要求し°ない金属あるいは焼結セ
ラミックス中の欠損部の゛検゛出等の場合にはシンチレ
ーションカウンターを用い得られる。
The X-ray detector 13 can detect various XIs such as a scattered X-ray image, a diffraction X-ray image, a secondary X-ray (fluorescent X-ray) image, or a transmitted
In order to observe the s-image depending on the purpose, a solid-state detector (for example, SSD) with X-ray energy resolution is used. However, a scintillation counter can be used for detecting defects in metals or sintered ceramics that do not require high accuracy.

試料上の一点での測定値と測定点の位置をコンピュータ
ー中に記憶させ、試料位置を試料X方向微小移動機構9
及び試料2方向微小移動機構11を用いて移動して測定
を行い、逐次この動作を繰り返してXzrfJ内の全領
域の各点の測定を行う。
The measured value at one point on the sample and the position of the measurement point are stored in the computer, and the sample position is moved to the sample X direction fine movement mechanism 9.
Then, the sample is moved and measured using the two-direction sample movement mechanism 11, and this operation is successively repeated to measure each point in the entire area within XzrfJ.

コンピューター2は各測定点の位置及び測定値の記憶、
試料のX2面の移動の制御を行い、その記憶をもとにし
像を構成し、ブラウン管上あるいはXYプロッター上ま
たは数値マトリックスとして表示する。
The computer 2 stores the position and measured value of each measurement point,
The movement of the sample in the X2 plane is controlled, and an image is constructed based on the memory and displayed on a cathode ray tube, an XY plotter, or as a numerical matrix.

発明の効果 本発明の走査型X線顕微鏡によると、従来のX線顕微鏡
では不可能であった金属やセラミックスのX線の散乱9
回折・吸収!二次X線の発輝等による像を観察したり検
査することができる優れた効・朱を奏し得られる。
Effects of the Invention According to the scanning X-ray microscope of the present invention, the scattering of X-rays from metals and ceramics, which was impossible with conventional X-ray microscopes9, has been achieved.
Diffraction/absorption! Excellent effectiveness and redness can be achieved by allowing images created by secondary X-ray emission to be observed and inspected.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の走査型X#i1顕微鏡の実施態様を一示
′す図で、第1図は平面図、第2図は側面図である。 l:パルス発生器及び高電圧発生器、 2:コンピューター、 3:位置制御用パルスモータ−制御器、4:固体検出器
用波高分析器、 5:微小焦点高輝度X線発生装置、 6:入射側X線導管姿勢制御器、 7二人射側X線導管、 8:受光側X線導管、 9:試料微小移動機構、 10;試料水平面内回転機構、 11:試料微小移動機構、 12:定盤、 13:X線検出器、 14:X線検出器用プリアンプ、 15:X線導管姿勢制御機構、 16:X線検出器水平面内回転機構・ 17:試料傾斜制御機構(X線の方向に平行)、18:
   同上    (X線の方向に垂直)。 特許出願人  科学技術庁無機材質研究所長後  藤 
    優
The drawings are views showing an embodiment of the scanning type X#i1 microscope of the present invention, with FIG. 1 being a plan view and FIG. 2 being a side view. 1: Pulse generator and high voltage generator, 2: Computer, 3: Pulse motor controller for position control, 4: Wave height analyzer for solid state detector, 5: Microfocus high intensity X-ray generator, 6: Incident side X-ray conduit attitude controller, 7 two-person emission side X-ray conduit, 8: light-receiving side X-ray conduit, 9: sample minute movement mechanism, 10; sample horizontal plane rotation mechanism, 11: sample minute movement mechanism, 12: surface plate , 13: X-ray detector, 14: Preamplifier for X-ray detector, 15: X-ray conduit attitude control mechanism, 16: X-ray detector horizontal plane rotation mechanism, 17: Sample tilt control mechanism (parallel to the direction of X-rays) , 18:
Same as above (perpendicular to the direction of the X-rays). Patent applicant Goto, director of the Institute for Inorganic Materials, Science and Technology Agency
Excellent

Claims (1)

【特許請求の範囲】 1)試料の微小領域にX線導管を用いて細束高輝度X線
を入射し、その微小領域から生ずる散乱、回折、透過、
二次X線を測定し、それらの値と試料位置パラメターを
記憶するようにすると共に、逐次試料を移動させて測定
する微小領域を移動させ、同様に測定し、これら全測定
値および試料位置パラメターを用いて散乱X線像、回折
X線像、透過X線像、螢光X線像、またはそれらの断層
像を形成させるように構成したことを特徴とする走査型
X線顕微鏡。 2)X線導管が電子線照射によるX線の発生点及び固定
した測定点の二点を焦点とする長い回転楕円体の両端を
切断した形状を内壁面の形状とする中空細管で、X線発
生点から発したX線が該中空細管の入射端でX線全反射
臨界角を満たし、かつ内壁面がX線全反射を生じ得る滑
らかな面で構成されたものである特許請求の範囲第1項
記載の走査型X線顕微鏡。 3)X線導管が長い円錐体の両端を切断した形状または
円筒形状を内壁面の形状とする中空細管で、X線発生点
から発したX線が該中空細管の入射端でX線全反射臨界
角を満たし、かつ内壁面がX線全反射を生じ得る滑らか
な面で構成されたものである特許請求の範囲第1項記載
の走査型X線顕微鏡。 4)X線導管が焦点の値が小さい、長い回転放物面体の
先端を切断した形状を内壁面の形状とする中空細管で、
X線発生点から発したX線が、該中空細端の入射端でX
線全反射臨界角を満たし、かつ内壁面がX線全反射を生
じ得る滑らかな面で構成されたものである特許請求の範
囲第1項記載の走査型X線顕微鏡。
[Claims] 1) A fine beam of high-intensity X-rays is incident on a micro region of a sample using an X-ray conduit, and scattering, diffraction, transmission,
The secondary X-rays are measured, their values and sample position parameters are memorized, and the sample is successively moved to move the minute area to be measured, and all these measured values and sample position parameters are stored in the same manner. 1. A scanning X-ray microscope characterized in that it is configured to form a scattered X-ray image, a diffraction X-ray image, a transmitted X-ray image, a fluorescent X-ray image, or a tomographic image thereof. 2) The X-ray tube is a hollow tube whose inner wall is shaped like a long spheroid whose focal points are two points: the point where the X-rays are generated by electron beam irradiation and the fixed measurement point. The X-rays emitted from the generation point satisfy a critical angle for total X-ray reflection at the incident end of the hollow thin tube, and the inner wall surface is composed of a smooth surface capable of causing total X-ray reflection. The scanning X-ray microscope according to item 1. 3) The X-ray conduit is a hollow tube whose inner wall is shaped like a long cone with both ends cut off or a cylinder, and the X-rays emitted from the X-ray generation point undergo total X-ray reflection at the incident end of the hollow tube. 2. The scanning X-ray microscope according to claim 1, wherein the scanning X-ray microscope satisfies a critical angle and has an inner wall surface that is smooth and capable of causing total X-ray reflection. 4) The X-ray conduit is a hollow tube with a small focal point and whose inner wall shape is the shape of a long paraboloid of revolution with the tip cut off.
The X-rays emitted from the X-ray generation point are
2. A scanning X-ray microscope according to claim 1, which satisfies a critical angle for total linear reflection and is constructed of a smooth surface whose inner wall surface can cause total internal reflection of X-rays.
JP24651085A 1985-11-01 1985-11-01 Scanning type x-ray microscope Granted JPS62106352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24651085A JPS62106352A (en) 1985-11-01 1985-11-01 Scanning type x-ray microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24651085A JPS62106352A (en) 1985-11-01 1985-11-01 Scanning type x-ray microscope

Publications (2)

Publication Number Publication Date
JPS62106352A true JPS62106352A (en) 1987-05-16
JPH0543080B2 JPH0543080B2 (en) 1993-06-30

Family

ID=17149462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24651085A Granted JPS62106352A (en) 1985-11-01 1985-11-01 Scanning type x-ray microscope

Country Status (1)

Country Link
JP (1) JPS62106352A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318012A2 (en) * 1987-11-27 1989-05-31 Hitachi, Ltd. X-ray analyzer
JPH01316683A (en) * 1988-06-17 1989-12-21 Natl Inst For Res In Inorg Mater X-ray detector
JPH04204399A (en) * 1990-11-30 1992-07-24 Seiko Instr Inc Soft x-rays converging device
WO2005026708A1 (en) * 2003-09-10 2005-03-24 National Institute For Materials Science X-ray diffraction microscope and x-ray diffraction measurement method using x-ray diffraction microscope
JP2009505111A (en) * 2005-08-22 2009-02-05 ユニサンティス ヨーロッパ ゲーエムベーハー X-ray lens positioning apparatus, X-ray apparatus, and X-ray lens positioning method
JP2009097937A (en) * 2007-10-16 2009-05-07 Fujitsu Ltd Sample analyzer, sample analysis method, and sample analysis program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318012A2 (en) * 1987-11-27 1989-05-31 Hitachi, Ltd. X-ray analyzer
JPH01141343A (en) * 1987-11-27 1989-06-02 Hitachi Ltd X-ray analyzer
JPH01316683A (en) * 1988-06-17 1989-12-21 Natl Inst For Res In Inorg Mater X-ray detector
JPH04204399A (en) * 1990-11-30 1992-07-24 Seiko Instr Inc Soft x-rays converging device
WO2005026708A1 (en) * 2003-09-10 2005-03-24 National Institute For Materials Science X-ray diffraction microscope and x-ray diffraction measurement method using x-ray diffraction microscope
JP2009505111A (en) * 2005-08-22 2009-02-05 ユニサンティス ヨーロッパ ゲーエムベーハー X-ray lens positioning apparatus, X-ray apparatus, and X-ray lens positioning method
JP2009097937A (en) * 2007-10-16 2009-05-07 Fujitsu Ltd Sample analyzer, sample analysis method, and sample analysis program

Also Published As

Publication number Publication date
JPH0543080B2 (en) 1993-06-30

Similar Documents

Publication Publication Date Title
US11619596B2 (en) X-ray photoemission system for 3-D laminography
US6389101B1 (en) Parallel x-ray nanotomography
Rarback et al. Scanning x‐ray microscope with 75‐nm resolution
US8073099B2 (en) Differential interference phase contrast X-ray imaging system
KR102003202B1 (en) Laboratory x-ray micro-tomography system with crystallographic grain orientation mapping capabilities
JP2003043200A (en) X-ray microscope device
JP2008268105A (en) X-ray beam source, x-ray beam irradiator, x-ray beam radiographic device, x-ray beam computer tomography device, x-ray element mapping examination apparatus and x-ray beam forming method
JP2004144478A (en) X-ray analysis apparatus and method
JP2003513273A (en) Elemental analyzer by optical emission spectrometry for laser-produced plasma
JP3850711B2 (en) Radiation utilization inspection device
JPH06258260A (en) X-ray diffraction device
JPS62106352A (en) Scanning type x-ray microscope
JP5489412B2 (en) High resolution X-ray microscope with X-ray fluorescence analysis function
Shimomura et al. X-ray diffraction contrast of polycrystalline material, visualized by scanning X-ray analytical microscope
US6935778B2 (en) Methods and devices for aligning and determining the focusing characteristics of x-ray optics
JPH03200100A (en) X-ray microscope
JPH11133200A (en) X-ray scanning microscopic method and microscope
JP4623879B2 (en) Beam evaluation method and apparatus
Kenney et al. Soft X-ray microscopy at the NSLS
JP5759257B2 (en) X-ray equipment
Parish Microfocus X-Ray Technology—A Review of Developments and Application
JPH0675042B2 (en) X-ray tomography system
JPH07243996A (en) X-ray microanalysis method
Nixon X-ray microscopy
JP2000088773A (en) Measuring apparatus for dimension of image by x-ray imaging

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term