JP3392550B2 - Method for measuring deflection angle of charged particle beam and charged particle beam apparatus - Google Patents

Method for measuring deflection angle of charged particle beam and charged particle beam apparatus

Info

Publication number
JP3392550B2
JP3392550B2 JP29516494A JP29516494A JP3392550B2 JP 3392550 B2 JP3392550 B2 JP 3392550B2 JP 29516494 A JP29516494 A JP 29516494A JP 29516494 A JP29516494 A JP 29516494A JP 3392550 B2 JP3392550 B2 JP 3392550B2
Authority
JP
Japan
Prior art keywords
image
sample
charged particle
particle beam
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29516494A
Other languages
Japanese (ja)
Other versions
JPH08153485A (en
Inventor
鈴木  寛
裕介 矢島
由夫 高橋
勝広 黒田
真人 中島
英雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29516494A priority Critical patent/JP3392550B2/en
Publication of JPH08153485A publication Critical patent/JPH08153485A/en
Application granted granted Critical
Publication of JP3392550B2 publication Critical patent/JP3392550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は荷電粒子線の偏向角測定
方法及び荷電粒子線装置、更に詳しくいえば、荷電粒子
線が磁界あるいは電界等で偏向した荷電粒子線の軌道を
求め、荷電粒子線の偏向角を測定したり、それによって
磁界あるいは電界分布等を測定する方法及及びそれに使
用す荷電粒子線装置に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a deflection angle of a charged particle beam and a charged particle beam apparatus, and more specifically, to obtain a trajectory of a charged particle beam deflected by a magnetic field, an electric field or the like to obtain charged particles. The present invention relates to a method for measuring a deflection angle of a line, a magnetic field or an electric field distribution, and the like, and a charged particle beam apparatus used therefor.

【0002】[0002]

【従来の技術】荷電粒子線の磁界による偏向を利用し
て、微小空間領域の磁界分布を測定する技術が報告され
ている。例えば、アイ・イー・イー・イー・トランスア
クション・オン・マグネティクス、28巻、2号、19
92年、1017−1023頁に報告されているもので
は、電子線を使って磁界分布を測定している。ここで
は、細く絞った電子線を磁界発生試料面の近傍に通し、
その磁界中を通ることによって生じる電子線の偏向量を
2次元の位置検出器で検出し、磁界を測定している。得
られる偏向量は、電子線が通った経路に存在する磁界の
線積分値に相当する。測定の空間分解能は、磁界中を通
った電子線の断面積に依存する。
2. Description of the Related Art A technique for measuring a magnetic field distribution in a minute space region by utilizing deflection of a charged particle beam by a magnetic field has been reported. For example, IEE ETransaction on Magnetics, Vol. 28, No. 2, 19
In 1992, reported on pages 1017-1023, the magnetic field distribution is measured using an electron beam. Here, a narrowed electron beam is passed near the magnetic field generation sample surface,
A two-dimensional position detector detects the deflection amount of the electron beam generated by passing through the magnetic field to measure the magnetic field. The obtained deflection amount corresponds to the line integral value of the magnetic field existing in the path through which the electron beam passes. The spatial resolution of the measurement depends on the cross-sectional area of the electron beam passing through the magnetic field.

【0003】上記で得られる情報は、空間中の線の部分
の情報である。被測定面の磁界分布を求めるには、空間
中の面の部分の情報が必要である。このため、上記電子
線は、磁界分布の測定面方向に走査され、それぞれの位
置での偏向量が細かく測定された。磁界を通過する電子
線のサンプリング距離間隔を一定にするために、走査は
一定の走査速度で行われ、検出器で検出される偏向量の
サンプリングが、一定の時間間隔で行われた。したがっ
て、電子線の入射位置の情報、すなわち被測定面のサン
プリング距離間隔は、時間情報に置き換えられたことに
なる。このように、電子線を走査して空間の被測定面に
おける磁界分布を測定する場合、偏向量は、そのデータ
を取得された時間で、測定された空間座標との対応付け
がなされていた。
The information obtained above is the information of the portion of the line in space. In order to obtain the magnetic field distribution on the surface to be measured, information on the surface portion in space is required. Therefore, the electron beam was scanned in the direction of the measurement surface of the magnetic field distribution, and the deflection amount at each position was measured finely. In order to make the sampling distance interval of the electron beam passing through the magnetic field constant, the scanning was performed at a constant scanning speed, and the deflection amount detected by the detector was sampled at constant time intervals. Therefore, the information of the incident position of the electron beam, that is, the sampling distance interval of the measured surface is replaced with the time information. As described above, when the magnetic field distribution on the surface to be measured is measured by scanning the electron beam, the deflection amount is associated with the measured space coordinates at the time when the data is acquired.

【0004】[0004]

【発明が解決しようとする課題】上記従来の方法では、
走査という手法を用いることにより、測定された位置の
情報は、時間の情報に置き換えられていた。しかし、走
査は、空間内のサンプリング点数が増えると、一回の走
査で取得するデータ数が増え、測定時間が増加する。こ
のため、広い空間の測定や高空間分解能な測定のために
サンプリング点数が増える場合、測定時間が増加し、さ
らに、荷電粒子線の長時間照射による試料への電荷蓄積
や、試料の汚染が発生するめ、試料の正確な情報が得ら
れないという問題が生じていた。
SUMMARY OF THE INVENTION In the above conventional method,
By using the technique of scanning, the information of the measured position was replaced with the information of time. However, in scanning, as the number of sampling points in the space increases, the number of data acquired in one scanning increases and the measurement time increases. For this reason, when the number of sampling points is increased for measurement in a wide space or high spatial resolution, the measurement time increases, and further, charge accumulation on the sample due to long-time irradiation of the charged particle beam and sample contamination occur. Therefore, there is a problem that accurate information of the sample cannot be obtained.

【0005】従って、本発明の目的は、試料への荷電粒
子線の照射時間を少なくし、試料への電荷蓄積や、試料
の汚染が少ない荷電粒子線を用いた試料の測定方法及び
荷電粒子線装置を実現することにある。本発明の他の目
的は磁界や電界による荷電粒子線の偏向を測定する信号
処理方法を実現することにある。
Therefore, an object of the present invention is to reduce the irradiation time of the charged particle beam to the sample, to accumulate the charge on the sample and to reduce the contamination of the sample. It is to realize the device. Another object of the present invention is to realize a signal processing method for measuring the deflection of a charged particle beam due to a magnetic field or an electric field.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の荷電粒子線の偏向測定方法は、荷電粒子線
を参照試料の有限の大きさを有する面に照射し、上記参
照試料の像を結像させて参照像を形成し、上記荷電粒子
線の経路でかつ上記参照像の像面の近傍に被測定対象を
配置し、上記被測定対象によって歪んだ上記参照像の2
次元像を上記被測定対象と参照像の像面との間の距離を
変えて複数枚形成し、上記複数枚の2次元試料像の信号
を得て、上記2次元試料像のそれぞれの特徴点と、その
位置情報を検出し、検出された特徴点の各2次元試料像
の像面での位置情報及び上記複数の2次元試料像相互間
の距離情報を用いて、上記2次元試料像間の特徴点の相
互間を結ぶ線群の中で直線となるものを抽出し、上記抽
出された個々の直線を三次元空間における荷電粒子線の
個々の軌道とし、上記軌道より上記被測定試料を通過し
た上記荷電粒子線の上記被測定試料上の位置及び偏向角
を求める信号処理を行う。更に、必要によっては、求め
られた被測定対象上の位置及び偏向角の信号を用いて、
被測定対象の特性分布像を画像に表示する画像処理を行
う。
To achieve the above object, the charged particle beam deflection measuring method of the present invention irradiates a charged particle beam onto a surface of a reference sample having a finite size, and measures An image is formed to form a reference image, an object to be measured is arranged in the path of the charged particle beam and near the image plane of the reference image, and the reference image is distorted by the object to be measured.
A plurality of two-dimensional images are formed by changing the distance between the object to be measured and the image plane of the reference image, signals of the plurality of two-dimensional sample images are obtained, and respective characteristic points of the two-dimensional sample images are obtained. Between the two-dimensional sample images by using the position information of the detected feature points on the image plane of each two-dimensional sample image and the distance information between the plurality of two-dimensional sample images. Of the line group connecting the characteristic points of each other, which becomes a straight line, the extracted individual straight lines as individual trajectories of the charged particle beam in the three-dimensional space, and the sample to be measured from the above trajectories. Signal processing is performed to obtain the position and deflection angle of the passed charged particle beam on the sample to be measured. Furthermore, if necessary, using the signals of the position and deflection angle on the measured object obtained,
Image processing is performed to display a characteristic distribution image of the object to be measured on the image.

【0007】上記被測定対象物は磁界及び電界で、被測
定対象の特性分布が磁界や電界の分布が代表的である
が、これらに限定されない。荷電粒子線の代わりに光線
や電波、電磁波、音波、超音波等の伝達手段を用い、電
界や磁界の代わりに伝達手段に偏向や反射、屈折、吸
収、散乱等を与えるものに対しても本発明を実施でき
る。上記参照試料はその明視野像、暗視野像、格子像あ
るいは回折像から特徴点が抽出できるコントラストを生
じるものであればよい。特徴点は粒子像、特殊パターン
上の点等が選ばれる。被測定対象物が磁界の時、空間的
に広がりを持つ磁界が、像面まで届かないようにする。
The object to be measured is a magnetic field and an electric field, and the characteristic distribution of the object to be measured is typically a magnetic field or an electric field distribution, but is not limited to these. This method is also applied to those that use transmission means such as light rays, radio waves, electromagnetic waves, sound waves, and ultrasonic waves instead of charged particle beams, and give deflection, reflection, refraction, absorption, scattering, etc. to transmission means instead of electric fields and magnetic fields. The invention can be carried out. The above-mentioned reference sample may be any as long as it produces a contrast capable of extracting feature points from the bright field image, dark field image, lattice image or diffraction image. A particle image, a point on a special pattern, or the like is selected as the characteristic point. When the object to be measured is a magnetic field, a magnetic field having a spatial spread should not reach the image plane.

【0008】上記複数の画像情報の特徴点から上記直線
を求めるため、次の信号処理を行う。三次元空間に存在
する個々の点について、隣接する2次元試料像内に含ま
れる最近傍の点を求め、着目した特徴点と求められた最
近傍の点の2点間を結ぶ線分を求める処理を少なくとも
可能性の高い複数の特徴点について行う。抽出された個
々の線分は、三次元空間で直線を形成するように補正さ
れる。
In order to obtain the straight line from the characteristic points of the plurality of image information, the following signal processing is performed. For each point existing in the three-dimensional space, the nearest point included in the adjacent two-dimensional sample image is found, and the line segment connecting the two feature points, the focused feature point and the found nearest point, is found. The process is performed on at least a plurality of feature points with high possibility. The extracted individual line segments are corrected to form a straight line in the three-dimensional space.

【0009】また、上記本発明の方法を実施するため、
本発明の荷電粒子線装置は、有限の広がりをもつ荷電粒
子線を発生する荷電粒子線源と、上記荷電粒子線を上記
参照試料に照射する荷電粒子線照射手段と、上記参照試
料を通った荷電粒子線を結像させて像面を形成する像面
形成手段と、上記像面の近傍に磁界又は電界を発生する
被測定試料を保持する試料保持手段と、上記像面を複数
の所望の形成位置を変えて複数の試料像として結像させ
る結像手段と、上記試料像の信号を得る像取得手段と、
上記像取得手段の信号を記憶する像記憶手段と、上記像
記憶手段の信号を用いて上記被測定試料による上記荷電
粒子線の偏向角及びを上記荷電粒子線の上記被測定試料
への入射位置を求める信号処理手段で構成される。更に
求めた上記偏向角情報及び入射位置の情報を用いて被測
定対象の磁界又は電界分布像を得る映像信号処理手段を
付加してもよい。
In order to carry out the above method of the present invention,
The charged particle beam device of the present invention passes through a charged particle beam source that generates a charged particle beam having a finite spread, a charged particle beam irradiation unit that irradiates the reference sample with the charged particle beam, and the reference sample. An image plane forming means for forming an image plane by forming an image of a charged particle beam, a sample holding means for holding a sample to be measured which generates a magnetic field or an electric field in the vicinity of the image plane, and a plurality of desired image planes for the image plane. An image forming unit that forms a plurality of sample images by changing the formation position; an image acquiring unit that obtains a signal of the sample image;
An image storage means for storing a signal of the image acquisition means, and a deflection angle of the charged particle beam by the sample to be measured using the signal of the image storage means and an incident position of the charged particle beam on the sample to be measured. And signal processing means for obtaining Further, a video signal processing means for obtaining a magnetic field or electric field distribution image of the object to be measured by using the obtained deflection angle information and incident position information may be added.

【0010】上記信号処理手段では、上述の測定方法で
述べた信号処理が実施される。上記像面形成手段及び結
像手段は、電子レンズで構成され、この焦点距離を変化
させることにより、像面形成手段によって形成される像
面と磁界との間の距離を変化させる。試料保持手段の好
ましい形態は磁界を発生するものをその磁界を180度
以上回転させる構成とする。像取得手段は光学カメラの
ように2次元の撮像装置である。上記像取得手段で得ら
れる画像は、像から特徴点の抽出の可能なコントラスト
が形成される像であり、参照試料の明視野像あるいは暗
視野像あるいは格子像あるいは回折像である。上記参照
試料の代わりに荷電粒子線のバイプリズムを用いても良
い。
The signal processing means carries out the signal processing described in the above measuring method. The image plane forming means and the image forming means are composed of electron lenses, and the distance between the image plane formed by the image plane forming means and the magnetic field is changed by changing the focal length. A preferred form of the sample holding means is one that generates a magnetic field and rotates the magnetic field by 180 degrees or more. The image acquisition means is a two-dimensional image pickup device such as an optical camera. The image obtained by the image acquisition means is an image in which a contrast capable of extracting feature points is formed from the image, and is a bright field image, a dark field image, a lattice image or a diffraction image of the reference sample. A charged particle beam biprism may be used instead of the reference sample.

【0011】また、本発明の装置は、荷電粒子線現にか
え光線、電波、電磁波、音波、超音波等の一定の広がり
をもつビーム発生手段を用いてもよい。この時、被測定
物は偏向、反射、屈折、吸収、散乱、減衰等の上記ビー
ムの偏向を生じる場あるいは物質となる。
Further, the apparatus of the present invention may use a beam generating means having a certain spread such as a light beam, a radio wave, an electromagnetic wave, a sound wave and an ultrasonic wave instead of the charged particle beam. At this time, the object to be measured becomes a field or substance that causes deflection of the beam such as deflection, reflection, refraction, absorption, scattering, and attenuation.

【0012】[0012]

【作用】本発明では、走査を行わず、荷電粒子線源から
放射された一定の広がりをもつ荷電粒子線を有限の大き
さをもつ参照試料に照射する。参照試料を通った荷電粒
子線は散乱するので、これを電子レンズにより収束さ
せ、結像させる。像はその結像の方式や条件により、明
視野像、暗視野像、格子像あるいは回折像戸なる。これ
が参照像となる。次に、荷電粒子線の経路で、かつ上記
参照像面の近傍に磁界等の被測定試料を配置するので、
磁界等によって荷電粒子線が偏向され参照像が歪む。こ
の様にして歪んだ参照像を磁界と像面の間の距離を変え
て複数枚得て、2次元の撮像装置によって2次元画像信
号とし、記憶手段に記憶し、その後は信号処理手段の演
算処理を行うことになる。これにより、走査が不要にな
り、被測定試料に荷電粒子線を照射する時間は短縮さ
れ、上記解決すべき課題の欄に述べたような、電荷の蓄
積や試料の汚染の問題は解決される。
In the present invention, scanning is not performed, and the charged particle beam having a constant spread emitted from the charged particle beam source is applied to the reference sample having a finite size. Since the charged particle beam that has passed through the reference sample is scattered, it is converged by an electron lens to form an image. The image becomes a bright field image, a dark field image, a lattice image, or a diffractive image door depending on the method and condition of the image formation. This is the reference image. Next, since the sample to be measured such as a magnetic field is arranged in the path of the charged particle beam and near the reference image plane,
The charged particle beam is deflected by a magnetic field or the like and the reference image is distorted. A plurality of reference images thus distorted are obtained by changing the distance between the magnetic field and the image plane, converted into a two-dimensional image signal by the two-dimensional image pickup device, stored in the storage means, and thereafter calculated by the signal processing means. Will be processed. This eliminates the need for scanning, shortens the time for irradiating the sample to be measured with a charged particle beam, and solves the problems of charge accumulation and sample contamination as described in the section of the problem to be solved. .

【0013】荷電粒子線の偏向角、磁界及び電界等の強
度分布等は以下の原理によって求められる。被測定対象
によって偏向された荷電粒子線は被測定対象の存在しな
い領域で直線である。従って、磁界等の被測定対象を固
定し、参照像の歪んだ参照像(試料像)を一軸方向に結
像位置を変えて複数個形成すると、上記試料像の平面の
2次元と上記一軸方向の一次元とで形成される三次元空
間に上記複数の試料像面が平行に配置された状態が想定
される。
The deflection angle of the charged particle beam, the intensity distribution of the magnetic field, the electric field and the like are obtained by the following principle. The charged particle beam deflected by the measured object is a straight line in a region where the measured object does not exist. Therefore, if the object to be measured such as a magnetic field is fixed and a plurality of reference images (sample images) in which the reference image is distorted are formed by changing the imaging position in the uniaxial direction, two-dimensional planes of the sample image and the uniaxial direction are formed. It is assumed that the plurality of sample image planes are arranged in parallel in a three-dimensional space formed by one dimension.

【0014】複数の試料像の特徴点は、荷電粒子線の試
料像面の通過点である。従って、複数の試料像面のそれ
ぞれから一つずつの特徴点を選び、それらを結んだもの
が一直線状に表れるものは、磁界等によって偏向を受け
た荷電粒子線の軌道と見なすことができる。本発明で
は、まず上記複数の特徴点に対応する直線群を試料像面
上の2次元情報及び複数の試料像面間の距離の情報から
求め、その各直線群の三次元空間における位置、角度
(参照像に対する)及び磁界等の被測定試対象と直線群
との交点の位置情報を求める。
The characteristic points of the plurality of sample images are passage points of the charged particle beam on the sample image plane. Therefore, a feature point selected from each of a plurality of image planes of the sample, and the one obtained by connecting the feature points in a straight line can be regarded as the trajectory of the charged particle beam deflected by the magnetic field or the like. In the present invention, first, a straight line group corresponding to the plurality of feature points is obtained from two-dimensional information on the sample image plane and information on the distance between the plurality of sample image planes, and the position and angle of each straight line group in the three-dimensional space are calculated. The position information of the intersection of the test object (with respect to the reference image) and the magnetic field etc. and the straight line group is obtained.

【0015】上記直線群の偏向角と直線群の被測定試料
面との交点の位置情報が求まれば、被測定試料面の各交
点の位置における上記被測定対象の特性が求められる。
例えば、被測定対象の特性が磁界で荷電粒子が電子線で
あれば、電子線の磁界によるローレンツ力による偏向角
は磁界の強さに比例するので、被測定試料面での磁界分
布が求められる。
When the positional information of the intersection of the deflection angle of the straight line group and the measured sample surface of the linear group is obtained, the characteristic of the object to be measured at the position of each intersection of the measured sample surface is obtained.
For example, if the characteristic of the object to be measured is a magnetic field and the charged particles are electron beams, the deflection angle due to the Lorentz force due to the magnetic field of the electron beam is proportional to the strength of the magnetic field, so the magnetic field distribution on the surface of the sample to be measured can be obtained. .

【0016】以上の原理は、上記荷電粒子が直進波道
で、被測定試料が上記直進波道を偏向する特性をもつ場
合にも適用できる。
The above principle can be applied to the case where the charged particle is a straight traveling wave path and the sample to be measured has a characteristic of deflecting the straight traveling wave path.

【0017】[0017]

【実施例】図1は本発明による荷電粒子線装置の一実施
例の構成を示すブロック図である。 本実施例では、荷
電粒子線として電子線を用い、空間の磁界を照射し、磁
界による荷電粒子線の偏向によって歪んだ複数の画像か
ら特徴点を抽出し、着目した特徴点と隣接する像から最
近傍の特徴点を選びこれを直線で結ぶ処理を行い、電子
線の偏向角を求めるとともに、求められた偏向角から空
間の磁界分布を測定した。
1 is a block diagram showing the configuration of an embodiment of a charged particle beam device according to the present invention. In this embodiment, an electron beam is used as a charged particle beam, a magnetic field in space is irradiated, feature points are extracted from a plurality of images distorted by the deflection of the charged particle beam by the magnetic field, and an image adjacent to the focused feature point is extracted. The nearest feature point was selected and connected by a straight line to obtain the deflection angle of the electron beam, and the magnetic field distribution in space was measured from the obtained deflection angle.

【0018】電子源11から放射された電子線12は、
レンズ13を通り参照試料14に照射される。参照試料
14を透過し、散乱した電子は、レンズ15と絞り16
を通って像面17に像を形成する。像面17には、参照
試料14の散乱コントラスト像(以下参照像と略称)が
得られる。参照像は、絞り16の形状や位置により、参
照試料14の明暗の特徴点として識別きる明視野像ある
いは暗視野像となる。従って、参照試料14はそのコン
トラスト像に粒子のような明暗のコントラストが複数含
まれるように選択される。
The electron beam 12 emitted from the electron source 11 is
The reference sample 14 is irradiated through the lens 13. Electrons that have been transmitted through the reference sample 14 and scattered are reflected by the lens 15 and the diaphragm 16.
To form an image on the image plane 17. On the image plane 17, a scattering contrast image of the reference sample 14 (hereinafter abbreviated as reference image) is obtained. The reference image is a bright-field image or a dark-field image that can be identified as a light-dark feature point of the reference sample 14 depending on the shape and position of the diaphragm 16. Therefore, the reference sample 14 is selected so that its contrast image includes a plurality of light and dark contrasts such as particles.

【0019】像面17の近傍に測定対象物である磁界2
3を発生する試料を試料保持手段22で保持し、磁界2
3を生じさる。磁界23は空間的な広がりがあるが、像
面17部には存在しない。像面17に形成された像は、
磁界23の影響を受け、磁界23のないときの参照像と
比較すると歪んだ像(以下、試料像と略称)となる。像
面17に形成された試料像は、レンズ18によって拡大
され、カメラ等の撮像手段19によって2次元画像信号
に変換される。撮像手段19で得られた2次元画像信号
は、記憶手段20に記憶され、処理手段21から読みだ
される。なお、図1では磁界23が像面の上側にある場
合で示したが、磁界23が像面の下側にある場合でも同
様に歪んだ試料像が得られる。この場合、磁界23が同
じであれば歪みの方向は逆になる。
In the vicinity of the image plane 17, the magnetic field 2 to be measured is
The sample holding means 22 holds the sample generating 3 to generate the magnetic field 2
Yields 3. The magnetic field 23 has a spatial spread, but does not exist on the image plane 17 part. The image formed on the image plane 17 is
Due to the influence of the magnetic field 23, a distorted image (hereinafter abbreviated as a sample image) is obtained as compared with the reference image when the magnetic field 23 is not present. The sample image formed on the image plane 17 is magnified by the lens 18 and converted into a two-dimensional image signal by the imaging means 19 such as a camera. The two-dimensional image signal obtained by the image pickup means 19 is stored in the storage means 20 and read from the processing means 21. Although FIG. 1 shows the case where the magnetic field 23 is above the image plane, a similarly distorted sample image can be obtained even when the magnetic field 23 is below the image plane. In this case, if the magnetic fields 23 are the same, the directions of strain will be opposite.

【0020】次に、電子レンズ15の焦点距離を変え、
試料像の像面17を移動させる。この像面17の移動の
様子を模式的に図2に示した。説明の便宜のため、像面
17をX−Y面とし、像面17の移動方向をX−Y面に
垂直な方向をZ方向とする。像面17がZ方向に移動
し、磁界23と像面17との距離がU1からU2に変化
すると、像面17に形成される像は変化する。電子線1
2が磁界23によって偏向を受けていれば歪み、磁界2
3からの距離が大きくなると歪み量は大きくなる。例え
ば図1は参照試料14の粒子が、図2の像面17に描か
れた白丸(特徴点)で観察されたとする。像面がU1か
らU2へ連続的に動けば、この白丸はその位置が動いて
いるかのように観察される。また、実際には、像面17
の移動に伴い、形成される像の倍率も変化するが、図2
では倍率の変化は省略した。像面17の位置を変化させ
て、さらに、図1のレンズ18の焦点距離も変えて、上
述と同様に撮像手段19で2次元画像信号を得る。撮像
手段19で得た2次元の画像信号を記憶手段20に記憶
する。処理手段21は記憶手段20の情報を使用して以
下に説明する信号処理を行う。なお、図2では磁界23
の下の像面17を下方に移動させたが、像面17を上方
に移動させてもよく、また、磁界23の上側に像面17
を形成させて、これを利用してもよい。さらに、像面1
7の移動が磁界23を横切っても、座標と正負の方向が
正しく得られていれば以下の処理ができる。
Next, the focal length of the electronic lens 15 is changed,
The image plane 17 of the sample image is moved. The manner of movement of the image plane 17 is schematically shown in FIG. For convenience of explanation, the image plane 17 is defined as an XY plane, and the moving direction of the image plane 17 is defined as a Z direction perpendicular to the XY plane. When the image plane 17 moves in the Z direction and the distance between the magnetic field 23 and the image plane 17 changes from U1 to U2, the image formed on the image plane 17 changes. Electron beam 1
2 is distorted if it is deflected by the magnetic field 23, the magnetic field 2
The amount of distortion increases as the distance from 3 increases. For example, in FIG. 1, it is assumed that the particles of the reference sample 14 are observed by white circles (feature points) drawn on the image plane 17 of FIG. If the image plane moves continuously from U1 to U2, this white circle is observed as if its position were moving. Also, in reality, the image plane 17
Although the magnification of the formed image changes with the movement of
Then, the change in magnification was omitted. By changing the position of the image plane 17 and further changing the focal length of the lens 18 in FIG. 1, the two-dimensional image signal is obtained by the image pickup means 19 as described above. The two-dimensional image signal obtained by the image pickup means 19 is stored in the storage means 20. The processing means 21 uses the information in the storage means 20 to perform the signal processing described below. In FIG. 2, the magnetic field 23
Although the lower image plane 17 is moved downward, the image plane 17 may be moved upward, and the image plane 17 may be moved above the magnetic field 23.
May be formed and used. Furthermore, image plane 1
Even if the movement of 7 crosses the magnetic field 23, the following processing can be performed if the coordinates and the positive and negative directions are correctly obtained.

【0021】図3、図4及び図5は記憶手段20及び処
理手段21の情報処理方法を説明するための図である。
図3は上述の方法によって像面17の位置を変化させて
得られた3枚の試料像を示した。試料像A、B及びCの
像面は、上記レンズ18の焦点距離も変えて磁界23に
近い方から順に得た像を表す。像面中の白丸の点Ap,
Aq…Cr等は参照試料14によって形成される像の中
の特徴点(粒子)である。これらの試料像A、B及びC
は撮像手段20を介して記憶手段20に2次元の画像信
号として格納される。試料像Aは、磁界23のほぼ中心
平面から距離S0だけ離れた像面位置で結像させた像で
あり、試料像Bは、試料像Aから距離S1だけ離れた像
面位置で結像させた像であり、試料像Cは、試料像Bか
ら距離S2だけ離れた像面位置で結像させた像である。
図3では説明を簡単にするため、試料象A、B及びCに
は、それぞれ着目した3つの粒子(特徴点)のみを描い
た。
3, 4, and 5 are diagrams for explaining the information processing method of the storage means 20 and the processing means 21.
FIG. 3 shows three sample images obtained by changing the position of the image plane 17 by the above method. The image planes of the sample images A, B, and C represent images obtained by sequentially changing the focal length of the lens 18 from the side closer to the magnetic field 23. White circle point Ap in the image plane,
Aq ... Cr are feature points (particles) in the image formed by the reference sample 14. These sample images A, B and C
Is stored in the storage means 20 as a two-dimensional image signal via the image pickup means 20. The sample image A is an image formed at an image plane position distant from the center plane of the magnetic field 23 by a distance S0, and the sample image B is formed at an image plane position distant from the sample image A by a distance S1. The sample image C is an image formed at an image plane position separated from the sample image B by a distance S2.
In FIG. 3, for simplification of description, only three particles (characteristic points) of interest are drawn in the sample images A, B, and C, respectively.

【0022】次に、記憶手段20に記憶された試料像
A、B及びCの2次元画像信号について、処理手段21
で以下の処理を行った。まず、3次元空間を用意し、こ
こに得られた試料像A、B及びCの画像を図4に示した
ように距離S1、S2だけ離して配置する。すなわち、
試料像内の各粒子の点の位置情報をX,Y,Zの3次元
情報として表し、各試料像A、B及びCから特徴的な点
を抽出しておく。図4では、特徴点を×印で示した。こ
こで、試料像Aの特徴点Apに着目して、隣接する試料
像Bの中の各特徴点Bp,Bq,Brと試料像Aの特徴
点Apの間の距離を計算する。この中で、特徴点Apに
最も近い特徴点Bpを探し出す。特徴点ApとBpの2
点間を直線で結び、線分を形成させ、さらにこのような
処理を試料像Aの他の特徴点Aq,Arの全ての特徴点
に対して行う。また同様に試料像Bの特徴点Bq,Br
にも着目し、隣接する試料像Cの中から最近傍の点を抽
出して、上述と同様に線分を求める信号処理を処理を行
う。上述のようにして求められた隣接した試料像間すな
わち試料像AとB及び試料像BとCの特徴点間を結んだ
線分から、3次元空間全体の中で一本の直線になる線分
を求める信号処理を行う。
Next, with respect to the two-dimensional image signals of the sample images A, B and C stored in the storage means 20, the processing means 21.
The following processing was performed. First, a three-dimensional space is prepared, and the images of the sample images A, B, and C obtained here are arranged at a distance of S1 and S2 as shown in FIG. That is,
The position information of the points of each particle in the sample image is represented as three-dimensional information of X, Y, Z, and characteristic points are extracted from each sample image A, B, and C. In FIG. 4, the characteristic points are indicated by crosses. Here, focusing on the characteristic point Ap of the sample image A, the distance between each characteristic point Bp, Bq, Br in the adjacent sample image B and the characteristic point Ap of the sample image A is calculated. Among these, the feature point Bp closest to the feature point Ap is searched for. 2 of feature points Ap and Bp
The points are connected by a straight line to form a line segment, and such processing is performed on all the other characteristic points Aq and Ar of the sample image A. Similarly, the feature points Bq, Br of the sample image B are
Paying attention also to the above, the nearest point is extracted from the adjacent sample images C, and the signal processing for obtaining the line segment is performed in the same manner as described above. From the line segment connecting the adjacent sample images obtained as described above, that is, between the feature points of the sample images A and B and the sample images B and C, a line segment that becomes one straight line in the entire three-dimensional space Signal processing is performed.

【0023】図5は3次元空間全体の中で一本の直線に
なる線分を荷電粒子が磁界23によって偏向された電子
線の軌道として、被測定磁界23の強度分布を求める信
号処理を説明するための概念的斜視図を示す。試料像A
の位置からZ軸の負方向すなわち電子源側に、距離S0
だけ離れた位置に試料面S(計測すべき磁界の位置)を
仮想し、上記3次元空間で求められた直線p,m,nを
試料面Sまで延長する信号処理を行う。この直線p,
m,nを磁界23によって偏向された電子線の軌道と
し、上記直線p,m,nが試料面Sと交わる位置を電子
線の磁界への入射位置とする。また、3次元空間の直線
p,m,nと、電子線12の入射方向との傾きの比較を
行い、角度差θを電子線の磁界23による偏向角θとし
た。
FIG. 5 illustrates the signal processing for obtaining the intensity distribution of the magnetic field 23 to be measured by using the line segment that becomes one straight line in the entire three-dimensional space as the trajectory of the electron beam in which the charged particles are deflected by the magnetic field 23. The conceptual perspective view for doing is shown. Sample image A
From the position to the negative direction of the Z axis, that is, to the electron source side, the distance S0
The sample surface S (the position of the magnetic field to be measured) is assumed to be distant by a distance, and signal processing for extending the straight lines p, m, and n obtained in the three-dimensional space to the sample surface S is performed. This straight line p,
Let m and n be the trajectories of the electron beam deflected by the magnetic field 23, and let the position where the straight lines p, m and n intersect the sample surface S be the incident position of the electron beam on the magnetic field. Further, the inclinations of the straight lines p, m, n in the three-dimensional space and the incident direction of the electron beam 12 were compared, and the angle difference θ was taken as the deflection angle θ of the electron beam by the magnetic field 23.

【0024】図6は3枚以上の試料像間の特徴点を結ぶ
直線分を求める信号処理の概念斜視図を示す。まず、試
料像17Aと17Bとから求められた線分u及びvが試
料像17Bと17Cとから求められた線分m及びnとを
それぞれ結び、これらが直線とを構成する要素であるか
判定する処理を行う。直線とならないときは、線分u、
vを形成する試料像17Aの特徴点Ea,Ebについ
て、2番目に近い点を試料像17Bの特徴点の中から探
す。この結果、特徴点Eaについては特徴点Fb、特徴
点Ebについては特徴点Faが選ばれる。この点間を結
び、破線の線分を形成させ、線分Ea−Fb及びEb−
Faを使って、試料像17Bと17Cとから求められた
線分m及びnと3次元空間全体の中で直線になるかどう
か調べる。これによって、図6のように点線部を含む直
線が形成される。従って、線分u、vの代わりに点線の
線分を採用して3次元空間の中で一本の直線として処理
する。
FIG. 6 is a conceptual perspective view of signal processing for obtaining a straight line segment connecting characteristic points between three or more sample images. First, it is determined whether the line segments u and v obtained from the sample images 17A and 17B are connected to the line segments m and n obtained from the sample images 17B and 17C, respectively, and these are the elements that form a straight line. Perform processing to When it is not a straight line, the line segment u,
Regarding the characteristic points Ea and Eb of the sample image 17A forming v, the second closest point is searched from the characteristic points of the sample image 17B. As a result, the feature point Fb is selected for the feature point Ea, and the feature point Fa is selected for the feature point Eb. These points are connected to form a broken line segment, and line segments Ea-Fb and Eb-
Using Fa, it is examined whether the line segments m and n obtained from the sample images 17B and 17C and the entire three-dimensional space form a straight line. As a result, a straight line including a dotted line portion is formed as shown in FIG. Therefore, instead of the line segments u and v, dotted line segments are adopted and processed as one straight line in the three-dimensional space.

【0025】以上の信号処理によって、試料面17Sの
2次元平面における電子線の入射位置及びその入射位置
での上記磁界23による3次元の偏向角θの情報が得ら
れる。上記入射位置及び偏向角θの情報は、さらに、試
料保持手段22の回転機能を用い、各角度での像に対し
ても上記の処理を繰返して得られる。これらの3次元の
偏向角θと位置情報及びコンピュータ断層映像手法の演
算処理を用いることにより、試料空間の断面での磁界の
ベクトル分布像を求める。
By the above signal processing, information on the incident position of the electron beam on the two-dimensional plane of the sample surface 17S and the three-dimensional deflection angle θ by the magnetic field 23 at the incident position can be obtained. The information on the incident position and the deflection angle θ is further obtained by repeating the above-mentioned processing for the image at each angle by using the rotation function of the sample holding means 22. The vector distribution image of the magnetic field in the cross section of the sample space is obtained by using these three-dimensional deflection angle θ, position information, and the calculation processing of the computer tomographic imaging method.

【0026】図7は本発明による荷電粒子線装置の他の
実施例の構成を示す図である。図において、図1と同一
機能構成部分については図1と同じ番号を付し説明を省
く。本実施例は画像処理に用いる像として、図1のレン
ズ15を調整し、像面に回折像を形成し、これを利用し
たものである。回折像では、規則性のある回折パターン
を用い、パターン中の輝点を複数の試料像における特徴
点とした。複数の試料像における特徴点を結ぶ直線を求
める信号処理及び求めた直線から試料の偏向角、照射線
の入射位置、分布像等を求めるの画像処理は、図1の実
施例の場合と同じである。
FIG. 7 is a diagram showing the configuration of another embodiment of the charged particle beam device according to the present invention. In the figure, parts having the same functions as those in FIG. 1 are assigned the same numbers as in FIG. 1 and their explanations are omitted. In this embodiment, as an image used for image processing, the lens 15 of FIG. 1 is adjusted to form a diffraction image on the image plane, and this is used. In the diffraction image, a regular diffraction pattern was used, and the bright points in the pattern were used as the characteristic points in the plurality of sample images. The signal processing for obtaining the straight line connecting the characteristic points in the plurality of sample images and the image processing for obtaining the deflection angle of the sample, the incident position of the irradiation line, the distribution image, etc. from the obtained straight line are the same as those in the embodiment of FIG. is there.

【0027】図8は本発明による荷電粒子線装置の更に
他の実施例の構成を示す図である。本実施例は参照試料
14の代わりに電子線のバイプリズム81を利用したも
のである。図8ではバイプリズム81は一つしか描かれ
ていないが、図9に示したように二つのバイプリズム8
1−1及び81−2が互いに直交するように構成しても
よい。バイプリズム81は設置された線状電極24を挟
み、線状電極24に平行に平板電極25が配置され、線
状電極24と平板電極25とが異なる電位なるように構
成される。二つのバイプリズム81−1及び81−2が
互いに直交するように構成することによって格子状のパ
ターンが像面17に形成される。被測定試料として磁界
を配置すると、上記格子の状のパターンに歪みが発生す
る。前述の画像処理に用いる特徴点として格子の交わる
個所を用いる。この歪みを利用して、上記と同じように
電子線の軌道を求める処理ができ、従って被測定試料の
磁界分布等の測定、更にそれを画像変換する処理にも用
いることができる。
FIG. 8 is a diagram showing the configuration of still another embodiment of the charged particle beam device according to the present invention. In this embodiment, an electron beam biprism 81 is used instead of the reference sample 14. Although only one biprism 81 is shown in FIG. 8, as shown in FIG.
You may comprise so that 1-1 and 81-2 may mutually orthogonally cross. The biprism 81 sandwiches the installed linear electrode 24, and a plate electrode 25 is arranged in parallel to the linear electrode 24 so that the linear electrode 24 and the plate electrode 25 have different potentials. By configuring the two biprisms 81-1 and 81-2 so as to be orthogonal to each other, a lattice pattern is formed on the image plane 17. When a magnetic field is placed as the sample to be measured, distortion occurs in the lattice-like pattern. The points where the grids intersect are used as the feature points used in the image processing described above. Utilizing this distortion, the process of obtaining the trajectory of the electron beam can be performed in the same manner as described above, and therefore, it can be used for the measurement of the magnetic field distribution of the sample to be measured and the process of converting the image.

【0028】以上本発明の実施例について説明したが、
本発明が上記実施例に限定されるものではない。例え
ば、参照試料には微少の通過孔をもつマスクを用いても
よい。また、荷電粒子線の代わりに光線や電波、電磁
波、音波や超音波等の有限の広がりをもち直進するビー
ムを用い、被測定対象を上記磁界や電界の代わりに上記
ビームに偏向や屈折、吸収、散乱、減衰を与えるもので
も実施できる。
The embodiment of the present invention has been described above.
The present invention is not limited to the above embodiment. For example, a mask having minute passage holes may be used as the reference sample. In addition, instead of the charged particle beam, a beam that travels straight with a finite spread such as light rays, radio waves, electromagnetic waves, sound waves, and ultrasonic waves is used, and the object to be measured is deflected, refracted, or absorbed by the beam instead of the magnetic field or electric field. It can also be carried out by means of giving scattering, attenuation.

【0029】[0029]

【発明の効果】以上説明したように、本発明の測定方法
においては、線走査をすること無く広がりをもつ荷電粒
子線を用いて複数の画像の特徴点をデータとして抽出
し、これを3次元空間に並べて求められる直線を荷電粒
子線の軌道とする処理であり、被測定試料に荷電粒子線
を照射する時間が短縮でき、蓄積電荷あるいは試料の汚
染による測定精度の低下をぼうしできる。また、画像中
の特徴点を扱うため、広い領域の磁界の情報を含んだ画
像から、微細領域の磁界情報を抽出することができる。
As described above, in the measuring method of the present invention, characteristic points of a plurality of images are extracted as data using a charged particle beam having a spread without performing line scanning, and this is extracted in three dimensions. This is a process in which a straight line obtained by arranging in space is used as the trajectory of the charged particle beam, and it is possible to shorten the time for irradiating the sample to be measured with the charged particle beam, and reduce the measurement accuracy due to accumulated charge or contamination of the sample. Further, since the feature points in the image are handled, it is possible to extract the magnetic field information of the fine region from the image containing the information of the magnetic field of the wide region.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による荷電粒子線装置の一実施例の構成
FIG. 1 is a configuration diagram of an embodiment of a charged particle beam device according to the present invention.

【図2】図1に示す実施例の動作原理説明のための像面
の移動を説明する図
FIG. 2 is a diagram for explaining movement of an image plane for explaining the operation principle of the embodiment shown in FIG.

【図3】図1に示す実施例の動作原理説明のための複数
の試料像図
FIG. 3 is an image diagram of a plurality of samples for explaining the operation principle of the embodiment shown in FIG.

【図4】図3の複数の試料像を3次元空間に配置した図FIG. 4 is a diagram in which a plurality of sample images of FIG. 3 are arranged in a three-dimensional space.

【図5】本発明の偏向角測定方法の一実施例の処理を説
明する図
FIG. 5 is a diagram for explaining the processing of one embodiment of the deflection angle measuring method of the present invention.

【図6】本発明の偏向角測定方法の他の実施例の処理を
説明する図
FIG. 6 is a diagram for explaining the processing of another embodiment of the deflection angle measuring method of the present invention.

【図7】本発明による荷電粒子線装置の他の実施例の構
成図
FIG. 7 is a configuration diagram of another embodiment of the charged particle beam device according to the present invention.

【図8】本発明による荷電粒子線装置の更に他の実施例
の構成図
FIG. 8 is a configuration diagram of still another embodiment of the charged particle beam device according to the present invention.

【図9】図8の実施例の要部を拡大した斜視図FIG. 9 is an enlarged perspective view of a main part of the embodiment of FIG.

【符号の説明】[Explanation of symbols]

11…電子源 19…撮像手段 12…電子線 20…記憶手段 13…レンズ 21…処理手段 14…参照試料 22…試料保持手
段 15…レンズ 23…磁界 16…絞り 81…電子線バイ
プリズム 17…像面 18…レンズ
11 ... Electron source 19 ... Imaging means 12 ... Electron beam 20 ... Storage means 13 ... Lens 21 ... Processing means 14 ... Reference sample 22 ... Sample holding means 15 ... Lens 23 ... Magnetic field 16 ... Aperture 81 ... Electron beam biprism 17 ... Image Surface 18 ... Lens

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒田 勝広 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 中島 真人 東京都調布市入間町3−14−18 (72)発明者 斎藤 英雄 東京都八王子市暁町2−31−15 (56)参考文献 特開 平5−266214(JP,A) 特開 平5−109380(JP,A) 特開 平4−299474(JP,A) 特開 平7−234268(JP,A) 特開 平4−206132(JP,A) 特開 平8−45465(JP,A) 特開 平3−173052(JP,A) 特開 平7−335172(JP,A) 特開 平5−47337(JP,A) 特開 昭49−83485(JP,A) 特開 昭54−114172(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01J 37/26 G01R 33/028 G21K 1/00 H01J 37/22 501 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiro Kuroda 1-280, Higashi Koigokubo, Kokubunji, Tokyo Metropolitan Research Laboratory, Hitachi, Ltd. (72) Inventor Masato Nakajima 3-14-18 Irumacho, Chofu-shi, Tokyo (72) Inventor Hideo Saito 2-31-15 Akamachi, Hachioji City, Tokyo (56) Reference JP-A-5-266214 (JP, A) JP-A-5-109380 (JP, A) JP-A-4-299474 ( JP, A) JP 7-234268 (JP, A) JP 4-206132 (JP, A) JP 8-45465 (JP, A) JP 3-173052 (JP, A) JP 7-335172 (JP, A) JP 5-47337 (JP, A) JP 49-83485 (JP, A) JP 54-114172 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) H01J 37/26 G01R 33/028 G21K 1/00 H01J 37/22 501

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】荷電粒子線を参考試料の有限の大きさを有
する面に照射し、上記参考試料の像を結像させて像面を
形成し、上記荷電粒子線の経路でかつ上記像面の近傍に
被測定対象を配置し、上記被測定対象によって歪んだ2
次元試料像を上記被測定対象と像面との間の距離を変え
て複数枚を平行に形成し、上記2次元試料像の信号を得
る第1ステップと、上記複数枚の2次元試料像のそれぞ
れの特徴点の位置情報を検出する第2ステップと、上記
第2ステップで得られた特徴点の位置情報及び上記複数
の平行な2次元試料像相互間の距離情報を用いて、上記
複数枚の平行な2次元試料像の相互間を結ぶ線群の中で
直線となるものを抽出する第3ステップと、上記抽出さ
れた個々の直線を3次元空間における荷電粒子線の個々
の軌道とし上記軌道より上記被測定対象を通過した上記
荷電粒子線の上記被測定対象上の位置及び偏向角を求め
る信号処理ステップとをもつことを特徴とする荷電粒子
線の偏向角測定方法。
1. A surface of a reference sample having a finite size is irradiated with a charged particle beam, and an image of the reference sample is formed to form an image plane, which is the path of the charged particle beam and the image plane. Place the object to be measured in the vicinity of and distorted by the object to be measured 2
A first step of obtaining a signal of the two-dimensional sample image by forming a plurality of two-dimensional sample images in parallel by changing the distance between the object to be measured and the image plane; The second step of detecting the position information of each feature point, the position information of the feature points obtained in the second step, and the distance information between the plurality of parallel two-dimensional sample images are used to detect the plurality of sheets. In the third step of extracting a straight line in a line group connecting mutually parallel two-dimensional sample images, and the extracted individual straight lines as individual trajectories of the charged particle beam in the three-dimensional space. A method for measuring a deflection angle of a charged particle beam, comprising: a signal processing step of obtaining a position and a deflection angle of the charged particle beam on the measurement target which has passed through the measurement target from an orbit.
【請求項2】上記第3ステップで直線となるものの抽出
は、着目した特徴点が含まれる試料像に隣接する他の試
料像の特徴点の中から、上記着目した特徴点の最近傍の
点を求め、上記着目した特徴点と求められた最近傍の特
徴点を結ぶ線分を求める線分抽出処理行うことを特徴
とする請求項1記載の荷電粒子線の偏向角測定方法。
2. The extraction of a straight line in the third step is performed by selecting the point closest to the focused feature point from the feature points of other sample images adjacent to the sample image including the focused feature point. 2. The method for measuring the deflection angle of a charged particle beam according to claim 1, further comprising: performing a line segment extraction process for obtaining a line segment connecting the focused feature point and the closest feature point obtained.
【請求項3】上記線分抽出処理を第1と第2の試料像間
及び第2及び第3の試料像間で行い、第2の試料像の着
目する特徴点と第1の試料像の特徴点とがなす第1の直
線が上記第2の試料像の着目する特徴点と第3の試料像
の特徴点とがなす第2の直線とが上記3次元空間内で直
線を構成する要素であるかどうか判断する第1処理と、
第1処理によって得た第1の直線と第2の直線が直線の
ときは、上記第1及び第3の試料像間の求めるべき直線
とし、第1処理によって第1の直線と第2の直線が直線
とならないときは、上記第2の試料像の着目する特徴点
と上記第1又は第3の試料像の他の特徴点で結ぶ直線で
上記第2の直線又は上記第1の直線と直線をなす第1又
は第3の試料像の他の特徴点を求める補正を行って直線
を形成させる第2処理を含むことを特徴とする請求項2
に記載の荷電粒子線の偏向角測定方法。
3. The line segment extraction processing is performed between the first and second sample images and between the second and third sample images, and the feature points of interest in the second sample image and the first sample image are Elements in which the first straight line formed by the feature point and the second straight line formed by the feature point of interest of the second sample image and the feature point of the third sample image form a straight line in the three-dimensional space A first process for determining whether or not
When the first straight line and the second straight line obtained by the first process are straight lines, the straight line to be obtained between the first and third sample images is obtained, and the first straight line and the second straight line are obtained by the first process. Is not a straight line, it is a straight line connecting the feature point of interest of the second sample image and another feature point of the first or third sample image with the second straight line or the first straight line. 3. A second process for forming a straight line by performing correction for obtaining another characteristic point of the first or third sample image forming
The method for measuring the deflection angle of a charged particle beam as described in 1.
【請求項4】 荷電粒子線を発生する荷電粒子線源と、上
記荷電粒子線を有限の広がりをもって参照試料に照射す
る荷電粒子線照射手段と、上記参照試料を通った荷電粒
子線を結像させて像面を形成する像面形成手段と、上記
像面の近傍で磁界又は電界を発生する被測定試料を保持
する試料保持手段と、上記像面を複数の所望の形成位置
を変えて複数の試料像として結像させる結像手段と、上
記試料像の信号を得る像取得手段と、上記像取得手段の
信号を記憶する像記憶手段と、上記像記憶手段の信号を
用いて上記被測定試料による上記荷電粒子線の偏向角を
求める信号処理手段と、上記個々の軌道から配置された
磁界あるいは電界による荷電粒子線の個々の偏向角及び
荷電粒子線の磁界あるいは電界への入射位置を求め、上
記偏向角及び上記入射位置から空間の磁界分布像あるい
は電界分布像を得る信号処理手段を具備したことを特徴
とする荷電粒子装置。
4. A charged particle beam source for generating a charged particle beam, a charged particle beam irradiation means for irradiating a reference sample with the charged particle beam with a finite spread, and an image of the charged particle beam passing through the reference sample. An image plane forming means for forming an image plane, a sample holding means for holding a sample to be measured which generates a magnetic field or an electric field in the vicinity of the image plane, and a plurality of image planes formed by changing a plurality of desired forming positions. Image forming means for forming a sample image of the sample image, image acquiring means for obtaining the signal of the sample image, image storing means for storing the signal of the image acquiring means, and the measured object using the signal of the image storing means. A signal processing means for obtaining the deflection angle of the charged particle beam by the sample, and an individual deflection angle of the charged particle beam by the magnetic field or electric field arranged from each of the trajectories and an incident position of the charged particle beam on the magnetic field or the electric field. , The deflection angle and the above Charged particles and wherein the elevation position by comprising signal processing means for obtaining a magnetic field distribution image or field distribution image of space.
JP29516494A 1994-11-29 1994-11-29 Method for measuring deflection angle of charged particle beam and charged particle beam apparatus Expired - Fee Related JP3392550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29516494A JP3392550B2 (en) 1994-11-29 1994-11-29 Method for measuring deflection angle of charged particle beam and charged particle beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29516494A JP3392550B2 (en) 1994-11-29 1994-11-29 Method for measuring deflection angle of charged particle beam and charged particle beam apparatus

Publications (2)

Publication Number Publication Date
JPH08153485A JPH08153485A (en) 1996-06-11
JP3392550B2 true JP3392550B2 (en) 2003-03-31

Family

ID=17817079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29516494A Expired - Fee Related JP3392550B2 (en) 1994-11-29 1994-11-29 Method for measuring deflection angle of charged particle beam and charged particle beam apparatus

Country Status (1)

Country Link
JP (1) JP3392550B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523448B2 (en) * 2005-02-23 2010-08-11 独立行政法人理化学研究所 Charged particle beam apparatus and interference apparatus
JP4691391B2 (en) * 2005-05-12 2011-06-01 独立行政法人理化学研究所 electronic microscope
JP4919404B2 (en) * 2006-06-15 2012-04-18 株式会社リコー Electron microscope, electron beam hologram creating method, and phase reproduction image creating method
JP4744592B2 (en) * 2008-12-26 2011-08-10 株式会社日立製作所 Electron beam apparatus and method for measuring stray magnetic field in electron beam apparatus
JP4797072B2 (en) * 2009-01-06 2011-10-19 株式会社日立製作所 Electron beam apparatus using electron biprism and method for measuring stray magnetic field in electron beam apparatus using electron biprism
JP6554066B2 (en) 2016-05-31 2019-07-31 株式会社日立製作所 Electron microscope for magnetic field measurement and magnetic field measurement method

Also Published As

Publication number Publication date
JPH08153485A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
JP3534582B2 (en) Pattern defect inspection method and inspection device
US11069508B2 (en) Method of imaging a 3D sample with a multi-beam particle microscope
TWI330861B (en) Analysing system and charged particle beam device
US5055679A (en) Surface analysis method and apparatus
KR100382026B1 (en) Scanning Electron Microscope
US7385198B2 (en) Method and apparatus for measuring the physical properties of micro region
JP2003014667A (en) Apparatus and method for observing using electron beam
CN104488064A (en) Apparatus and method for inspecting a surface of a sample
EP0244816A2 (en) Mask pattern defect detection apparatus
JP3205160B2 (en) Magnetic field measuring method and charged particle beam device using the same
JP3039563B2 (en) Scanning electron microscope and scanning electron microscope method
JP2019035744A (en) Diffraction pattern detection in transmission type charged particle microscope
JP3392550B2 (en) Method for measuring deflection angle of charged particle beam and charged particle beam apparatus
EP1883094B1 (en) Charged particle beam device and method for inspecting specimen
JP4590590B2 (en) SEM for transmission operation with position sensitive detector
JP4028864B2 (en) Pattern defect inspection method and inspection apparatus
CN108231513B (en) Method for operating a microscope
JP2967074B2 (en) Charged particle beam microscope and charged particle beam microscope
JPH08124507A (en) Sample mounting base and device using the same
JPH0114666B2 (en)
JP2653084B2 (en) Surface analyzer
JPH06138196A (en) Electromagnetic field distribution measuring device using convergence electron rays
JPH07110311A (en) Method and apparatus for surface analysis of sample
DIRECTIONALLY et al. IMAGE PROCESSING APPARATUS UTILIZING DIGITAL I DISPLAY MEANS
CN114846574A (en) System and method for profiling charged particle beams

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees