JPH0143477B2 - - Google Patents

Info

Publication number
JPH0143477B2
JPH0143477B2 JP6924980A JP6924980A JPH0143477B2 JP H0143477 B2 JPH0143477 B2 JP H0143477B2 JP 6924980 A JP6924980 A JP 6924980A JP 6924980 A JP6924980 A JP 6924980A JP H0143477 B2 JPH0143477 B2 JP H0143477B2
Authority
JP
Japan
Prior art keywords
component
conductor
solder
components
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6924980A
Other languages
Japanese (ja)
Other versions
JPS56165396A (en
Inventor
Hayato Takasago
Yoichiro Oonishi
Toshio Sugiura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6924980A priority Critical patent/JPS56165396A/en
Publication of JPS56165396A publication Critical patent/JPS56165396A/en
Publication of JPH0143477B2 publication Critical patent/JPH0143477B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【発明の詳細な説明】 この発明は回路基板両面に高密度で旦量産に適
した方法で部品を接続する部品実装方法に関す
る。第1図は従来の部品実装方法による部品接続
状態を示すものであり第2図は第1図の主な製造
工程を示すものである。第1図及び第2図を用い
て従来の方法と欠点について以下に説明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a component mounting method for connecting components to both sides of a circuit board in a high density manner suitable for mass production. FIG. 1 shows a state in which components are connected by a conventional component mounting method, and FIG. 2 shows the main manufacturing process of FIG. 1. The conventional method and its drawbacks will be explained below using FIGS. 1 and 2.

第1図で1は回路基板、2,3は各々両面の導
電体、4はリード40を有する電解コンデンサな
どの個別部品、30は直方体形状や円筒形状をし
た抵抗、コンデンサ等のリードレスチツプ部品、
6は部品30の固定用非導電接着剤7はハンダで
ある。ここに基板1としてはガラスエポキシ或い
はセラミツク等が用いられ導電体2,3としては
前者の基板の場合Cu箔が、後者の基板の場合Pd
―Ag等が用いられる。又20はスルーホールを
示している。
In Figure 1, 1 is a circuit board, 2 and 3 are conductors on both sides, 4 is an individual component such as an electrolytic capacitor having leads 40, and 30 is a leadless chip component such as a rectangular parallelepiped or cylindrical resistor or capacitor. ,
6, the non-conductive adhesive 7 for fixing the component 30 is solder. Here, as the substrate 1, glass epoxy or ceramic is used, and as the conductors 2 and 3, Cu foil is used for the former substrate, and Pd is used for the latter substrate.
-Ag etc. are used. Further, 20 indicates a through hole.

次に第2図でこれらの部品実装工程を説明す
る。Aは非導電接着剤6の塗布工程で、基板1の
両面導体の内導体3側にのみ印刷、或いはデイス
ペンサで塗布される。次に工程Pの部品仮固定工
程でチツプ部品30が接着剤の上から押えつけら
れるように配置されその後硬化され位置固定され
る。このあと工程Dでリード付部品4が自動挿入
材で挿入され図で示したようなリード形状で固定
される。次いで工程Fのフローソルダにかけられ
導電体3側の部品接続が行なわれ組立が完了す
る。
Next, the component mounting process will be explained with reference to FIG. A is a step of applying the non-conductive adhesive 6, in which the non-conductive adhesive 6 is applied only to the inner conductor 3 side of the double-sided conductors of the substrate 1 by printing or using a dispenser. Next, in step P, a component temporary fixing step, the chip component 30 is placed so as to be pressed onto the adhesive, and then hardened and fixed in position. Thereafter, in step D, the leaded component 4 is inserted using an automatic insertion member and fixed in the lead shape as shown in the figure. Next, it is applied to flow solder in step F to connect the parts on the conductor 3 side and complete the assembly.

次にこれらの従来の方法の欠点は、フローソル
ダによる場合、噴流を基板裏面(即ち導電体3
側)で押えつける形でハンダ接続される為片面し
か接続出来ないことである。更にリード付部品4
が導電体2側から挿入されているのは、チツプ部
品30と同時に接続することの他部品4の耐熱性
が低い為でもある。即ち基板1全体を溶融ハンダ
槽中に浸漬するデイツプハンダ法は導体2及び3
の両面にハンダ膜が得られるが部品4全体も浸漬
される必要があることは云う迄もない。ここに例
えばリード付部品4として電解コンデンサを用い
る場合が極めて多いが通常85℃が最大許溶温度で
ありハンダ溶融温度230℃〜250℃では内部電解液
の急連な気化膨張によりほぼ瞬時にパンクに至る
ことは明きらかである。又タンタルコンデンサや
コイル、トランス、ボリユーム、リレー等摺動
部、可動部を有するもの、素子自体にハンダを用
いているもの、或いはプラスチツク等低耐熱材料
を用いているものなど素子本体を直接溶融ハンダ
槽中に浸漬出来ないものがリード付部品4には極
めて多い。
Next, the disadvantage of these conventional methods is that when using flow soldering, the jet is directed to the back surface of the substrate (i.e., the conductor 3
Since the solder connection is made by pressing down on the side), only one side can be connected. Furthermore, leaded parts 4
The reason why is inserted from the conductor 2 side is not only because it is connected at the same time as the chip component 30 but also because the heat resistance of the component 4 is low. That is, in the dip soldering method in which the entire board 1 is immersed in a molten solder bath, the conductors 2 and 3 are
Although a solder film is obtained on both sides of the solder, it goes without saying that the entire component 4 also needs to be immersed. For example, an electrolytic capacitor is very often used as the leaded component 4, but the maximum allowable melting temperature is usually 85°C, and at a solder melting temperature of 230°C to 250°C, it will puncture almost instantly due to the rapid vaporization expansion of the internal electrolyte. It is clear that this will lead to. In addition, do not directly melt the element body, such as tantalum capacitors, coils, transformers, volumes, relays, etc. that have sliding or moving parts, items that use solder for the element itself, or items that use low heat resistant materials such as plastic. There are extremely many parts with leads 4 that cannot be immersed in the tank.

又これら低耐熱性の部品4をチツプ部品30を
ハンダ接続後挿入して組立てる場合これらの影響
は無視出来るが部品4のリード挿入用スルーホー
ル20はすでにデイプハンダで穴がふさがれてし
まつていることになり組立不可能である。
In addition, when assembling these low heat resistant parts 4 by inserting the chip parts 30 after soldering, these effects can be ignored, but the through holes 20 for lead insertion of the parts 4 are already covered with deep solder. It becomes impossible to assemble.

これらの理由により部品4とチツプ部品30は
いずれも基板1のいずれか一方の側の同一導体表
面上で行なわれている。従つて従来方法では多く
の部品を実装する必要がある場合、基板面積は大
型化し、大型化することや片側だけハンダコート
される為基板の反りが大きくなり部品取付後の信
頼性に問題を生じた。特にチツプ抵抗やチツプコ
ンデンサなどのチツプ部品30はリードが設けら
れていない為、これらの基板表裏面でアンバラン
スな熱的、機械的ストレスはリード付部品4のよ
うに柔軟なリードで吸収されるようなことがない
為直接的に薄いチツプ電極メタライズ層に加わり
接合不良に至ることが多い。更に基板の片側のみ
で接続される為に部品接続を必要とする導体線は
すべてこの面にスルーホールを経由して導いて来
る必要がある。この為スルーホールや、バイアホ
ールが多くなり、これらを設ける為に又基板面積
を大きくする必要があつた。又これらのホール数
やホール密度の増加は生産性や信頼性の低下につ
ながることはすでに周知の通りである。
For these reasons both component 4 and chip component 30 are implemented on the same conductive surface on either side of substrate 1. Therefore, in the conventional method, when it is necessary to mount many components, the board area becomes large, and because only one side is solder-coated, the board becomes warped, causing reliability problems after the components are mounted. Ta. In particular, since chip components 30 such as chip resistors and chip capacitors are not provided with leads, unbalanced thermal and mechanical stress on the front and back surfaces of these boards is absorbed by flexible leads like component 4 with leads. Since this is not the case, it is often directly applied to the thin chip electrode metallization layer, resulting in poor bonding. Furthermore, since connections are made only on one side of the board, all conductor wires that require component connections must be led to this side via through holes. This increases the number of through holes and via holes, and in order to provide these, it is necessary to increase the area of the substrate. Furthermore, it is already well known that an increase in the number of holes and hole density leads to a decrease in productivity and reliability.

更に小型化実装の要求が近年高まつて来ている
がこれらに適した高集積化ICとして4辺から多
数リードが出たフラツトパツクICやワイヤレス
ボンデイングタイプのフリツプチツプICを実装
する際これら従来の方法ではいずれも実現し得え
ないものであつた。これらはいずれも微細なリー
ドピツチ(たとえば100〜200μ)や電極寸法(た
とえば100〜200μφ)の為正確に導電体上に位置
合せして配置する必要が特に接着剤で固定してし
まう場合生ずる。しかしこれらが達成されたとし
ても4辺からリードが出た多ピン(たとえば64ピ
ン)のフラツトパツクICはハンダ量がコントロ
ールされ得ない為ブリツヂしたり、オープンにな
つたりし易すく、フリツプチツプICの場合はこ
れらのフローでハンダバンプすら逆に取り去られ
てしまい良好な接続出来なかつた。
Furthermore, the demand for miniaturized packaging has increased in recent years, and when mounting flat pack ICs with many leads coming out from four sides and wireless bonding type flip-chip ICs, which are suitable for highly integrated ICs, these conventional methods cannot be used. None of this was possible. Because of the fine lead pitch (for example, 100 to 200 μι) and electrode dimensions (for example, 100 to 200 μΦ), these require accurate positioning and alignment on the conductor, especially when fixed with adhesive. However, even if these are achieved, flat pack ICs with a large number of pins (for example, 64 pins) with leads coming out from all four sides are likely to bridge or become open because the amount of solder cannot be controlled, and in the case of flip chip ICs, Even the solder bumps were removed by these flows, making it impossible to make a good connection.

この発明は上記の欠点を除去する為になされた
もので基板の表裏両表面の導電体上に種々の部品
を高信頼性で旦量産性に適し、しかも高密度で実
装を可能とした部品実装方法を提供せんとするも
のである。
This invention was made in order to eliminate the above-mentioned drawbacks, and it is a component mounting method that allows various components to be mounted on conductors on both the front and back surfaces of a board with high reliability, suitable for mass production, and at high density. The purpose is to provide a method.

以下この発明の一実施例を第3図及び第4図で
説明する。なお図中第1図及び第2図と同一又は
相当する部分は同一符号を付す。又第4図は第3
図の主な製造工程を示すものである。第3図に於
て回路基板1の裏面導電体3にはチツプコンデン
サ等のリードレスチツプ部品30が非導電接着剤
6で保持されている。又4は電解コンデンサなど
の低耐熱性リード付部品でスルーホール20にリ
ード40が差し込まれ導体3側で部品30と同様
ハンダ7で接合されている。一方導電体2側のチ
ツプ部品200はハンダペースト70で表面導電
体2に接合されている。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. In the drawings, parts that are the same as or corresponding to those in FIGS. 1 and 2 are given the same reference numerals. Also, Figure 4 is the 3rd
The figure shows the main manufacturing process. In FIG. 3, a leadless chip component 30 such as a chip capacitor is held on the back conductor 3 of the circuit board 1 with a non-conductive adhesive 6. 4 is a component with a low heat resistance lead, such as an electrolytic capacitor, and the lead 40 is inserted into the through hole 20, and the lead 40 is connected on the conductor 3 side with solder 7 like the component 30. On the other hand, the chip component 200 on the conductor 2 side is bonded to the surface conductor 2 with solder paste 70.

次に第4図でこれらの部品実装工程を説明す
る。Aは非導電接着剤6の塗布工程で、導電体3
側に吐出或いは印刷され部品配置仮固定工程P1
で例えばチツプ部品30が配置硬化される。この
後ハンダペースト印刷工程Sで基板1の表面導電
体2上の部品取付部などの必要箇所に対してハン
ダペーストが印刷される。工程P2は部品配置工
程で例えばチツプ部品200がハンダペースト上
に配置される。工程Kは加熱乾燥工程でハンダペ
ースト上に配置されたチツプ部品200の仮止め
を行う。次に工程Dでリード付部品4がスルーホ
ール20を利用して自動挿入され、溶融ハンダ接
合工程、たとえばフローソルダ工程Fで両面が同
時に接合される。即ち、導電体3側は直接フロー
ソルダにより又、導電体2側は3側からの熱伝導
によりハンダペーストのハンダが溶融して基板の
両面部品実装が完了する。即ち導電体2側へのハ
ンダペースト印刷は任意のパターンで可能である
為、部品4のリード40挿入用スルーホール20
の穴はハンダでふさがることなしに自動挿入機に
かけられる。又両面共同時にハンダ溶融するため
基板1の反りが少くなく又、部品200側のスト
レスも軽減せしめる効果を有す。又外部より強制
的に加えられる機械的ストレスに対しても両面の
ハンダコート7,70とそれらによつて接続され
た部品30,200とによつて等価的に補強され
基板の厚みを増したのと同様の効果が得られ強固
なものとなる。
Next, the component mounting process will be explained with reference to FIG. A is the process of applying the non-conductive adhesive 6, and the conductor 3
Temporary fixing process of parts dispensed or printed on the side P 1
Then, for example, the chip part 30 is placed and hardened. Thereafter, in a solder paste printing step S, solder paste is printed on necessary locations such as component mounting portions on the surface conductor 2 of the substrate 1. Step P2 is a component placement step in which, for example, a chip component 200 is placed on the solder paste. Step K is a heating drying step in which the chip parts 200 placed on the solder paste are temporarily fixed. Next, in process D, the leaded component 4 is automatically inserted using the through hole 20, and both sides are simultaneously joined in a molten solder bonding process, for example, a flow soldering process F. That is, the solder of the solder paste is melted by direct flow soldering on the conductor 3 side and by heat conduction from the conductor 2 side from the 3 side, completing the mounting of components on both sides of the board. In other words, solder paste can be printed on the conductor 2 side in any pattern, so the through hole 20 for inserting the lead 40 of the component 4
The holes can be inserted into an automatic insertion machine without being plugged with solder. Further, since the solder is melted on both sides simultaneously, the warpage of the board 1 is not reduced and the stress on the component 200 side is also reduced. In addition, the solder coats 7, 70 on both sides and the parts 30, 200 connected by them effectively strengthen the board against mechanical stress forcibly applied from the outside, increasing the thickness of the board. The same effect will be obtained and it will be stronger.

なお、この発明の一実施例によれば1枚の回路
基板の両表面に部品を実装することが可能となる
為所要基板寸法は約1/2の面積に減少出来、小型、
高密度実装が達成される。この面積の小型化と両
面部品実装は回路基板強度を等価的に大きくし信
頼性が向上する。また回路パターン設計に於ても
両面実装が可能である為従来穴をあける場所が無
いと云つたバイアホールネツクの問題が解消する
と同時にスルーホールの数をも大巾に減少し得る
ことは云う迄もなく、設計自由度が向上すると共
に信頼性の向上にこれ又寄与し得る。更に実装し
得る部品としては特に制限が無く任意の電気部
品、機構部品をも実装可能である。即ち円筒形や
直方体形状のチツプ状コンデンサや抵抗、更には
ミニモールドトランジスタやフラツトパツクIC
等のリード付耐熱性部品は表裏いずれの面でも実
装が可能である。又最近特に高密度化され、4方
向に数10pinが出ているフラツトパツクICやワイ
ヤレスボンデイングタイプのフリツプチツプIC
を用いる場合はハンダペースト側に実装すること
によつて正確なハンダ供給量をもつてブリツヂす
ることなしに表面張力で容易に位置修正され確実
に実装され得る。又1回のフロー工程で短時間に
表裏両表面の接続が出来る為汎用性が高いことは
云う迄もない。又、非導電接着剤やハンダペース
トの供給、更には種々のチツプ部品の配置、又個
別部品の挿入等はいずれも自動化し易すい工程で
ある為汎用性のある量産性に優れた両面実装が達
成される。回路基板としてはプリント基板、セラ
ミツク基板などが始めポーセレン基板等のメタル
コア基板等両面に導体が形成出来、ハンダ耐熱性
がある材質のものは、すべて使用出来る。
In addition, according to an embodiment of the present invention, it is possible to mount components on both surfaces of one circuit board, so the required board size can be reduced to approximately 1/2, resulting in a compact and compact design.
High density packaging is achieved. This reduction in area and double-sided component mounting equivalently increases the strength of the circuit board and improves reliability. In addition, since double-sided mounting is possible in circuit pattern design, the problem of via hole networks where there is no place to drill holes can be solved, and at the same time, the number of through holes can be greatly reduced. Therefore, the degree of freedom in design is improved and reliability can also be improved. Furthermore, there are no particular restrictions on the parts that can be mounted, and any electrical or mechanical parts can be mounted. In other words, cylindrical or rectangular parallelepiped chip capacitors and resistors, as well as mini-molded transistors and flat pack ICs.
Heat-resistant parts with leads such as can be mounted on either the front or back side. In addition, flat pack ICs and wireless bonding type flip chip ICs have recently become particularly dense, with several tens of pins protruding in four directions.
When using, by mounting on the solder paste side, the position can be easily corrected by surface tension without bridging with an accurate amount of solder supply, and the mounting can be performed reliably. Moreover, it goes without saying that it is highly versatile because both the front and back surfaces can be connected in a short time in one flow process. In addition, the supply of non-conductive adhesive and solder paste, the placement of various chip components, and the insertion of individual components are all processes that are easy to automate, making double-sided mounting highly versatile and mass-producible. achieved. As the circuit board, any material that can have conductors formed on both sides and is resistant to soldering heat can be used, including printed circuit boards, ceramic boards, etc., as well as metal core boards such as porcelain boards.

第5図はこの発明の他の一実施例を示すもので
ある。尚、図中第1図及び第3図と同一又は相当
する部分は同一符号を付す。第5図に於いて回路
基板10は表層導電体2,3の他内層導電体8,
9を有する多層回路基板が用いられている。20
はスルーホール、21はバイアホールを示してお
り共に内層導電体8,9と適宜回路接続される。
又部品201はフラツトパツクIC、202はフ
リツプチツプICである。これら第5図の接合工
程は第3図及び4図のものと全く同様にして両面
実装され、同様の効果を生じるものである。な
お、導電体2側の部品接合はハンダペーストを用
いる為(非導電接着剤で固定してしまわない為)
ハンダ溶融時の表面張力によつて自己位置修正が
自動的に成し得る。この為極めて、高密度で微細
な電極を有するフリツプチツプIC202やフラ
ツトパツクIC201の実装はハンダペースト側
に実装すれば確実な接続が行なえ、容易に他部品
との両面実装が達成され得る。又第3図、第5図
で非導電接着剤を塗布した例を説明したが、この
他裏面側の部品保持にはフロー工程F2中で落下
しなければこの他の方法でも同様に達成され得
る。即ち第3図〜5図に於て非導電接着剤6の代
りに、ハンダ耐熱性を有する導電接着剤で裏面部
品30の電極部を保持固定したのち、或いはこの
電極部と導電体3を一時的に溶接で仮固定したの
ち、フロー工程F2で同様にハンダ付けしても良
い。或いはこの他高融点ハンダや部品保持用のソ
ケツトを用いたりして一時的に固定する方法も可
能であるが、いずれにしても基板裏面側の部品が
フロー工程F2で落下しない様なすべての対策は
この発明に含まれる。第4図の実施例に於てハン
ダペースト印刷工程S、部品配置工程P2はあら
かじめチツプ部品側にハンダペーストを塗布した
ものを配置しても同様に構成され得る。尚ハンダ
ペーストは印刷の方法で説明したがデイスペンサ
による吐出方法やハケヌリ等でも同様に達成され
ることは云う迄もない。又第3図の実施例では、
導電体3側は直接フローソルダにより、導電体2
側は導電体3側からの熱伝導により両面同時期に
接合しているが、導電体2側のハンダを溶融する
熱は、導電体2側上方より赤外線を照射して加え
て良い。要は、導電体3側をフローソルダで加熱
し接合する時期に、導電体2側のハンダを加熱溶
融して接合するようにすれば、回路基板又は部品
に生じる反りを著しく軽減できる。
FIG. 5 shows another embodiment of the invention. In the drawings, parts that are the same as or corresponding to those in FIGS. 1 and 3 are given the same reference numerals. In FIG. 5, the circuit board 10 includes surface layer conductors 2, 3, inner layer conductors 8,
A multilayer circuit board with 9 is used. 20
21 indicates a through hole, and 21 indicates a via hole, both of which are appropriately connected to the inner layer conductors 8 and 9 in a circuit.
Further, the component 201 is a flat pack IC, and the component 202 is a flip chip IC. These bonding steps shown in FIG. 5 are carried out on both sides in exactly the same manner as those shown in FIGS. 3 and 4, and produce the same effect. Note that solder paste is used to join the parts on the conductor 2 side (so that they are not fixed with non-conductive adhesive).
Self-position correction can be achieved automatically by surface tension when the solder melts. For this reason, when mounting the flip-chip IC 202 or flat pack IC 201 having extremely high-density and fine electrodes, a reliable connection can be achieved by mounting it on the solder paste side, and double-sided mounting with other components can be easily achieved. In addition, although an example in which a non-conductive adhesive was applied was explained in Figs. 3 and 5, other methods can be used to hold the parts on the back side as long as they do not fall during the flow process F2 . obtain. That is, in FIGS. 3 to 5, after holding and fixing the electrode part of the back part 30 with a conductive adhesive having solder heat resistance instead of the non-conductive adhesive 6, or by temporarily bonding the electrode part and the conductor 3. After temporarily fixing it by welding, it may be soldered in the same way in flow process F2 . Alternatively, it is also possible to temporarily fix it using high-melting point solder or a socket for holding parts, but in any case, it is possible to use all the methods to prevent the parts on the back side of the board from falling during the flow process F2 . Countermeasures are included in this invention. In the embodiment shown in FIG. 4, the solder paste printing step S and the component placement step P2 may be configured in the same way even if the solder paste is applied to the chip component side in advance and is placed therein. Although the solder paste has been described using a printing method, it goes without saying that the same effect can be achieved by discharging the solder paste using a dispenser, brushing, or the like. Furthermore, in the embodiment shown in FIG.
The conductor 3 side is directly connected to the conductor 2 by flow soldering.
Both sides are joined at the same time by heat conduction from the conductor 3 side, but the heat to melt the solder on the conductor 2 side may be applied by irradiating infrared rays from above the conductor 2 side. In short, if the solder on the conductor 2 side is heated and melted and bonded when the conductor 3 side is heated and bonded with flow solder, the warping that occurs in the circuit board or component can be significantly reduced.

さらに第3図の実施例において、工程Kの加熱
乾燥工程で、ハンダペースト上に配置されたチツ
プ部品200の仮止めを行つている。このとき、
加熱乾燥の度合によつては、チツプ部品200が
導電体2に充分接合され、基板1又はチツプ部品
200に反りやストレスが一時的に加わることが
あつても、以後の工程で基板両面が同時期に加熱
溶融され、接合されるので、基板1又はチツプ部
品200に一時的に加わつた反りやストレスは軽
減される。
Further, in the embodiment shown in FIG. 3, the chip component 200 placed on the solder paste is temporarily fixed in the heat drying step of step K. At this time,
Depending on the degree of heating and drying, the chip component 200 may be sufficiently bonded to the conductor 2, and even if warping or stress is temporarily applied to the substrate 1 or the chip component 200, both sides of the substrate will be the same in subsequent steps. Since the substrate 1 or the chip component 200 is heated and melted and bonded at the same time, warping or stress temporarily applied to the substrate 1 or the chip component 200 is reduced.

以上述べたように、この発明によれば、両面に
導電体が設けられた回路基板の一面の導電体上に
ハンダペーストを設け、そのハンダペースト上に
部品を配置する工程と上記基板の他面に部品を仮
固定する工程とを少なくとも有するものにおい
て、部品を配置したハンダペーストを部品が仮止
めされるように加熱乾燥させると共に、上記他面
の部品を溶融ハンダで導電体に接合するときに上
記一面のハンダを溶融して上記一面の部分を導電
体に接合するようにして両面同時期に接合するよ
うにしたので、回路基板の加熱、冷却によつて生
じる反りを著しく軽減し、各部品にかかる応力を
軽減できるので、回路基板の信頼性を著しく向上
できる効果がある。さらに基板両面の接合前に部
品が仮止めされるようにハンダペーストを加熱乾
燥させるので、基板両面の接合時間のずれが少な
くなく、接合応力が少なくなる。なお、複数面に
部品が載置される結果、高密度実装も可能とな
る。
As described above, according to the present invention, there is a step of providing solder paste on the conductor on one side of a circuit board having conductors on both sides, and arranging a component on the solder paste; At least the step of temporarily fixing the components, the solder paste on which the components are placed is heated and dried so that the components are temporarily fixed, and when the components on the other side are joined to the conductor with molten solder. By melting the solder on the one side and joining the part on the one side to the conductor, both sides are joined at the same time, which significantly reduces the warping that occurs when the circuit board is heated and cooled. Since the stress applied to the circuit board can be reduced, the reliability of the circuit board can be significantly improved. Furthermore, since the solder paste is heated and dried so that the parts are temporarily fixed before joining both sides of the board, there is a considerable lag in the joining time between both sides of the board, and the joining stress is reduced. In addition, as a result of placing components on multiple surfaces, high-density mounting is also possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来方法による回路基板の断面図、第
2図は第1図の主な製造工程を示す工程図、第3
図はこの発明の一実施例による回路基板の断面
図、第4図は第3図の主な製造工程を示す工程
図、第5図はこの発明の他の実施例による回路基
板の断面図を示す。図において、1は回路基板、
2および3は導電体、4はハンダ浸漬できない低
耐熱性の個別部品、7はハンダ、30は部品、7
0はハンダペースト、200は部品、P1は部品
30の仮固定の工程、P2は部品200の配置の
工程、Fは溶融ハンダ接合工程を示す。なお、図
中、同一符号は同一または相当部分を示す。
Figure 1 is a cross-sectional view of a circuit board produced by the conventional method, Figure 2 is a process diagram showing the main manufacturing process of Figure 1, and Figure 3
The figure is a cross-sectional view of a circuit board according to an embodiment of the present invention, FIG. 4 is a process diagram showing the main manufacturing process of FIG. 3, and FIG. 5 is a cross-sectional view of a circuit board according to another embodiment of the present invention. show. In the figure, 1 is a circuit board;
2 and 3 are conductors, 4 is a low heat resistant individual component that cannot be immersed in solder, 7 is solder, 30 is a component, 7
0 indicates a solder paste, 200 indicates a component, P 1 indicates a temporary fixing process of the component 30, P 2 indicates a process of arranging the component 200, and F indicates a molten solder joining process. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 両面に導電体が設けられた回路基板の一面の
導電体上にハンダペーストを設け、そのハンダペ
ースト上に部品を配置する工程と上記基板の他面
に部品を仮固定する工程とを少なくとも有し、部
品を配置したハンダペーストを部品が仮止めされ
るように加熱乾燥させた後に、上記他面の部品を
溶融ハンダで導電体に接合するときに上記一面の
ハンダペーストを溶融して上記一面の部品を導電
体に接合する回路基板への部品実装方法。 2 他面の部品を溶融ハンダで導電体に接合する
熱で同時にハンダペーストを溶融して一面の部品
を導電体に接合する特許請求の範囲第1項記載の
回路基板への部品実装方法。 3 他面の部品を溶融ハンダで導電体に接合する
ときに、一面の部品上方からの照射熱でハンダペ
ーストを溶融して一面の部品を導電体に接合する
特許請求の範囲第1項記載の回路基板への部品実
装方法。 4 回路基板のハンダペーストが用いられる側に
は、ケミカルコンデンサ、ボリユーム、リレー等
のハンダ浸漬できない部品の本体部分が突設され
ることを特徴とする特許請求の範囲第2項あるい
は第3項に記載の回路基板への部品の実装方法。
[Claims] 1. A step of providing solder paste on the conductor on one side of a circuit board with conductors provided on both sides, placing a component on the solder paste, and temporarily fixing the component on the other side of the board. After heating and drying the solder paste on which the components are arranged so that the components are temporarily fixed, the solder paste on the one surface is heated and dried when the component on the other surface is joined to the conductor with molten solder. A method for mounting components on a circuit board by melting the components and joining the components on one side to a conductor. 2. The method of mounting components on a circuit board according to claim 1, wherein the heat used to bond the components on the other side to the conductor with molten solder simultaneously melts the solder paste to join the components on the one side to the conductor. 3. When the component on the other side is bonded to the conductor with molten solder, the solder paste is melted by heat irradiated from above the component on the one side, and the component on the one side is bonded to the conductor. How to mount components on a circuit board. 4. According to claim 2 or 3, the main body portion of a component that cannot be immersed in solder, such as a chemical capacitor, volume, or relay, is protruded from the side of the circuit board where solder paste is used. How to mount components on the circuit board described.
JP6924980A 1980-05-23 1980-05-23 Method of mounting part on circuit board Granted JPS56165396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6924980A JPS56165396A (en) 1980-05-23 1980-05-23 Method of mounting part on circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6924980A JPS56165396A (en) 1980-05-23 1980-05-23 Method of mounting part on circuit board

Publications (2)

Publication Number Publication Date
JPS56165396A JPS56165396A (en) 1981-12-18
JPH0143477B2 true JPH0143477B2 (en) 1989-09-20

Family

ID=13397273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6924980A Granted JPS56165396A (en) 1980-05-23 1980-05-23 Method of mounting part on circuit board

Country Status (1)

Country Link
JP (1) JPS56165396A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147193A (en) * 1982-02-26 1983-09-01 株式会社東芝 Circuit board unit

Also Published As

Publication number Publication date
JPS56165396A (en) 1981-12-18

Similar Documents

Publication Publication Date Title
JPH04192596A (en) Mounting structure of electronic component
JP3597913B2 (en) Semiconductor device and its mounting method
JPH0888470A (en) Ceramic multilayer substrate for mounting electronic parts and its manufacturing method
JPH11317326A (en) Electronic component
JPH0143477B2 (en)
JP3813767B2 (en) Resin wiring board and manufacturing method thereof
JP2004327743A (en) Wiring board with solder bump and its producing process
JPH0666544B2 (en) Circuit board manufacturing method
JPH0142154B2 (en)
JPS6364079B2 (en)
JPH1140918A (en) Ceramics element, component-mounting board and wiring board
JP2004048072A (en) Resin wiring board and its manufacture
JPS59993A (en) Method of bonding metal plate electrode
JP3587329B2 (en) Printed wiring board, circuit board and mounting method
JP3865243B2 (en) Ceramic package for electronic parts and electronic device
JP4381657B2 (en) Circuit board and electronic component mounting method
JP2004055958A (en) Wiring board with pin, and electronic device using same
JP2021114495A (en) Module and manufacturing method of the same
JP2000307232A (en) Soldering method
JP2000091501A (en) Electronic component mounting device and manufacture thereof
JP2002289734A (en) Wiring board with pin and electronic device using this
JP2002353394A (en) Wiring board with pin and electronic device using it
JP2003338574A (en) Wiring board with pin and electronic device using the same
JPS58124292A (en) Hybrid integrated circuit device and method of producing same
JP2001185832A (en) Electronic parts, electronic parts mounting board, and method of manufacturing the same