JPH0142508B2 - - Google Patents

Info

Publication number
JPH0142508B2
JPH0142508B2 JP57097723A JP9772382A JPH0142508B2 JP H0142508 B2 JPH0142508 B2 JP H0142508B2 JP 57097723 A JP57097723 A JP 57097723A JP 9772382 A JP9772382 A JP 9772382A JP H0142508 B2 JPH0142508 B2 JP H0142508B2
Authority
JP
Japan
Prior art keywords
optical transmission
metal tube
envelope
metal
transmission path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57097723A
Other languages
Japanese (ja)
Other versions
JPS58215071A (en
Inventor
Mutsuhiro Mori
Nobutake Konishi
Takeshi Yokota
Tomoyuki Tanaka
Tsunego Odai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57097723A priority Critical patent/JPS58215071A/en
Publication of JPS58215071A publication Critical patent/JPS58215071A/en
Publication of JPH0142508B2 publication Critical patent/JPH0142508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/111Devices sensitive to infrared, visible or ultraviolet radiation characterised by at least three potential barriers, e.g. photothyristors
    • H01L31/1113Devices sensitive to infrared, visible or ultraviolet radiation characterised by at least three potential barriers, e.g. photothyristors the device being a photothyristor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4248Feed-through connections for the hermetical passage of fibres through a package wall
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • G02B6/4428Penetrator systems in pressure-resistant devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thyristors (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 本発明は光駆動半導体装置に係り、特に光信号
導入用の光伝送路が外囲器を貫通する部分の気密
封止に好適な構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optically driven semiconductor device, and particularly to a structure suitable for hermetically sealing a portion where an optical transmission line for introducing an optical signal passes through an envelope.

光駆動半導体装置の1つである光駆動型サイリ
スタは、光信号の照射により順方向阻止状態から
導通状態にスイツチする機能を有する。光駆動型
サイリスタは通常の電気ゲート式サイリスタと比
較して、(1)主回路とゲート回路とを電気的に絶縁
できるため、ゲート回路を簡単にできる、(2)電磁
誘導によるノイズに対して強い、などの利点があ
る。このため、最近これらの利点をもつとも発揮
できる、サイリスタを多数個直列接続して用いる
高圧直流送電変換装置用としての光駆動型サイリ
スタの開発が急速に進んでいる。ここで解決しな
ければならない課題の1つに、光駆動型サイリス
タの外囲器内の受光部へ外囲器外から光信号を導
く光伝送路と外囲器間の気密性の高信頼度化があ
る。第1図及び第2図は光駆動型サイリスタの従
来構造の一例である。光サイリスタ素子2は両側
に介在した電極3を介してアノード外部電極4と
カソード外部電極5にはさまれている。これらの
電極4,5は、金属フランジ6によつて気密に接
続された円筒状の絶縁体7と共に外囲器を構成し
ている。発光素子(図示せず)からの光信号を伝
送してきた光フアイバ束10は、例えば袋ナツト
11を用いて、絶縁体7の一部を貫通する金属筒
8に固定された光伝送路9と光学的に結合されて
いる。光伝送路9は光サイリスタ素子の受光部へ
光信号を導くために湾曲している。光導入部Aに
おける光伝送路9の従来の気密封止法は、2通り
に大別される。第1の方法は、絶縁体7の貫通孔
内面のメタライズ層12と金属筒8とを金属接着
層13例えば銀ろう等によつて金属接着し、金属
筒8に光伝送路9を挿入後、低融点封着ガラス等
の気密剤14を用いて気密封止する方法である。
第2の方法は、光伝送路9と金属筒8を予め低融
点はんだ等の気密剤14を用いて固定しておき、
さらに融点の低いはんだを用いて金属筒8を絶縁
体7には気密封止する方法である。作業温度の低
い気密剤14を用いるのは、光伝送路9の光伝送
効率を高めるために開口数が大きく、軟化点が一
般に400℃〜600℃と低いガラスを光伝送路9とし
て採用するためである。第1の方法は、絶縁体7
と金属筒8は銀ろうで接着するため高信頼の気密
封止が可能であるが、その後に気密の信頼性が劣
る光伝送路9と金属筒14の封着が行なわれるた
め、気密がとれなかつた場合、高価な絶縁体7や
光伝送路9が無駄になる欠点がある。また低融点
封着ガラスを気密剤14として用いた場合、光伝
送路と金属筒8の封着のために大きな絶縁体7も
ガラス焼成炉に挿入しなければならず作業性が悪
いという欠点がある。第2の方法は、光伝送路9
と金属筒8の封着作業は容易であり、これらの気
密性を予め確認することもできる利点があるが、
絶縁体7と金属筒8を封着する低融点はんだの経
年による酸化で気密性が損われることが懸念され
る。高圧直流送電変換装置に光駆動型サイリスタ
を用いた場合、外囲器の温度は常時60℃〜80℃に
なることが予想される。また10年を越える信頼性
を保障しなければならないので、外気にさらされ
る部分に低融点はんだを用いるのは信頼性に欠け
る。一方、低融点はんだの代わりに銀ろうを用い
ることは光伝送路9の軟化点が低いので不可能で
ある。
A light-driven thyristor, which is one type of light-driven semiconductor device, has a function of switching from a forward blocking state to a conducting state by irradiation with an optical signal. Compared to ordinary electrically gated thyristors, light-driven thyristors (1) can electrically isolate the main circuit and gate circuit, making the gate circuit simpler; and (2) are more resistant to noise caused by electromagnetic induction. It has advantages such as being strong. For this reason, the development of light-driven thyristors for use in high-voltage DC power transmission and conversion devices, which has these advantages and uses a large number of thyristors connected in series, has recently progressed rapidly. One of the issues that must be solved here is high reliability of airtightness between the optical transmission line and the envelope, which guides the optical signal from outside the envelope to the light receiving part inside the envelope of the optically driven thyristor. There is a change. FIGS. 1 and 2 show an example of a conventional structure of a light-driven thyristor. The optical thyristor element 2 is sandwiched between an anode external electrode 4 and a cathode external electrode 5 with electrodes 3 interposed on both sides. These electrodes 4 and 5 constitute an envelope together with a cylindrical insulator 7 which is hermetically connected by a metal flange 6. An optical fiber bundle 10 that has transmitted optical signals from a light emitting element (not shown) is connected to an optical transmission line 9 fixed to a metal tube 8 that penetrates a part of an insulator 7 using, for example, a cap nut 11. Optically coupled. The optical transmission line 9 is curved in order to guide the optical signal to the light receiving part of the optical thyristor element. Conventional hermetic sealing methods for the optical transmission line 9 in the light introduction section A are roughly divided into two types. The first method is to bond the metallized layer 12 on the inner surface of the through hole of the insulator 7 and the metal cylinder 8 with a metal adhesive layer 13, for example, using silver solder, and after inserting the optical transmission path 9 into the metal cylinder 8, This is a method of hermetically sealing using an air sealant 14 such as low melting point sealing glass.
The second method is to fix the optical transmission path 9 and the metal cylinder 8 in advance using an airtight agent 14 such as low melting point solder,
Furthermore, the metal tube 8 is hermetically sealed to the insulator 7 using a solder having a low melting point. The reason why the air sealant 14 with a low working temperature is used is because glass with a large numerical aperture and a low softening point of generally 400°C to 600°C is used as the optical transmission line 9 in order to increase the light transmission efficiency of the optical transmission line 9. It is. The first method is to
Since the metal tube 8 and the metal tube 8 are bonded with silver solder, highly reliable hermetic sealing is possible.However, since the optical transmission line 9 and the metal tube 14 are then sealed with less reliable airtightness, the airtightness cannot be achieved. Otherwise, there is a disadvantage that the expensive insulator 7 and optical transmission line 9 are wasted. Furthermore, when low-melting point sealing glass is used as the airtight agent 14, a large insulator 7 must also be inserted into the glass firing furnace to seal the optical transmission line and the metal tube 8, resulting in poor workability. be. The second method is to
The sealing work of the metal cylinder 8 and the metal tube 8 is easy, and there is an advantage that the airtightness of these can be confirmed in advance.
There is a concern that the low melting point solder that seals the insulator 7 and the metal cylinder 8 may oxidize over time, causing loss of airtightness. When a light-driven thyristor is used in a high-voltage DC power transmission/conversion device, the temperature of the envelope is expected to be between 60°C and 80°C at all times. Furthermore, since reliability must be guaranteed for more than 10 years, using low melting point solder on parts exposed to the outside air lacks reliability. On the other hand, it is impossible to use silver solder instead of low melting point solder because the softening point of the optical transmission line 9 is low.

本発明の目的は、上記した従来技術の欠点をな
くし、気密信頼性が高く、かつ作業性の良い光導
入部構造を有する光駆動半導体装置を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques and to provide an optically driven semiconductor device having a light introduction part structure with high airtight reliability and good workability.

本発明の特徴とするところは、光伝送路9と光
伝送路9が貫通している外囲器との間に第1及び
第2の金属筒を2重に配置し、第1の金属筒を外
囲器に接着し、第2の金属筒を外囲器内寄りで光
伝送路9に気密に接着し、両金属筒を外囲器外の
端部で溶接し、かつ第1の金属筒が第2の金属筒
の軸方向全体で包囲した点にある。
The present invention is characterized in that first and second metal cylinders are arranged in a double manner between the optical transmission line 9 and the envelope through which the optical transmission line 9 passes, and the first metal cylinder is adhered to the envelope, a second metal cylinder is hermetically adhered to the optical transmission line 9 near the inside of the envelope, both metal cylinders are welded at the end outside the envelope, and the first metal cylinder is This is at a point where the tube surrounds the entire second metal tube in the axial direction.

以下本発明を具体的な実施例により詳細に説明
する。第3図は金属筒が2重になつた本発明によ
る光駆動型サイリスタの光導入部構造の一実施例
を示す。外側金属筒801は絶縁体7に貫通孔内
面のメタライズ層12を介して金属接着層13例
えば銀ろうで気密に固定されている。また、光伝
送体9は外囲器内寄りで内側金属筒802に例え
ば低融点封着ガラス14で気密に固定されてい
る。外側金属筒801は、内側金属筒802を軸
方向全体において包囲すると共に両者は外囲器の
外側において例えばレーザ等によつて溶接されて
いる。この光導入部構造では、光伝送体9と内側
金属筒802のみをガラス焼成炉に挿入するだけ
でよく作業性が向上する。また、封止られた光伝
送体9と内側金属筒802および絶縁体7と外側
金属筒801を別々に予め気密性を確めることが
でき、組み立て後の不良率を低減できる利点があ
る。更に、外側金属筒801が内側金属筒802
を軸方向全体に亘つて包囲しているため、内側金
属筒802と光伝送体9との接着個所を組立時の
外力から保護でき、両金属筒の溶接が可能とな
る。更にまた内側金属筒と外側金属筒の溶接は、
第1図に示す金属環6の溶接にも用いられており
信頼性は高く、発熱は部分的にかつ短時間に押え
ることが可能なため低融点封着ガラス等を溶かす
恐れはない。以上のように第3図の構成にすれ
ば、作業性が良く、気密の信頼性が高い光導入部
構造を得ることができる。第4図は、光伝送路9
を光導入部の気密用光伝送路901と光伝送路9
01からの光を光駆動型サイリスタの受光部まで
導く光伝送路902に分けた光導入部構造を示す
本発明の他の実施例である。光伝送路902は連
結用固定治具803と連結環15を用いて外側金
属筒801に連結され、光伝送路901と光学的
に接続されている。
The present invention will be explained in detail below using specific examples. FIG. 3 shows an embodiment of the structure of the light introduction part of the light-driven thyristor according to the present invention, in which the metal cylinder is doubled. The outer metal cylinder 801 is airtightly fixed to the insulator 7 via the metallized layer 12 on the inner surface of the through hole with a metal adhesive layer 13, for example, silver solder. Further, the optical transmission body 9 is airtightly fixed to the inner metal cylinder 802 near the inside of the envelope using, for example, a low melting point sealing glass 14. The outer metal tube 801 surrounds the inner metal tube 802 in its entirety in the axial direction, and both are welded by, for example, a laser or the like on the outside of the envelope. With this light introduction structure, it is sufficient to insert only the light transmitting body 9 and the inner metal cylinder 802 into the glass firing furnace, and the workability is improved. Further, the airtightness of the sealed optical transmission body 9 and the inner metal tube 802 and the insulator 7 and the outer metal tube 801 can be checked separately in advance, which has the advantage of reducing the defect rate after assembly. Furthermore, the outer metal tube 801 is connected to the inner metal tube 802.
Since the inner metal tube 802 and the optical transmitter 9 are surrounded in the entire axial direction, the bonding point between the inner metal tube 802 and the optical transmission body 9 can be protected from external force during assembly, and it is possible to weld the two metal tubes together. Furthermore, the welding of the inner metal tube and the outer metal tube,
It is also used for welding the metal ring 6 shown in FIG. 1, and has high reliability. Since the heat generation can be suppressed locally and in a short period of time, there is no risk of melting low melting point sealing glass or the like. With the configuration shown in FIG. 3 as described above, it is possible to obtain a light introducing portion structure that is easy to work with and has high airtight reliability. FIG. 4 shows the optical transmission line 9
The airtight optical transmission line 901 and the optical transmission line 9 of the light introduction part
This is another embodiment of the present invention showing a light introducing section structure in which the light from 01 is divided into optical transmission paths 902 that guide the light to the light receiving section of the optically driven thyristor. The optical transmission line 902 is connected to the outer metal cylinder 801 using a connecting fixture 803 and a connecting ring 15, and is optically connected to the optical transmission line 901.

固定治具803は光伝送路902に例えば機械
的に押圧することによつて固定されている。連結
環15はテフロン等からなり、外側金属筒801
にはめ込まれている。
The fixing jig 803 is fixed to the optical transmission path 902 by, for example, mechanically pressing it. The connecting ring 15 is made of Teflon or the like, and the outer metal cylinder 801
It's stuck in.

この光導入部構造では、光接続を一箇所増した
ことによる光損失が若干生じるが、内側金属筒8
02と気密封止する光伝送体をL字型の大きな光
伝送路9の代わりに小さな光伝送体901を用い
ることができるので、第3図の実施例に比較して
ガラス封着等の作業性が一層向上する利点があ
る。第5図は、外側金属筒801、内側金属筒8
02にそれぞれ溶接用として外側金属リング81
及び内側金属リング82を設けた光導入部構造を
示す本発明の別の実施例である。各金属リングは
金属筒を加工する際に一体に設けてもよいが、リ
ング状のものを別に加工しておき、銀ろうまたは
溶接等によつて金属筒に固定してもよい。金属リ
ングを設けたことにより、溶接が不完全で気密性
が損なわれた場合、また作業中に光伝送体9(9
01)が破損した場合などに、溶接部100を取
り除くことにより再生が可能となる利点がある。
第6図は、光伝送体9(901)と内側金属筒8
02の気密封着部14を外側金属筒801の内部
に設けた光導入部構造を示す本発明の更に異なる
実施例である。この光導入部構造では気密封着部
14が外側金属筒801で囲まれているため、外
的衝撃に対して保護されているという利点があ
る。
In this light introduction part structure, some light loss occurs due to the addition of one optical connection, but the inner metal tube 8
Since a small optical transmission body 901 can be used instead of the large L-shaped optical transmission line 9 for the optical transmission body to be hermetically sealed with 02, the work such as glass sealing is easier compared to the embodiment shown in FIG. This has the advantage of further improving performance. FIG. 5 shows an outer metal tube 801 and an inner metal tube 8.
Outer metal ring 81 for welding on each of 02
This is another embodiment of the present invention showing a light introducing section structure in which an inner metal ring 82 is provided. Each metal ring may be provided integrally when processing the metal cylinder, but a ring-shaped ring may be processed separately and fixed to the metal cylinder by silver soldering, welding, or the like. By providing a metal ring, if the welding is incomplete and the airtightness is lost, or if the optical transmission body 9 (9
01) is damaged, there is an advantage that it can be regenerated by removing the welded portion 100.
Figure 6 shows the optical transmission body 9 (901) and the inner metal tube 8.
This is a still different embodiment of the present invention showing a light introduction structure in which the airtight sealing portion 14 of 02 is provided inside the outer metal cylinder 801. In this light introducing section structure, since the airtight sealing section 14 is surrounded by the outer metal cylinder 801, there is an advantage that it is protected against external impact.

一方、光伝送体9(901)の熱膨張係数9〜
11×10-61/℃と絶縁体7(例えばAl2O3主成分
とするものは6.5〜7.8×10-61/℃)に比べ大き
い。この熱膨張係数の差は気密性を失う原因とな
る。しかし、本発明の光導入部構造を採用し、光
伝送路9(901)と内側金属筒802及び絶縁
体7と外側金属筒801の熱膨張係数を略等しく
すれば気密性が保たれることが分かつた。また、
光伝送路9(901)と内側金属筒802と外側
金属筒801の熱膨張係数を略等しくし、熱膨張
係数の差を絶縁体7と外側金属筒801の間に負
荷させることによつても気密性が保たれることが
分かつた。また、絶縁体7と外側金属筒801は
銀ろうで、光伝送路9(901)と内側金属筒8
02は低融点封着ガラスで気密に固定する方法が
とくに光導入部の気密性が良好であつた。
On the other hand, the thermal expansion coefficient of the optical transmission body 9 (901) is 9~
It is 11×10 -6 1/°C, which is larger than that of the insulator 7 (for example, 6.5 to 7.8×10 -6 1/°C for those mainly composed of Al 2 O 3 ). This difference in thermal expansion coefficient causes loss of airtightness. However, if the light introduction part structure of the present invention is adopted and the coefficients of thermal expansion of the optical transmission line 9 (901) and the inner metal tube 802 and the insulator 7 and the outer metal tube 801 are made approximately equal, airtightness can be maintained. I understand. Also,
By making the optical transmission line 9 (901), the inner metal cylinder 802, and the outer metal cylinder 801 approximately equal in thermal expansion coefficient, and applying the difference in thermal expansion coefficient between the insulator 7 and the outer metal cylinder 801, It was found that airtightness was maintained. The insulator 7 and the outer metal tube 801 are made of silver solder, and the optical transmission line 9 (901) and the inner metal tube 8
For No. 02, the method of airtightly fixing with low melting point sealing glass had particularly good airtightness at the light introduction part.

本発明によれば、光駆動型半導体装置の光導入
部構造において、光伝送路と内側金属筒及び絶縁
体と外側金属筒をそれぞれ別個に気密封止でき、
それらの金属筒相互を溶接によつて封着するの
で、作業性が良く、信頼性の高い光導入部の気密
が得られる。また、光伝送路と内側金属筒との接
着部が外側金属筒で保護されているので、組立時
の破損を防止できる。
According to the present invention, in the light introducing portion structure of a light-driven semiconductor device, the optical transmission path, the inner metal tube, and the insulator and the outer metal tube can be hermetically sealed separately,
Since these metal cylinders are sealed together by welding, it is possible to obtain airtightness of the light introduction part with good workability and high reliability. Further, since the adhesive portion between the optical transmission path and the inner metal cylinder is protected by the outer metal cylinder, damage during assembly can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光駆動型サイリスタの概略断面
図、第2図は第1図の光導入部の拡大図、第3
図、第4図、第5図及び第6図は本発明の実施例
を示す概略断面図である。 2……光サイリスタ素子、7……絶縁体、8…
…金属筒、9……光伝送路、12……メタライズ
層、13……金属接着剤、14……気密剤、80
1……外側金属筒、802……内側金属筒、90
1……気密用光伝送路、902……内側光伝送
路、81……外側金属リング、82……内側金属
リング、100……溶接部。
Figure 1 is a schematic cross-sectional view of a conventional light-driven thyristor, Figure 2 is an enlarged view of the light introduction part in Figure 1, and Figure 3 is a schematic cross-sectional view of a conventional light-driven thyristor.
4, 5, and 6 are schematic sectional views showing embodiments of the present invention. 2... Optical thyristor element, 7... Insulator, 8...
... Metal cylinder, 9 ... Optical transmission line, 12 ... Metallized layer, 13 ... Metal adhesive, 14 ... Air sealant, 80
1... Outer metal tube, 802... Inner metal tube, 90
DESCRIPTION OF SYMBOLS 1... Airtight optical transmission line, 902... Inner optical transmission line, 81... Outer metal ring, 82... Inner metal ring, 100... Welding part.

Claims (1)

【特許請求の範囲】 1 光信号によつて動作する半導体素子と、 半導体素子の両側に設けられ半導体素子に電気
的に接続された1対の外部電極、及び環状でその
両側がそれぞれ外部電極に接続された絶縁体によ
つて形成された半導体素子を気密に封止する外囲
器と、 外囲器を貫通して外囲器外から光信号を半導体
素子まで導く光伝送路と、 外囲器の光伝送路が貫通している部分と光伝送
路との間に配置され、外囲器に金属接着層を介し
て接着された第1の金属筒と、 第1の金属筒と光伝送路との間の1部に配置さ
れ、その外囲器内寄り端部で光伝送路に接着材に
より接着された第2の金属筒と、を具備し、第1
の金属筒と第2の金属筒とが外囲器外の端部にお
いて溶着され、第2の金属筒と光伝送路との接着
個所が、第1の金属筒と第2の金属筒との溶着個
所から光伝送路の軸方向に離れかつ第1の金属筒
により第2の金属筒の軸方向全体が包囲されてい
ることを特徴とする光駆動半導体装置。 2 特許請求の範囲第1項において、光伝送路及
び接着材が低融点ガラス、金属接着層が銀ろうで
あることを特徴とする光駆動半導体装置。
[Scope of Claims] 1. A semiconductor element operated by an optical signal, a pair of external electrodes provided on both sides of the semiconductor element and electrically connected to the semiconductor element, and a ring-shaped external electrode on both sides, respectively. an envelope that hermetically seals a semiconductor element formed by connected insulators; an optical transmission path that passes through the envelope and guides an optical signal from outside the envelope to the semiconductor element; a first metal cylinder disposed between a portion of the envelope through which the optical transmission line passes and the optical transmission line and adhered to the envelope via a metal adhesive layer; and a first metal cylinder and the optical transmission line. a second metal tube disposed in a portion between the optical transmission path and the optical transmission path at an end closer to the inner side of the envelope, the second metal tube being bonded to the optical transmission path with an adhesive;
The metal tube and the second metal tube are welded at the outer end of the envelope, and the bonding point between the second metal tube and the optical transmission path is the bonding point between the first metal tube and the second metal tube. 1. An optically driven semiconductor device, characterized in that the second metal tube is entirely surrounded in the axial direction by the first metal tube, which is separated from the welding point in the axial direction of the optical transmission path. 2. The optically driven semiconductor device according to claim 1, characterized in that the optical transmission path and adhesive material are low-melting glass, and the metal adhesive layer is silver solder.
JP57097723A 1982-06-09 1982-06-09 Photo-driven semiconductor device Granted JPS58215071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57097723A JPS58215071A (en) 1982-06-09 1982-06-09 Photo-driven semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57097723A JPS58215071A (en) 1982-06-09 1982-06-09 Photo-driven semiconductor device

Publications (2)

Publication Number Publication Date
JPS58215071A JPS58215071A (en) 1983-12-14
JPH0142508B2 true JPH0142508B2 (en) 1989-09-13

Family

ID=14199805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57097723A Granted JPS58215071A (en) 1982-06-09 1982-06-09 Photo-driven semiconductor device

Country Status (1)

Country Link
JP (1) JPS58215071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619139U (en) * 1992-07-29 1994-03-11 ミツミ電機株式会社 Tape guide and head assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094770A (en) * 1983-10-28 1985-05-27 Mitsubishi Electric Corp Light-trigger thyristor and manufacture thereof
JPS60157256A (en) * 1984-01-25 1985-08-17 Mitsubishi Electric Corp Photo trigger thyristor
US5970194A (en) * 1998-02-19 1999-10-19 Uniphase Telecommunications Products, Inc. Optical fiber having hermetically sealable section

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166972A (en) * 1979-06-13 1980-12-26 Mitsubishi Electric Corp Light semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166972A (en) * 1979-06-13 1980-12-26 Mitsubishi Electric Corp Light semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619139U (en) * 1992-07-29 1994-03-11 ミツミ電機株式会社 Tape guide and head assembly

Also Published As

Publication number Publication date
JPS58215071A (en) 1983-12-14

Similar Documents

Publication Publication Date Title
JPH0480543B2 (en)
US4368481A (en) Light-driven semiconductor device
JPH0142508B2 (en)
JP4550976B2 (en) Photocathode and electron tube
US5801429A (en) Semiconductor device
US5596210A (en) Light trigger type semiconductor device with reflection prevention film
JPH0792335A (en) Structure of hermetic sealing part of optical fiber
JPH0440288Y2 (en)
JPS5949708B2 (en) Optical semiconductor device
JPS6223288B2 (en)
JPH1074576A (en) Discharge electrode for ion generating apparatus
JPS60241263A (en) Photo-driven semiconductor device
JPH03219675A (en) Light-drive semiconductor device
JPS5934662A (en) Photo direct ignition thyristor
JP7502966B2 (en) Energy ray tube
JPH04124878A (en) Light driving semiconductor device
JPS61116305A (en) Flat type optical driving semiconductor device
JPS61112387A (en) Cooling type photoelectric conversion device
US3320352A (en) Quartz-to-metal seal
JPH07118532B2 (en) Light-driven semiconductor device
JPS58157160A (en) Photo-driven type semiconductor device
JP3560571B2 (en) Semiconductor device
JPH0515719Y2 (en)
JPS62176137A (en) Compression bonded type semiconductor device
JPS6359059B2 (en)