JPH04124878A - Light driving semiconductor device - Google Patents

Light driving semiconductor device

Info

Publication number
JPH04124878A
JPH04124878A JP24400490A JP24400490A JPH04124878A JP H04124878 A JPH04124878 A JP H04124878A JP 24400490 A JP24400490 A JP 24400490A JP 24400490 A JP24400490 A JP 24400490A JP H04124878 A JPH04124878 A JP H04124878A
Authority
JP
Japan
Prior art keywords
optical transmission
metal tube
transmission line
diameter
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24400490A
Other languages
Japanese (ja)
Inventor
Shigeharu Nonoyama
野々山 茂晴
Katsumi Akabane
赤羽根 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24400490A priority Critical patent/JPH04124878A/en
Publication of JPH04124878A publication Critical patent/JPH04124878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To get a light driving type thyristor that the work such as assembling, inspection, etc., can be done easily by putting the inside diameter of an inner metallic tube in two stages, and making the inside diameter of the part to be fused with an phototransmissive path by glass small, and making the inside diameter of other part large. CONSTITUTION:An inner metallic tube 82 is made of the two parts of a part 82a small in diameter and a part 82b large in diameter, and with a phototransmissive path 9, it is fused at the part 82a small in diameter by low melting point glass. Hereupon, it is made coaxial with the phototransmissive path 9 and an outer metallic tube 81, on the other hand, the outer metallic tube 81 and the inner metallic tube 82 are welded with an envelop uniformly in the positions separate in outside diameter direction, so the inside of the outer metallic tube 81 and the outside of the inner metallic tube 82 can be set with each other without backlash.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光駆動半導体装置に係り、特に光信号導入用の
光伝送路が外囲気を貫通する構造において、気密封止部
の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optically driven semiconductor device, and particularly to a structure of an airtight sealing part in a structure in which an optical transmission line for introducing an optical signal penetrates the surrounding air.

〔従来の技術〕[Conventional technology]

従来の光駆動型サイリスタについて特願昭57−977
23号の例を図を用いて説明する。第2図に光サイリス
タ素子の全体構造を示す。光サイリスタ素子2は両側に
介在した電極3を介してアノード電極4とカソード電極
5にはさまれている。これらの電極4,5は、金属フラ
ンジ6によって気密に接続された円筒状の絶縁体7と共
に外囲器を構成している。発光素子(図示せず。)から
の光信号を伝える光ファイバ束11は、例えば袋ナット
12を用いて、絶縁体7の一部を貫通する気密部8の内
に固定された光伝送路9と光学的に結合されている。さ
らに光信号は気密部8に固定され。
Patent application 1987-977 regarding conventional light-driven thyristor
An example of No. 23 will be explained using figures. FIG. 2 shows the overall structure of the optical thyristor element. The optical thyristor element 2 is sandwiched between an anode electrode 4 and a cathode electrode 5 with electrodes 3 interposed on both sides. These electrodes 4 and 5 constitute an envelope together with a cylindrical insulator 7 which is hermetically connected by a metal flange 6. An optical fiber bundle 11 that transmits optical signals from a light emitting element (not shown) is attached to an optical transmission line 9 fixed in an airtight part 8 that penetrates a part of an insulator 7 using, for example, a cap nut 12. are optically coupled. Furthermore, the optical signal is fixed in the airtight part 8.

光学的に結合された第2の光伝送路10に伝えられる。The signal is transmitted to the optically coupled second optical transmission line 10.

光伝送路10は光サイリスタ素子の受光部に対応する位
置で湾曲し、光信号を光サイリスタ素子の受光部へ導く
。第3図に従来構造での気密部8の詳細構造を示す。外
側金属筒81は絶縁体7に貫通孔内のメタライズ層13
を介して銀ローなどの金属接着層14により気密に固定
されている。また、光伝送路9は内側金属筒82とは低
融点ガラス15により固定されている。外側金属筒81
と内側金属筒82とは外囲器の外側において溶接封止す
る構造である。
The optical transmission line 10 is curved at a position corresponding to the light receiving section of the optical thyristor element, and guides the optical signal to the light receiving section of the optical thyristor element. FIG. 3 shows the detailed structure of the airtight part 8 in the conventional structure. The outer metal cylinder 81 has a metallized layer 13 in the through hole in the insulator 7.
It is airtightly fixed by a metal adhesive layer 14 such as silver solder. Further, the optical transmission line 9 is fixed to the inner metal cylinder 82 by a low melting point glass 15. Outer metal tube 81
and the inner metal tube 82 are welded and sealed on the outside of the envelope.

ここで、光ファイバ束11と光伝送路9を光学的に結合
を得るために、光ファイバ束11の中心と光伝送路9の
中心を合わせる必要がある。これらは、直接合せること
ができないので、間接的に光フアイバ束11中心と袋ナ
ツト12中心を合せ、袋ナツト12と外側金属筒82の
ネジを固定することによりそれぞれの中心を合せる。外
側金属筒81と光伝送路9の中心を合せるために、外側
金属筒81と内側金属筒82はガタのない嵌合せであり
、内側金属筒82と光伝送路9との嵌合もガタがない寸
法である。このため、外側金属筒81と内側金属筒82
の溶接部が外囲器7外側方向端であり、内側金属筒82
と光伝送路9とのガラス溶着部15が外囲器7の内側端
であっても同心が得られる。
Here, in order to optically couple the optical fiber bundle 11 and the optical transmission line 9, it is necessary to align the center of the optical fiber bundle 11 with the center of the optical transmission line 9. Since these cannot be directly aligned, the centers of the optical fiber bundle 11 and the cap nut 12 are indirectly aligned, and the centers of each are aligned by fixing the screws of the cap nut 12 and the outer metal tube 82. In order to align the centers of the outer metal tube 81 and the optical transmission line 9, the outer metal tube 81 and the inner metal tube 82 are fitted together without play, and the fit between the inner metal tube 82 and the optical transmission line 9 is also made without play. There are no dimensions. For this reason, the outer metal tube 81 and the inner metal tube 82
The welded part is the outer end of the envelope 7, and the inner metal cylinder 82
Even if the glass welded portion 15 between the optical transmission line 9 and the optical transmission line 9 is located at the inner end of the envelope 7, concentricity can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上の従来構造では外側金属筒81と内側金属筒82と
の間、および、内側金属筒82と光伝送路9との間には
すきまがないため、外側金属筒が組立作業中の取扱い中
に外力を受けた場合に、外側金属筒81と内側金属筒8
2が共に変形して、光伝送路9に外力が伝わってしまう
。光伝送路9は光伝送効率を高めるためにガラスを使用
するので、光伝送路9の外囲器7の外側方向端の変位が
10μmで光伝送路9の低融点ガラス溶着部が割れると
いう問題があった。このため、従来構造の光駆動型サイ
リスタでは、気密部8に外力が加わらない様、気密部8
を保護したり組立時、検査時の作業にて細心の注意を払
う必要があった。
In the conventional structure described above, there is no gap between the outer metal tube 81 and the inner metal tube 82 and between the inner metal tube 82 and the optical transmission path 9, so the outer metal tube is When external force is applied, the outer metal cylinder 81 and the inner metal cylinder 8
2 are deformed together, and external force is transmitted to the optical transmission line 9. Since the optical transmission line 9 uses glass to increase the optical transmission efficiency, there is a problem that the low melting point glass welded part of the optical transmission line 9 breaks when the outer end of the envelope 7 of the optical transmission line 9 is displaced by 10 μm. was there. For this reason, in the light-driven thyristor of the conventional structure, the airtight part 8 is
It was necessary to pay close attention to the protection, assembly, and inspection work.

本発明では、気密部8に外力が加わっても光伝送路9が
割れない構造を提供することを目的としており、これに
より組立、検査等の作業が容易にできる光駆動型サイリ
スタを提供できる。
The present invention aims to provide a structure in which the optical transmission line 9 does not break even if an external force is applied to the airtight portion 8, thereby making it possible to provide an optically driven thyristor that can be easily assembled, inspected, etc.

〔課題を解決するための手段〕[Means to solve the problem]

上記の問題を解決するため、本発明では、気密部構造を
、内側金属筒と、光伝送路の間のすきまを充分にとり、
外側金属筒に外力が加わっても光伝送路に変位が生じな
い構造とした。また、内側金属筒と光伝送路は低融点ガ
ラス溶着するため、内側金属筒と光伝送路とのすきまは
小さくする必要がある。以上2つの目的を達成するため
、内側金属筒の内径を2段として、ガラス溶着する部分
は内径を小さくし、それ以外の部分では内径を大きくす
る構造とした。
In order to solve the above problems, the present invention provides an airtight structure with a sufficient gap between the inner metal tube and the optical transmission path.
The structure has been designed so that the optical transmission path will not be displaced even if an external force is applied to the outer metal cylinder. Furthermore, since the inner metal tube and the optical transmission path are welded to low-melting glass, it is necessary to reduce the gap between the inner metal tube and the optical transmission path. In order to achieve the above two objectives, the inner diameter of the inner metal cylinder is made into two stages, and the inner diameter is made smaller in the part where glass is welded, and the inner diameter is made larger in other parts.

〔実施例〕〔Example〕

第1図は本発明の一実施例の光駆動サイリスタの気密部
拡大断面図である。図において、第3図に示した従来構
造例と同一符号は同等部分を示す。
FIG. 1 is an enlarged sectional view of a hermetic part of a light-driven thyristor according to an embodiment of the present invention. In the figure, the same reference numerals as in the conventional structure example shown in FIG. 3 indicate equivalent parts.

内側金属筒82は内径の小さい部分82aと内径の大き
い部分82bの2つの部分から成り、光伝送路9とは内
径の小さい部分82aにて低融点ガラス溶着剤15によ
り溶着されている。ここで、光伝送路9は発光素子から
の光信号を、伝える光ファイバ束と光学的に結合される
必要があるため、光伝送路9と外側金属筒81と同心で
ある必要がある。一方、外側金属筒81と内側金属筒8
2は外囲器に対して外側方向に離れた位置で均一に溶接
するため外側金属筒81の内径と内側金属筒82の外径
はがたなき嵌合せであり、このため外側金属筒81と内
側金属筒82は同心である。光伝送路9は低融点ガラス
15により内側金属筒82に溶着しているが、溶着する
部分82aは内径の大きい部分82bより距離が短いた
め、内側金属筒82および外側金属筒81を光伝送路9
を同心として、光ファイバ束との光学的結合を可能とす
るためのガイドが必要となる。第4図は低融点ガラス溶
着作業時の内側金属筒と光伝送路を同心にするための合
せ図である。図において第1図と同一符号は同一部分を
示す。図に示す様に、内側金属筒82と光伝送路9は中
心合せ具101に立てて並べる。内側金属筒82の内径
の細い部分82aと光伝送路9にはガタないので、差込
むことにより心が合せられる。一方、径の大きい部分8
2bと光伝送路9との間にはすきまが開くので、中心合
せ具101に設けた環状の凸部102に内側金属筒82
と光伝送路9が嵌り合う構造とする。
The inner metal cylinder 82 consists of two parts, a part 82a with a small inner diameter and a part 82b with a large inner diameter, and the optical transmission line 9 is welded to the part 82a with a small inner diameter using a low melting point glass welding agent 15. Here, since the optical transmission line 9 needs to be optically coupled to the optical fiber bundle that transmits the optical signal from the light emitting element, it needs to be concentric with the optical transmission line 9 and the outer metal tube 81. On the other hand, the outer metal tube 81 and the inner metal tube 8
2, the inner diameter of the outer metal tube 81 and the outer diameter of the inner metal tube 82 are fitted together without play in order to uniformly weld the outer metal tube 81 and the outer diameter of the inner metal tube 82 at positions apart from each other in the outer direction with respect to the envelope. Inner metal tube 82 is concentric. The optical transmission line 9 is welded to the inner metal cylinder 82 using the low melting point glass 15, but since the welded part 82a is shorter than the larger inner diameter part 82b, the inner metal cylinder 82 and the outer metal cylinder 81 are used as the optical transmission line. 9
A guide is required to make the optical fibers concentric and enable optical coupling with the optical fiber bundle. FIG. 4 is a diagram showing how to make the inner metal cylinder and the optical transmission line concentric during low-melting glass welding work. In the figure, the same reference numerals as in FIG. 1 indicate the same parts. As shown in the figure, the inner metal tube 82 and the optical transmission line 9 are aligned vertically on the centering tool 101. Since there is no play between the narrow inner diameter portion 82a of the inner metal tube 82 and the optical transmission line 9, the center can be aligned by inserting the tube. On the other hand, the larger diameter portion 8
2b and the optical transmission path 9, the inner metal tube 82 is attached to the annular convex portion 102 provided on the centering tool
The structure is such that the optical transmission line 9 and the optical transmission line 9 fit together.

この状態で熱処理を施すことにより、低融点ガラス15
は溶解・固化する。固化した後は心合せ具101を取除
いても光伝送路9は内側金属筒82に固定されてしまい
、中心がずれることはない。
By applying heat treatment in this state, the low melting point glass 15
dissolves and solidifies. After solidification, even if the centering tool 101 is removed, the optical transmission line 9 is fixed to the inner metal cylinder 82 and the center will not shift.

以上の構造と製法で作られた気密部では、内側金属筒8
2と光伝送路9との間にすきまがあるため、外側金属筒
81に外力が加わっても、外側金属筒81と内側金属筒
82が変形するのみで、光伝送路9に外力が伝わること
がなく、光伝送路9のワレ発生を防止できる。
In the airtight part made with the above structure and manufacturing method, the inner metal tube 8
2 and the optical transmission line 9, even if an external force is applied to the outer metal tube 81, the outer metal tube 81 and the inner metal tube 82 will only deform, and the external force will not be transmitted to the optical transmission line 9. This prevents the optical transmission line 9 from cracking.

第5図は、外側金属筒81と内側金属筒82の端を光伝
送路9の外側端を外囲器に対してさらに外側方向に伸し
た構造の実施例を示す。図において、第1図と同一符号
は同一部分を示す。本実施例によれば、内側金属筒82
の内径を大きくしたことにより光ファイバ束11を内側
金属筒82の内側へ挿入することが可能となる。このた
め、光伝送路9と光ファイバ束11を光学的に結合させ
るために関係する部分は、光伝送路9と内側金属筒82
と光ファイバ束11のみであり、これらの部品の光軸を
合せれば良い。このため、外側金属筒81と内側金属筒
82の中心合せ、外側金属筒81と袋ナツト12との中
心合せおよび、袋ナツト12と光ファイバ束11との中
心合せが不要となるので、各々の部品精度を粗くするこ
とができるので、製造が容易になる。第6図は第5図で
示した実施例の構造にて、光伝送路9と内側金属筒82
の低融点ガラス溶着作業時の合せ図である。
FIG. 5 shows an embodiment of a structure in which the ends of the outer metal tube 81 and the inner metal tube 82 extend the outer end of the optical transmission path 9 further outward with respect to the envelope. In the figure, the same reference numerals as in FIG. 1 indicate the same parts. According to this embodiment, the inner metal cylinder 82
By increasing the inner diameter of the optical fiber bundle 11, it becomes possible to insert the optical fiber bundle 11 inside the inner metal tube 82. Therefore, the parts related to optically coupling the optical transmission line 9 and the optical fiber bundle 11 are the optical transmission line 9 and the inner metal tube 82.
and the optical fiber bundle 11, and it is only necessary to align the optical axes of these parts. Therefore, it is not necessary to center the outer metal tube 81 and the inner metal tube 82, to center the outer metal tube 81 and the cap nut 12, and to center the cap nut 12 and the optical fiber bundle 11, so that each Manufacturing becomes easier because the part precision can be made rougher. FIG. 6 shows the structure of the embodiment shown in FIG.
This is a combined view of low melting point glass welding work.

中心合せ具101において、光伝送路9の当る面を10
3を内側金属筒82の当る面104の高さより高くする
ことにより容易に段差を設けることができる。中心合せ
も、環状凸部を高くすることで容易に可能である。この
ため、第5図の実施例の様に内側金属筒82の端を光伝
送路9の端よりも外囲器7に対して外方向に伸しても製
造作業が困難になることはない。
In the centering tool 101, the surface on which the optical transmission line 9 touches is 10
3 is higher than the height of the surface 104 that the inner metal cylinder 82 contacts, a step can be easily provided. Centering can also be easily achieved by increasing the height of the annular protrusion. Therefore, even if the end of the inner metal tube 82 extends outward from the end of the optical transmission line 9 with respect to the envelope 7 as in the embodiment shown in FIG. 5, manufacturing work will not be difficult. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光駆動サイリスタの光導入部構造に外
力を加えても、光伝送路のワレが防止できるので、サイ
リスタの組立、検査の作業にて作業性が向上するととも
に、信頼性の高い導入部が得られる。
According to the present invention, even if an external force is applied to the light introduction structure of a light-driven thyristor, cracking of the optical transmission line can be prevented, which improves workability in thyristor assembly and inspection work, and improves reliability. A high introduction area can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の気密部断面図、第2図は光
駆動サイリスタ全体断面図、第3図は従来構造による気
密部断面図、第4図は第1図の構造を得るための部品合
せ図、第5図は本発明による第1図を異なる実施例によ
る気密部断面図、第6図は第5図の構造を得るための部
品合せ図である。 2・・光サイリスタ素子、7・・・絶縁体、81・・・
外側金属筒、82・・・内側金属筒、9・・・光伝送路
、1゜・・・L形光伝送路、13・・・メタライズ層、
14・・・金第 図 /j 第2図 第3図 第4図
Fig. 1 is a sectional view of the airtight part of an embodiment of the present invention, Fig. 2 is a sectional view of the entire light-driven thyristor, Fig. 3 is a sectional view of the airtight part of a conventional structure, and Fig. 4 shows the structure shown in Fig. 1. FIG. 5 is a sectional view of an airtight portion according to a different embodiment from FIG. 1 according to the present invention, and FIG. 6 is a diagram of parts assembled to obtain the structure of FIG. 5. 2... Optical thyristor element, 7... Insulator, 81...
Outer metal tube, 82... Inner metal tube, 9... Optical transmission line, 1°... L-shaped optical transmission line, 13... Metallized layer,
14... Gold Figure/j Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、光信号によつて動作する半導体素子と、半導体素子
の両側に設れられた半導体素子に電気的に接続された1
対の外部電極、および環状でその両端がそれぞれ外部電
極に接続された絶縁体によって形成された半導体素子を
気密に封止する外囲器と、外囲器の絶縁体を貫通して外
囲器外から光信号を半導体素子まで導く光伝送路と、外
囲気の絶縁体の光伝送路が貫通している部分と光伝送路
との間に配置され、絶縁体に金属接着層を介して接着さ
れた第1の金属筒と、第1の金属筒と光伝送路との間に
配置され、光伝送路に接着材により接着された第2の金
属筒とを具備し、第1の金属筒と第2の金属筒と溶着部
が、絶縁体と第1の金属筒および光伝送路と第2の金属
筒との溶着部よりも外囲器に対して外側方向に離れてい
る構造の半導体装置において、第2の金属筒の光導送路
との溶着部における径を、該溶着部以外の径よりも小さ
することにより、低融点ガラスであるところの溶着材が
第2の金属筒の径の細い部分のみで光伝送路と溶着され
ることを特徴とする光駆動半導体装置。
1. A semiconductor element operated by an optical signal, and 1 electrically connected to the semiconductor elements provided on both sides of the semiconductor element.
An envelope that hermetically seals a semiconductor element formed by a pair of external electrodes and an annular insulator whose both ends are connected to the external electrodes, and an envelope that penetrates the insulator of the envelope. It is placed between the optical transmission line that guides optical signals from the outside to the semiconductor element, the part of the surrounding insulator that the optical transmission line penetrates, and the optical transmission line, and is bonded to the insulator via a metal adhesive layer. a second metal tube disposed between the first metal tube and the optical transmission path and bonded to the optical transmission path with an adhesive; and the second metal tube and the welded portion are further away from the envelope in the outward direction than the welded portions of the insulator and the first metal tube and the optical transmission line and the second metal tube. In the apparatus, by making the diameter of the welded part of the second metal cylinder with the optical transmission path smaller than the diameter of the part other than the welded part, the welding material, which is a low melting point glass, becomes the diameter of the second metal cylinder. An optically driven semiconductor device characterized in that it is welded to an optical transmission path only through a thin portion of the device.
JP24400490A 1990-09-17 1990-09-17 Light driving semiconductor device Pending JPH04124878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24400490A JPH04124878A (en) 1990-09-17 1990-09-17 Light driving semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24400490A JPH04124878A (en) 1990-09-17 1990-09-17 Light driving semiconductor device

Publications (1)

Publication Number Publication Date
JPH04124878A true JPH04124878A (en) 1992-04-24

Family

ID=17112284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24400490A Pending JPH04124878A (en) 1990-09-17 1990-09-17 Light driving semiconductor device

Country Status (1)

Country Link
JP (1) JPH04124878A (en)

Similar Documents

Publication Publication Date Title
US4548466A (en) Optical fibre coupling assemblies
US4466009A (en) Light-activated semiconductor device with optic fiber moveable azimuthally and transversely
US4386821A (en) Opto-electronic coupling head and method for fitting such a head
GB1573245A (en) Hermetic seal for optical fibre
JPH01284807A (en) Optical fiber through part and manufacture thereof
JPH0763957A (en) Hermetic sealing structure of optical fiber introducing part
US7325985B2 (en) Optical module with lens holder projection-welded to butterfly package
US4292464A (en) Glass pass through with an additional insulator for lengthening leakage path
US5596210A (en) Light trigger type semiconductor device with reflection prevention film
JPH04124878A (en) Light driving semiconductor device
EP0687014A2 (en) Pressure contact type semiconductor device, preferably of the light triggered type
JPH0792335A (en) Structure of hermetic sealing part of optical fiber
JPH10241622A (en) Electronic tube
JPH0142508B2 (en)
JP3553726B2 (en) Cap for electronic parts, semiconductor laser using the same, and manufacturing method thereof
JPH03219675A (en) Light-drive semiconductor device
JPS5949708B2 (en) Optical semiconductor device
JP3997798B2 (en) Optical module
JPH03126248A (en) Package
JP2913688B2 (en) Electron gun sealing method and electron gun sealing device for cathode ray tube
JPS61148410A (en) Optical semiconductor device
JPH04362606A (en) Airtight sealing structure using optical fiber
JPS5934662A (en) Photo direct ignition thyristor
JPH0964466A (en) Optical module and its manufacture
JP2000311610A (en) Sealing method for lamp and seal part structure