JPH03219675A - Light-drive semiconductor device - Google Patents

Light-drive semiconductor device

Info

Publication number
JPH03219675A
JPH03219675A JP1361690A JP1361690A JPH03219675A JP H03219675 A JPH03219675 A JP H03219675A JP 1361690 A JP1361690 A JP 1361690A JP 1361690 A JP1361690 A JP 1361690A JP H03219675 A JPH03219675 A JP H03219675A
Authority
JP
Japan
Prior art keywords
metal cylinder
optical transmission
light
transmission line
transmission path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1361690A
Other languages
Japanese (ja)
Inventor
Akira Ishida
石田 昭
Shigeharu Nonoyama
野々山 茂晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1361690A priority Critical patent/JPH03219675A/en
Publication of JPH03219675A publication Critical patent/JPH03219675A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To enable an adhesion axis length to be produced uniformly over the entire periphery and strength reliability of a light-introduction part to be improved by adhering an inner surface of a metal cylinder and a light- transmission path for achieving a specified uniform adhesion force. CONSTITUTION:A second metal cylinder 101 is formed by previously determining the range of an axis length l1 of an adhesion part 102 for adhering and fixing the second metal cylinder and a light-transmission path 4 with an adhesive 7 such as a low melting-point sealing glass and by making an inner diameter of the second metal cylinder 101 of this part to be smaller than that of other parts. On the other hand, regarding a non-adhesion part 103 which does not enable the second metal cylinder 101 and the light-transmission path 4 to be adhered, the inner diameter of the second metal cylinder 101 is formed larger than a part of the adhesion part 102. Adhesion between the second metal cylinder 101 and the light-transmission path 4 is performed by uniform flow of molten sealing glass to a small part at a gap between the second metal cylinder 101 and the light-transmission path 4 due to capillary phenomenon. Then, the melted sealed glass does not flow into a part with a larger gap due to the surface tension.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、絶縁外囲器を貫通して該外囲器に金属接着さ
れた金属筒の内部に、光信号導入用の光伝送路が挿入さ
れて構成されている光駆動半導体装置に係り、特に、前
記金属筒の内面と光伝送路の外面とを接着封止する部分
の強度信頼性の向上を図った光駆動半導体装置に関する
Detailed Description of the Invention [Industrial Application Field] The present invention provides an optical transmission line for introducing optical signals inside a metal tube that penetrates an insulating envelope and is metallized to the envelope. The present invention relates to an optically driven semiconductor device configured to be inserted, and more particularly to an optically driven semiconductor device in which the strength and reliability of the portion where the inner surface of the metal tube and the outer surface of the optical transmission path are adhesively sealed is improved.

[従来の技術] 光駆動半導体装置の1つとして、例えば、光駆動型サイ
リスタが知られている。光駆動型サイリスタは、光信号
の照射により、サイリスタを順方向阻止状態から導通状
態にスイッチする機能を有している。そして、光駆動型
サイリスタは、通常の電気ゲートサイリスタと比較して
、主回路とゲート回路とを電気的に絶縁することができ
るため、ゲート回路の構成を簡単にすることができる、
電磁誘導によるノイズに対して強い等の利点を有してい
る。
[Prior Art] For example, a light-driven thyristor is known as one of the light-driven semiconductor devices. A light-driven thyristor has a function of switching the thyristor from a forward blocking state to a conducting state by irradiation with an optical signal. In addition, compared to ordinary electric gate thyristors, the light-driven thyristor can electrically isolate the main circuit and the gate circuit, so the configuration of the gate circuit can be simplified.
It has advantages such as being resistant to noise caused by electromagnetic induction.

このため、近年、光駆動型サイリスタの開発、実用化が
進められている。しかし、これまでの光駆動型サイリス
タには、解決しなければならない課題として、光駆動型
サイリスタの絶縁外囲器内の受光部へ、外囲器の外側か
ら光信号を導く光伝送路と絶縁外囲器との間の気密性に
関する高信頼度化がある。
For this reason, in recent years, the development and practical use of optically driven thyristors has been progressing. However, with conventional optically driven thyristors, one problem that must be solved is that the optical transmission line that guides the optical signal from outside the envelope to the light receiving part in the insulated envelope of the optically driven thyristor must be insulated. There is an increase in reliability regarding the airtightness between the product and the envelope.

以下、前述の従来技術による光駆動型サイリスタの一例
を図面により説明する。
Hereinafter, an example of a light-driven thyristor according to the above-mentioned prior art will be explained with reference to the drawings.

第7図は従来技術の構造を示す断面図、第8図は要部拡
大断面図である。第7図、第8図において、lは第1の
金属筒、2は第2の金属筒、3は連結筒、4は光伝送路
、5は絶縁外囲器、6は金属接着層、7は接着剤、8は
接着部、10はカソード外部電極、11はアノード外部
電極、12はサイリスタ素子、14はカソード側緩衝板
、18〜20は金属フランジである。
FIG. 7 is a sectional view showing the structure of the prior art, and FIG. 8 is an enlarged sectional view of the main part. In FIGS. 7 and 8, l is a first metal tube, 2 is a second metal tube, 3 is a connecting tube, 4 is an optical transmission line, 5 is an insulating envelope, 6 is a metal adhesive layer, and 7 8 is an adhesive, 8 is an adhesive part, 10 is a cathode external electrode, 11 is an anode external electrode, 12 is a thyristor element, 14 is a cathode side buffer plate, and 18 to 20 are metal flanges.

従来技術による光駆動型サイリスタは、第7図に示すよ
うに、サイリスタ素子12のカソード側にカソード側緩
衝板14を介したカソード外部電極10を備え、サイリ
スタ素子12の他方の側にアノード外部電極11を備え
た基本構造を有している。そして、前記画体部電極10
.11は、その周囲に配置される円筒状の絶縁外囲器5
との間が金属フランジ18〜20により気密に接続され
て、サイリスタ素子12に対して気密構造を形成してい
る。
As shown in FIG. 7, the conventional light-driven thyristor includes a cathode external electrode 10 on the cathode side of the thyristor element 12 via a cathode-side buffer plate 14, and an anode external electrode on the other side of the thyristor element 12. It has a basic structure with 11. Then, the picture body part electrode 10
.. 11 is a cylindrical insulating envelope 5 disposed around it.
are airtightly connected by metal flanges 18 to 20 to form an airtight structure with respect to the thyristor element 12.

絶縁外囲器5には、該外囲器5を貫通して第1の金属筒
lが設けられており、該第1の金属筒1の内部には、第
2の金属筒2と、該第2の金属筒2の外形寸法を一部小
さくした部分に嵌め込まれ、溶着された連結筒3とによ
る円筒体が挿入されている。そして、第1の金属筒lと
連結筒3とは、溶接部15により、気密に封止されてい
る。第2の金属筒2の内部には、光伝送路4が固定され
て貫通しており、該光伝送路4を介して光信号が気密封
止された半導体装置の内部及び外部相互間を結合してい
る。光伝送路4は、光サイリスタ素子12の受光部に光
信号を導くため、その半導体装置内部で湾曲しており、
絶縁外囲器5外の端面が光導入端部となっている。
The insulating envelope 5 is provided with a first metal tube l passing through the envelope 5, and inside the first metal tube 1, a second metal tube 2 and a second metal tube l are provided. A cylindrical body is inserted into a portion of the second metal tube 2 whose external dimensions are partially reduced, and the connecting tube 3 is welded thereto. The first metal tube l and the connecting tube 3 are hermetically sealed by a welded portion 15. An optical transmission path 4 is fixed and penetrates inside the second metal tube 2, and optical signals are coupled between the inside and outside of the hermetically sealed semiconductor device through the optical transmission path 4. are doing. The optical transmission line 4 is curved inside the semiconductor device in order to guide the optical signal to the light receiving part of the optical thyristor element 12.
The end surface outside the insulating envelope 5 serves as a light introduction end.

前述のように構成される光半導体装置において、光伝送
路4を装置外部から装置内部に導入する構造の気密封止
は、次のように行われている。
In the optical semiconductor device configured as described above, hermetic sealing of the structure in which the optical transmission line 4 is introduced from the outside of the device into the inside of the device is performed as follows.

すなわち、第1の金属筒lは、絶縁外囲器5に設けられ
た貫通孔の内面にメタライズ層21を介して金属接着層
6、例えば、銀ろう等により気密に固定される。
That is, the first metal cylinder 1 is airtightly fixed to the inner surface of a through hole provided in the insulating envelope 5 via the metallized layer 21 with a metal adhesive layer 6, such as silver solder.

また、第2の金属筒2は、光信号導入側の外形寸法が、
予め小さく仕上げられており、この小さな外形寸法の部
分に連結筒3が規定の長さ寸法まで入れられ、第2の金
属筒2と連結筒3とは、第2の金属筒2の長さ途中の継
目の部分で、銀ろう等による連結溶着部17を介して気
密に固定されている。
Further, the second metal cylinder 2 has an external dimension on the optical signal introduction side.
It is finished small in advance, and the connecting tube 3 is inserted into this small external dimension up to the specified length dimension, and the second metal tube 2 and the connecting tube 3 are connected to each other in the middle of the length of the second metal tube 2. They are airtightly fixed at the joints via connecting welds 17 made of silver solder or the like.

このようにして一体化された第2の金属筒2と連結筒3
の内径側に光伝送路4が貫通しており、該光伝送路4は
、第2の金属筒2の内面と光伝送路4の外面との間で、
低融点封着ガラス等の接着剤7により固定され、これに
より、第2の金属筒2と光伝送路4とが気密に封止され
ている。
The second metal tube 2 and the connecting tube 3 integrated in this way
An optical transmission line 4 passes through the inner diameter side of the second metal cylinder 2, and the optical transmission line 4 is formed between the inner surface of the second metal tube 2 and the outer surface of the optical transmission line 4.
They are fixed with an adhesive 7 such as low-melting point sealing glass, thereby airtightly sealing the second metal tube 2 and the optical transmission path 4.

前述したような光半導体装置における光導入部の構造は
、光伝送路4、第2の金属筒2及び連結筒3による構造
体をガラス焼成炉に挿入して製造することができ、この
ような構造体を、第1の金属筒1の内側に挿入し、第1
の金属筒lと連結筒3の端面を溶接s15で溶接すれば
内部の半導体素子12を気密にした光半導体装置を形成
することができる。このため前述の従来技術による光半
導体装置は、作業性よく効率的にその組立てを行うこと
ができるという利点を有している。
The structure of the light introduction part in the optical semiconductor device as described above can be manufactured by inserting a structure including the optical transmission line 4, the second metal tube 2, and the connecting tube 3 into a glass firing furnace. Insert the structure inside the first metal cylinder 1, and
By welding the end faces of the metal cylinder l and the connecting cylinder 3 by welding s15, it is possible to form an optical semiconductor device in which the internal semiconductor element 12 is made airtight. Therefore, the optical semiconductor device according to the prior art described above has the advantage that it can be assembled efficiently with good workability.

なお、前述した従来技術において、半導体装置内部の半
導体素子12の受光部へ光信号を導く光伝送路の内部側
は、予め、受光部から第1の金属筒1の端面近傍まで配
置されており、この光伝送路の端面ば、前述した光伝送
路4、第2の金属筒2及び連結筒3による構造体を第1
の金属筒1に挿入したとき、該構造体の側の光伝送路4
の端面と突き合わされ、この突き合わせ部を介して、半
導体装置内部へ光信号を内部に導入することができる。
Note that in the above-mentioned conventional technology, the inside side of the optical transmission line that guides the optical signal to the light receiving part of the semiconductor element 12 inside the semiconductor device is arranged in advance from the light receiving part to the vicinity of the end surface of the first metal cylinder 1. , the end face of this optical transmission line is a structure including the optical transmission line 4, the second metal cylinder 2, and the connecting cylinder 3 described above.
When inserted into the metal tube 1 of the structure, the optical transmission line 4 on the side of the structure
An optical signal can be introduced into the semiconductor device through this abutting portion.

前述したような光駆動半導体装置に関する従来技術とし
て、例えば、特開昭58−215071号公報等に記載
された技術が知られている。
As a conventional technique related to the above-mentioned optically driven semiconductor device, for example, a technique described in Japanese Patent Application Laid-Open No. 58-215071 is known.

[発明が解決しようとする課題] 前述した従来技術は、光伝送路4を第2の金属筒2の内
側に、低融点封着ガラス7等で気密に接着する場合の接
着部8に対して、充分な配慮がなされておらず、この部
分の熱応力に対する強度上の問題点を有している。
[Problems to be Solved by the Invention] The above-mentioned conventional technology has problems with the bonding part 8 when the optical transmission line 4 is airtightly bonded to the inside of the second metal tube 2 with a low melting point sealing glass 7 or the like. However, sufficient consideration has not been given to this, and there is a problem in the strength of this part against thermal stress.

すなわち、前記従来技術は、第2の金属筒2の内側に光
伝送路4を挿入し、これらをガラス焼成炉に入れて、第
2の金属筒2の内側に光伝送路4を低融点ガラス7で接
着する際、第2の金属筒2と光伝送路4との間の間隙に
溶融ガラス7が、その軸方向に流れてしまうことがあり
、これにより接着部8が軸方向に不均一となり、この部
分の熱応力が不均一になってこの部分の曲げ強度が低下
し、半導体装置の信頼性を低下させるという問題点を有
している。
That is, in the prior art, the optical transmission line 4 is inserted inside the second metal cylinder 2, these are placed in a glass firing furnace, and the optical transmission line 4 is inserted inside the second metal cylinder 2 using low-melting glass. 7, the molten glass 7 may flow in the axial direction into the gap between the second metal tube 2 and the optical transmission line 4, which causes the bonded portion 8 to become uneven in the axial direction. Therefore, there is a problem in that the thermal stress in this part becomes non-uniform and the bending strength in this part decreases, thereby reducing the reliability of the semiconductor device.

本発明の目的は、前記従来技術の問題点を解決し、第2
の金属筒2と光伝送路4とのガラス封着部の接着長さを
、軸対称となるように、周方向、軸方向共に均一になる
ようにして、この部分の熱応力による曲げ強度の問題点
を解決し、信頼性の高い光導入部構造を有する光駆動半
導体装置を提供することにある。
The purpose of the present invention is to solve the problems of the prior art and to solve the problems of the prior art.
The length of the glass seal between the metal cylinder 2 and the optical transmission line 4 is made uniform in both the circumferential and axial directions so that the length is axially symmetrical, and the bending strength due to thermal stress in this part is reduced. The object of the present invention is to solve the problems and provide a light-driven semiconductor device having a highly reliable light introduction structure.

[課題を解決するための手段] 本発明によれば前記目的は、第2の金属筒2の内側に光
伝送路4を貫通させ、これらを低融点封着ガラス等の接
着剤7で接着する構造に関し、両者を接着させる軸長Ω
、の範囲にある第2の金属筒2の内径寸法D2と光伝送
路4の外径寸法DHとの相対寸法差D * −D Hを
他の部分より小さくし、溶融した低融点封着ガラスの、
この間隙内への流れ込みを、毛細管現象等により容易に
し、かつ、前記接着させる軸長Ω1の範囲外の第2の金
属筒2の内径寸法D2と光伝送路4の外径寸法DHとの
相対寸法差D * −D sを軸長Q、の部分より大き
くし、溶融した低融点封着ガラスを、表面張力によって
間隙の小さい部分で止めるようにして、この部分に流れ
込まないようにすることにより達成される。
[Means for Solving the Problems] According to the present invention, the object is to penetrate the optical transmission line 4 inside the second metal cylinder 2 and bond them with an adhesive 7 such as low melting point sealing glass. Regarding the structure, the axial length Ω for bonding the two
The relative dimensional difference D*-D H between the inner diameter dimension D2 of the second metal tube 2 and the outer diameter dimension DH of the optical transmission line 4, which is in the range of , is made smaller than other parts, and the low melting point sealing glass is of,
The flow into this gap is facilitated by capillary phenomenon, etc., and the relative relationship between the inner diameter D2 of the second metal cylinder 2 outside the range of the axial length Ω1 to be bonded and the outer diameter DH of the optical transmission line 4 is made. By making the dimensional difference D*-Ds larger than the axial length Q, the molten low melting point sealing glass is stopped at a small gap due to surface tension and is prevented from flowing into this area. achieved.

[作 用] 第2の金属筒2と光伝送路4とを接着させる部分の、第
2の金属筒2の内径寸法り、と光伝送路4の外径寸法D
Hとの相対寸法差Da  DHを他の部分より小さくす
ることにより、この部分でのみ両者を接着するすること
ができる。
[Function] The inner diameter dimension of the second metal tube 2 and the outer diameter dimension D of the optical transmission line 4 at the part where the second metal tube 2 and the optical transmission line 4 are bonded together.
By making the relative dimensional difference Da DH with H smaller than other parts, it is possible to bond both parts only in this part.

本発明は、これにより、接着部分の軸長がΩ1で、均一
な接着部を得ることができ、また、前記間隙の大きい部
分に溶融ガラスが流れた場合にも、人員の溶融ガラスが
流れ込むことがなく、この部分で第2の金属筒2の内側
と光伝送路4とが接着することを防止することができる
According to the present invention, it is thereby possible to obtain a uniform bonded part with an axial length of Ω1, and also to prevent the molten glass of personnel from flowing into the large gap. Therefore, it is possible to prevent the inside of the second metal tube 2 and the optical transmission path 4 from adhering at this portion.

[実施例] 以下、本発明による光駆動半導体装置の実施例を図面に
より詳細に説明する。
[Example] Hereinafter, an example of the optically driven semiconductor device according to the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1の実施例の構造を示す断面図、第
2図はその要部拡大断面図、第3図、第4図は組み立て
前の光導入部の断面図である。第1図〜第4図において
、101は第2の金属筒、102は接着部、103は非
接着部であり、他の符号は第7図、第8図の場合と同一
である。
FIG. 1 is a cross-sectional view showing the structure of a first embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of the main part thereof, and FIGS. 3 and 4 are cross-sectional views of the light introducing section before assembly. In FIGS. 1 to 4, 101 is a second metal tube, 102 is a bonded portion, and 103 is a non-bonded portion, and other symbols are the same as in FIGS. 7 and 8.

本発明の第1の実施例は、第2図、第4図に示すように
、第2の金属筒101の内径が、2種の寸法を持って構
成されている点に特徴を有する。
The first embodiment of the present invention is characterized in that the second metal tube 101 has two different inner diameters, as shown in FIGS. 2 and 4.

すなわち、本発明による第2の金属筒101は、第2の
金属筒101と光伝送路4とを、低融点封着ガラス等の
接着剤7で接着固定する接着部102の軸長Q、の範囲
を予め決定しておき、この部分の第2の金属筒101の
内径が他の部分より小さくなるように形成される。この
ため、この部分の第2の金属筒101の内面と光伝送路
4との間の間隙は、他の非接着部103となる部分より
小さくなり、溶融した封着ガラス等の接着剤7は、毛細
管現象等により、流れ込みやすくなる。
That is, the second metal cylinder 101 according to the present invention has an axial length Q of the adhesive part 102 that adhesively fixes the second metal cylinder 101 and the optical transmission path 4 with the adhesive 7 such as low melting point sealing glass. A range is determined in advance, and the second metal cylinder 101 is formed so that the inner diameter of this part is smaller than that of other parts. Therefore, the gap between the inner surface of the second metal cylinder 101 and the optical transmission path 4 in this part is smaller than that in the other non-adhesive parts 103, and the adhesive 7 such as molten sealing glass is , it becomes easier to flow in due to capillary action, etc.

一方、第2の金属筒101と光伝送路4との接着を行わ
ない非接着部103は、第2の金属筒101の内径が前
記接着部102の部分より大きく生成されている。この
結果、非接着部103の軸長範囲は、第2の金属筒10
1の内面と光伝送路4との間の相対寸法差が、接着部1
02より大きくなり、これにより生じる間隙部には、溶
融した封着ガラスが流れ込むことがなく、この部分で第
2の金属筒101と光伝送路4とが接着されることはな
い。
On the other hand, in the non-bonded part 103 where the second metal cylinder 101 and the optical transmission path 4 are not bonded, the inner diameter of the second metal cylinder 101 is larger than that of the bonded part 102. As a result, the axial length range of the non-bonded portion 103 is
The relative size difference between the inner surface of the adhesive part 1 and the optical transmission line 4 is
02, and the molten sealing glass does not flow into the gap created by this, and the second metal cylinder 101 and the optical transmission path 4 are not bonded together in this gap.

すなわち、本発明による第2の金属筒101と光伝送路
4との接着は、第2の金属筒101と光伝送路4との間
隙の小さい部分に、溶融した封着がラスが毛細管現象に
より均一に流れ込むことにより行われる。そして、前記
間隙の大きい部分に対しては、溶融した封着ガラスは、
その表面張力により流れ込むことがなく、また、万−流
れ込んだ場合にも、両部材間の間隙が大きいので、両部
材がこの部分で接着固定されることがない。
That is, in the bonding between the second metal cylinder 101 and the optical transmission line 4 according to the present invention, the molten seal is bonded to the small gap between the second metal cylinder 101 and the optical transmission line 4 by capillary action. This is done by flowing evenly. Then, for the part with the large gap, the molten sealing glass is
The surface tension prevents it from flowing in, and even if it does, the gap between the two members is so large that the two members will not be adhesively fixed in this area.

なお、前述した接着剤7として用いる低融点封着ガラス
は、その熱膨張係数が光伝送路4を構成するガラスの熱
膨張係数と近い値のものである。
The low melting point sealing glass used as the adhesive 7 described above has a coefficient of thermal expansion close to that of the glass constituting the optical transmission path 4.

前述した本発明の第1の実施例において、接着部102
における第2の金属筒101の内径と光伝送路4の外径
との差による間隙は、前述した実施例では、溶融した封
着ガラスが毛細管現象により流れ込む程度に小さいとし
たが、それほど小さくする必要はなく、非接着部の間隙
より小さければよい。
In the first embodiment of the present invention described above, the adhesive part 102
The gap due to the difference between the inner diameter of the second metal cylinder 101 and the outer diameter of the optical transmission line 4 is assumed to be small enough in the above-mentioned embodiment to allow the molten sealing glass to flow in due to capillary action, but it should not be made that small. It is not necessary, and it is sufficient if it is smaller than the gap between the non-bonded parts.

前述した本発明の第1の実施例によれば、第4図に示す
ように、第2の金属筒101と光伝送路4とを固定する
接着部102の軸長範囲を規定の長さに均一に作成する
ことができ、その結果、熱応力に対するガラス封着部の
強度信頼性の高い光導入部の構造を得ることができる。
According to the first embodiment of the present invention described above, as shown in FIG. It can be made uniformly, and as a result, it is possible to obtain a structure of the light introduction part with high reliability in the strength of the glass sealing part against thermal stress.

なお、第4図に示すように作成された光導入部の構造体
は、第3図に示すように、絶縁外囲器5に貫通して、金
属接着層6により接着固定されている第1の金属筒1の
内部に挿入され、該第1の金属筒1の端面と連結筒3の
端面とを溶接部15により気密に封着することにより、
光駆動半導体装置に組み立てられる。
Note that the structure of the light introduction part created as shown in FIG. The first metal tube 1 is inserted into the inside of the metal tube 1, and the end surface of the first metal tube 1 and the end surface of the connecting tube 3 are hermetically sealed by the welding part 15.
assembled into a light-driven semiconductor device.

第5図は本発明の第2の実施例の構造を示す断面図であ
る。第5図において、16は溜り部であり、他の符号は
第1図〜第4図の場合と同一である。
FIG. 5 is a sectional view showing the structure of a second embodiment of the present invention. In FIG. 5, 16 is a reservoir, and other symbols are the same as in FIGS. 1 to 4.

この本発明の第2の実施例による光導入部の構造体は、
第2の金属筒101の軸方向の一部分の内径部に矩形状
の溜り部16を設け、さらに、前述した本発明の第1の
実施例の場合と同様に、第2の金属筒1 ’Olと光伝
送路4とを、低融点封着ガラス等の接着剤7で接着固定
する接着部102の軸長Q、の範囲を予め決定しておき
、この部分の第2の金属筒101の内径が前記溜り部よ
り小さくなるように形成したものである。
The structure of the light introduction part according to the second embodiment of the present invention is as follows:
A rectangular reservoir 16 is provided in the inner diameter part of a portion of the second metal cylinder 101 in the axial direction, and further, as in the case of the first embodiment of the present invention described above, the second metal cylinder 101 The range of the axial length Q of the adhesive part 102 for adhesively fixing the optical transmission path 4 and the optical transmission line 4 with the adhesive 7 such as low melting point sealing glass is determined in advance, and the inner diameter of the second metal cylinder 101 in this part is determined in advance. is formed so that it is smaller than the reservoir.

このような本発明の第2の実施例は、第2の金属筒lo
tと光伝送路4とを、低融点封着ガラス等によって固定
する場合、接着部102を所定の均一な軸長島とするこ
とができ、前述した本発明の第1の実施例と同様な効果
を奏することができる。
Such a second embodiment of the present invention has a second metal cylinder lo
t and the optical transmission path 4 are fixed with low-melting point sealing glass or the like, the adhesive portion 102 can be made into a predetermined uniform axially long island, and the same effect as in the first embodiment of the present invention described above can be obtained. can be played.

第6図は本発明の第3の実施例の構造を示す断面図であ
る。第6図において、104は間隙部であり、他の符号
は第1図〜第4図の場合と同一である。
FIG. 6 is a sectional view showing the structure of a third embodiment of the present invention. In FIG. 6, 104 is a gap, and other symbols are the same as in FIGS. 1 to 4.

この本発明の第3の実施例は、第2の金属筒101と光
伝送路4とを低融点封着ガラス等によって封着固定する
接着部102の部分の、軸方向の一部に比較的短いより
小さな間隙部104を構成したものである。
In the third embodiment of the present invention, a relatively large portion in the axial direction of the adhesive portion 102 that seals and fixes the second metal cylinder 101 and the optical transmission line 4 with a low-melting point sealing glass or the like is provided. A shorter and smaller gap 104 is configured.

この本発明の第3の実施例は、溶融した封着ガラスが、
前述した小さな間隙部104に、毛細管現象により流れ
込み、また、その表面張力により、封着ガラスが前記小
さな間隙部104の外部に流れ出すことがないので、軸
方向に均一な軸長Ω。
In this third embodiment of the present invention, the molten sealing glass is
The sealing glass flows into the aforementioned small gap 104 by capillary action, and its surface tension prevents the sealing glass from flowing out of the small gap 104, so that the axial length Ω is uniform in the axial direction.

の接着部102を得ることができ、前述した本発明の第
1、第2の実施例と同様な効果を奏することができる。
The adhesive portion 102 can be obtained, and the same effects as in the first and second embodiments of the present invention described above can be achieved.

[発明の効果] 以上説明したように本発明によれば、光駆動半導体装置
における。外部から光信号を導入する光伝送路を、第2
の金属筒の内径側に、軸対称状に気密に接着することが
でき、接着軸長を全周均一とすることができるので、熱
応力による曲げモーメントがガラス封着部に作用しなく
なり、この光導入部の強度信頼性の向上を図ることがで
きる。
[Effects of the Invention] As explained above, according to the present invention, an optically driven semiconductor device is provided. The optical transmission line that introduces optical signals from the outside is
It can be airtightly bonded to the inner diameter side of the metal cylinder in an axially symmetrical manner, and the length of the bonding axis can be made uniform all around the circumference, so the bending moment due to thermal stress will not act on the glass sealing part. It is possible to improve the strength and reliability of the light introducing section.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の構造を示す断面図、第
2図はその要部拡大断面図、第3図、第4図は組み立て
前の光導入部の断面図、第5図は本発明の第2の実施例
の構造を示す断面図、第6図は本発明の第3の実施例の
構造を示す断面図、第7図は従来技術の構造を示す断面
図、第8図は要部拡大断面図である。 l・・・・・・第1の金属筒、2、lOl・・・・・・
第2の金属筒、3・・・・・・連結筒、4・・・・・・
光伝送路、5・・・・・・絶縁外囲器、6・・・・・・
金属接着層、7・・・・・・接着剤、8・・・・・・接
着部、10・・・・・・カソード外部電極、11・・・
・・・アノード外部電極、12・・・・・・サイリスタ
素子、14・・・・・・カソード側緩衝板、16・・・
・・・溜り部、18〜20・・・・・・金属フランジ、
102・・・・・・接着部、103・・・・・・非接着
部、104・・・・・・間隙部。 第6図 第2図 蔦 4 図 第 5 図 第 図 02 第 図 0 8 第 図
FIG. 1 is a sectional view showing the structure of the first embodiment of the present invention, FIG. 2 is an enlarged sectional view of the main part thereof, FIGS. 6 is a sectional view showing the structure of the third embodiment of the present invention, FIG. 7 is a sectional view showing the structure of the prior art, and FIG. FIG. 8 is an enlarged sectional view of the main part. l...First metal cylinder, 2, lOl...
Second metal tube, 3... Connection tube, 4...
Optical transmission line, 5...Insulating envelope, 6...
Metal adhesive layer, 7...Adhesive, 8...Adhesive part, 10...Cathode external electrode, 11...
... Anode external electrode, 12 ... Thyristor element, 14 ... Cathode side buffer plate, 16 ...
...Reservoir, 18-20...Metal flange,
102...Adhesive part, 103...Non-adhesive part, 104...Gap part. Figure 6 Figure 2 Ivy 4 Figure 5 Figure 02 Figure 0 8 Figure

Claims (1)

【特許請求の範囲】 1、光信号によって作動する半導体素子と、該半導体素
子を気密封止する絶縁外囲器と、該外囲器を貫通して接
着され、その内部に光伝送路を通す金属筒とを備えた光
駆動半導体装置において、前記金属筒の内面と光伝送路
とを、所定の均一の接着長さとなるように接着したこと
を特徴とする光駆動半導体装置。 2、前記金属筒は、その内面の光伝送路と接着される部
分の内径寸法が、他の部分より小さく形成されることを
特徴とする特許請求の範囲第1項記載の光駆動半導体装
置。 3、前記金属筒は、その内面の光伝送路と接着される部
分に隣接して、その内径寸法が接着される部分より大き
い溜り部分を備えて形成されることを特徴とする特許請
求の範囲第1項または第2項記載の光駆動半導体装置。 4、前記金属筒は、その内面の光伝送路と接着される部
分の軸長の一部に、その内径寸法と光伝送路の外径寸法
との寸法差による間隙が極めて小さくなる部分を備えて
形成されることを特徴とする特許請求の範囲第1項また
は第2項記載の光駆動半導体装置。 5、前記金属筒の内面と光伝送路との接着は、光伝送路
の熱膨張係数とほぼ同一の熱膨張係数を有する接着剤に
より行われることを特徴とする特許請求の範囲第1項な
いし第4項のうち1項記載の光駆動半導体装置。
[Claims] 1. A semiconductor element operated by an optical signal, an insulating envelope that hermetically seals the semiconductor element, and an optical transmission line that is bonded to penetrate the envelope and pass an optical transmission line inside it. What is claimed is: 1. An optically driven semiconductor device comprising a metal cylinder, wherein the inner surface of the metal cylinder and an optical transmission path are bonded to each other so as to have a predetermined uniform adhesive length. 2. The optically driven semiconductor device according to claim 1, wherein the inner diameter of the inner surface of the metal tube is smaller at a portion bonded to the optical transmission path than at other portions. 3. The metal tube is formed with a reservoir portion on its inner surface adjacent to the portion to be bonded to the optical transmission path, the inner diameter of which is larger than the portion to be bonded. The optically driven semiconductor device according to item 1 or 2. 4. The metal cylinder has a part of the axial length of the inner surface of the part to be bonded to the optical transmission line, which has a part where the gap due to the dimensional difference between the inner diameter dimension and the outer diameter dimension of the optical transmission line becomes extremely small. The optically driven semiconductor device according to claim 1 or 2, characterized in that the device is formed by: 5. The inner surface of the metal cylinder and the optical transmission line are bonded together using an adhesive having a coefficient of thermal expansion that is substantially the same as that of the optical transmission line. The optically driven semiconductor device according to item 1 of item 4.
JP1361690A 1990-01-25 1990-01-25 Light-drive semiconductor device Pending JPH03219675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1361690A JPH03219675A (en) 1990-01-25 1990-01-25 Light-drive semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1361690A JPH03219675A (en) 1990-01-25 1990-01-25 Light-drive semiconductor device

Publications (1)

Publication Number Publication Date
JPH03219675A true JPH03219675A (en) 1991-09-27

Family

ID=11838164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1361690A Pending JPH03219675A (en) 1990-01-25 1990-01-25 Light-drive semiconductor device

Country Status (1)

Country Link
JP (1) JPH03219675A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621237A (en) * 1994-04-12 1997-04-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
EP0677879B1 (en) * 1994-04-12 1999-06-09 Mitsubishi Denki Kabushiki Kaisha Light trigger type semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621237A (en) * 1994-04-12 1997-04-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
EP0677879B1 (en) * 1994-04-12 1999-06-09 Mitsubishi Denki Kabushiki Kaisha Light trigger type semiconductor device

Similar Documents

Publication Publication Date Title
JPH0480543B2 (en)
JP2614018B2 (en) Hermetic sealing structure and hermetic sealing method for optical fiber introduction section
CA1081370A (en) Package for light-triggered thyristor
US6841731B1 (en) Terminal assembly
US4168883A (en) Arrangement to connect a laser to an optical fiber transmission line
JPH0763957A (en) Hermetic sealing structure of optical fiber introducing part
JPH01284807A (en) Optical fiber through part and manufacture thereof
JPS63284509A (en) Harmetic seal fixing mechanism of glass fiber and manufacture thereof
US7027705B2 (en) Optical fiber feed-through
JPH03219675A (en) Light-drive semiconductor device
US4292464A (en) Glass pass through with an additional insulator for lengthening leakage path
JPH0792335A (en) Structure of hermetic sealing part of optical fiber
JPH0142508B2 (en)
JPH10241622A (en) Electronic tube
JPH038057B2 (en)
JPH04124878A (en) Light driving semiconductor device
JPH1074576A (en) Discharge electrode for ion generating apparatus
JPH0440288Y2 (en)
JP3530757B2 (en) Hermetic structure of optical fiber ferrule
JPS5949708B2 (en) Optical semiconductor device
JPH0117221B2 (en)
JP3626312B2 (en) Electron tube
JP2845043B2 (en) Hermetically sealed structure of optical fiber introduction section
JPS5934662A (en) Photo direct ignition thyristor
JPS61116305A (en) Flat type optical driving semiconductor device