JPH0142180B2 - - Google Patents

Info

Publication number
JPH0142180B2
JPH0142180B2 JP8106779A JP8106779A JPH0142180B2 JP H0142180 B2 JPH0142180 B2 JP H0142180B2 JP 8106779 A JP8106779 A JP 8106779A JP 8106779 A JP8106779 A JP 8106779A JP H0142180 B2 JPH0142180 B2 JP H0142180B2
Authority
JP
Japan
Prior art keywords
signal
modulation
output signal
digital
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8106779A
Other languages
Japanese (ja)
Other versions
JPS564961A (en
Inventor
Shigeaki Ogose
Masaharu Hata
Kazuaki Murota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8106779A priority Critical patent/JPS564961A/en
Publication of JPS564961A publication Critical patent/JPS564961A/en
Publication of JPH0142180B2 publication Critical patent/JPH0142180B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明はデイジタル周波数変調方式(MSKを
含む変調指数0.5の位相連続FSK方式)において、
送信信号に強い帯域制限を受ける場合にも、変復
調系の持つ本質的特性を利用して符号間干渉、雑
音等による識別誤り率の劣化を小さく抑える変復
調方式に関するものである。
[Detailed description of the invention] (Technical field to which the invention pertains) The present invention relates to a digital frequency modulation method (phase continuous FSK method with a modulation index of 0.5 including MSK).
The present invention relates to a modulation and demodulation method that uses the essential characteristics of the modulation and demodulation system to suppress deterioration of the identification error rate due to intersymbol interference, noise, etc., even when the transmitted signal is subject to strong band limitations.

(従来技術の説明) デイジタル周波数変調信号の復調法として、受
信信号と、この受信信号をある一定時間だけ遅延
させた信号とを正弦位相比較器により復調する方
式は、遅延検波方式として公知であり、回路構成
が簡単であることから広く用いられている。
(Description of Prior Art) As a method for demodulating digital frequency modulation signals, a method in which a received signal and a signal obtained by delaying the received signal by a certain period of time are demodulated using a sine phase comparator is known as a delayed detection method. , is widely used because of its simple circuit configuration.

ところで各チヤンネル毎に搬送波を送出する
SCPC形式の無線通信では、周波数有効利用のた
めに占有帯域幅の狭小化と帯域外幅射の抑圧が絶
対的条件となつている。この条件を満足させるた
めには、送信側で基底帯域、もしくは搬送波帯で
の帯域制限を行う必要がある。このとき、受信側
で従来の正弦位相比較を行う遅延検波を用いる
と、位相遷移が不十分となり受信特性を大きく劣
化させる。
By the way, a carrier wave is sent out for each channel.
In SCPC-style wireless communication, narrowing the occupied bandwidth and suppressing out-of-band radiation are essential conditions for effective frequency utilization. In order to satisfy this condition, it is necessary to limit the base band or carrier band on the transmitting side. At this time, if conventional delay detection that performs sine phase comparison is used on the receiving side, the phase transition will be insufficient and the reception characteristics will be significantly degraded.

一方、熱雑音が存在する場合に復調特性を改善
するため、正弦位相比較と余弦位相比較との符号
拘束を利用する誤り訂正による方式が提案されて
いるが(特願昭51−116271、特願昭53−100882)、
この方式も強い帯域制限が行われるとその改善効
果が失われる。
On the other hand, in order to improve demodulation characteristics in the presence of thermal noise, an error correction method using code constraint between sine phase comparison and cosine phase comparison has been proposed (Japanese Patent Application No. 51-116271, (Sho 53-100882),
This method also loses its improvement effect if strong band limitation is performed.

(発明の目的) 本発明はこれらの欠点を除くもので、送信信号
に強い帯域制限が行われても、識別誤り率の劣化
の小さい変復調方式を提供することを目的とす
る。
(Objective of the Invention) The present invention eliminates these drawbacks, and aims to provide a modulation/demodulation method in which the identification error rate is less degraded even when a transmission signal is strongly band-limited.

(発明の特徴) 本発明は送信側においてはデータ符号1ビツト
の和分論理変換を施した後にその変換出力を基底
帯域制限フイルタを通して周波数変調を行い、か
つ受信側では一定の遅延時間のもとで余弦位相比
較により遅延検波を行い、復号化を行うことを特
徴とするもので、強い送信帯域制限及び受信帯域
制限により、通常の正弦位相比較による方式では
識別が不能とされるような大きな符号間干渉のも
とでも、正常な信号識別を可能にする変復調方式
である。
(Characteristics of the Invention) The present invention performs summation logic conversion on one bit of data code on the transmitting side, and then frequency-modulates the converted output through a baseband limiting filter, and on the receiving side, it performs frequency modulation under a certain delay time. It is characterized by performing delayed detection using cosine phase comparison and decoding.Due to strong transmission and reception band restrictions, it is possible to detect large codes that cannot be identified using the normal sine phase comparison method. This is a modulation/demodulation method that enables normal signal identification even under interference between signals.

(原理の説明) 本発明方式の動作原理を、簡単のため変調指数
0.5のデイジタル周波数変調信号としてMSK信号
を例にとつて説明する。
(Explanation of the principle) For simplicity, the operating principle of the method of the present invention will be explained using the modulation index.
An explanation will be given using an MSK signal as an example of a 0.5 digital frequency modulation signal.

一般に位相連続FSK方式、すなわちデイジタ
ル周波数変調方式では送信波s(t)は次のよう
に表わすことができる。
Generally, in the phase continuous FSK method, that is, the digital frequency modulation method, the transmitted wave s(t) can be expressed as follows.

s(t)=Acos{2π fc t+φm(t)} φn(t)=mπ/T∫t -∞∞n al・g(t−nT)dt ただしal:データ符号列0、1に対応し−1、
+1をとる変数 g(t):変調器入力端子におかれた基底帯域フ
イルタのインパルスレスボンス m:変調指数(=2△fdT)、△fd:周波数偏
移、T:データ符号のくり返し周期 fc:中心周波数 φn(t):瞬時位相推移 A :信号の尖頭値 変調指数m=0.5のMSKの場合にはg(t)は g(t)=1(0≦t≦T) 0(それ以外) となるから、変調波の位相は中心周波数fcの位相
に対し、T秒間に、データが1のときは直線的に
π/2だけ相対的に進み、データが0のときは直
線的にπ/2だけ相対的に遅れる関係にある。
s(t)=Acos {2π fc t+φm(t)} φ n (t)=mπ/T∫ t -∞∞n al・g(t−nT)dt where a l : Data code string 0, 1 Corresponding -1,
Variables that take +1 g(t): Impulse response of the baseband filter placed at the modulator input terminal m: Modulation index (=2△fdT), △fd: Frequency deviation, T: Data code repetition period f c : Center frequency φ n (t): Instantaneous phase shift A: Peak value of signal In the case of MSK with modulation index m = 0.5, g(t) is g(t) = 1 (0≦t≦T) 0 (Other than that) Therefore, when the data is 1, the phase of the modulated wave advances linearly by π/2 relative to the phase of the center frequency f c in T seconds, and when the data is 0, They are linearly delayed by π/2.

受信装置で受信信号と、受信信号をτ秒だけ遅
延させた信号とを、余弦位相比較した出力v(t)
は、次式のように表わされる。
Output v(t) obtained by comparing the cosine phase of the received signal and a signal obtained by delaying the received signal by τ seconds at the receiving device
is expressed as the following equation.

v(t)=cos{φn(t)−φn(t−τ)} ここで、 2π fc τ=2kπ(k:正の整数) を満足するものとする。 v(t)=cos {φ n (t)−φ n (t−τ)} Here, it is assumed that 2π f c τ=2kπ (k: positive integer) is satisfied.

次に位相φn(t)の変化について説明する。 Next, changes in phase φ n (t) will be explained.

第1図は位相連続FSK信号の相対位相の遷移
の様子を示し、横軸は時間、縦軸は相対位相であ
る。同図でm=0.5としたものがMSKに相当す
る。位相変化の折れ曲り点、すなわち時刻T、
2T、3T、…において帯域制限による符号間干渉
が生じる。第1図において一点鎖線は厳しい帯域
制限を受けた場合の位相遷移を示す。次にこのよ
うな厳しい帯域制限条件下における遅延検波出力
のアイパターンを調べることにより、余弦位相比
較遅延検波器の有効性を示す。
FIG. 1 shows the relative phase transition of a phase-continuous FSK signal, where the horizontal axis is time and the vertical axis is relative phase. In the figure, m=0.5 corresponds to MSK. The turning point of the phase change, that is, the time T,
Intersymbol interference occurs due to band limitation at 2T, 3T, etc. In FIG. 1, the dashed-dotted line indicates a phase transition when severe band limitation is applied. Next, by examining the eye pattern of the differential detection output under such severe band-limiting conditions, we demonstrate the effectiveness of the cosine phase comparison differential detector.

第2図は変調指数0.5のデイジタル周波数変調
信号に対する検波出力のアイパターンを示す。
FIG. 2 shows the eye pattern of the detection output for a digital frequency modulated signal with a modulation index of 0.5.

本発明ではτ=Tあるいは2Tとする。第2図
aは従来から遅延検波として用いられている遅延
時間τ=Tの正弦位相比較、同bは同じく余弦位
相比較、同cはτ=2Tの余弦位相比較について、
各遅延検波出力のアイパターンを示す。それぞれ
送信ベースバンド帯域制限用ガウス型ローパスフ
イルタの規格化3dB帯域幅(BbT)の値を0.25、
受信帯域制限の規格化3dB帯域幅(BT)の値を
1.25とした場合である。強い帯域制限にもとづく
符号間干渉で、正弦位相比較のアイパターンは劣
化しているが、余弦位相比較のアイパターンは十
分開いていることが示される。
In the present invention, τ=T or 2T. Figure 2a shows a sine phase comparison with a delay time τ = T, which has been conventionally used in delay detection, Figure 2b shows a cosine phase comparison, and Figure 2c shows a cosine phase comparison with a delay time τ = 2T.
The eye pattern of each differential detection output is shown. The normalized 3dB bandwidth (BbT) value of the Gaussian low-pass filter for transmitting baseband band limitation is 0.25,
The normalized 3dB bandwidth (BT) value of the reception band limit is
This is the case when it is set to 1.25. It is shown that the eye pattern for sine phase comparison is degraded due to intersymbol interference due to strong band limitation, but the eye pattern for cosine phase comparison is sufficiently open.

これから、正弦位相比較による遅延検波は強い
帯域制限による符号間干渉を受けやすいが、余弦
位相比較による遅延検波は帯域制限による符号間
干渉を受けにくいことがわかる。
From this, it can be seen that differential detection using sine phase comparison is susceptible to intersymbol interference due to strong band limitations, but delayed detection using cosine phase comparison is less susceptible to intersymbol interference due to band limitations.

なお、第2図において(n―1/2)T、(n+ 1/2)T、(n+3/2)Tがデータの遷移点であり
、 本発明では第2図b、すなわちτ=Tの場合に
は、データの遷移点で最もアイパターンの開度が
大きくなるのでこの点で識別判定し、同図cすな
わちτ=2Tの場合には、データの遷移点の中間
点(n−1)T、nT、(n+1)T、…において
最もアイパターンの開度が大きくなるのでこの点
で識別判定する。この際、識別判定のための電位
差を第2図にE1,E2及びE3で示す。
In Figure 2, (n-1/2)T, (n+1/2)T, and (n+3/2)T are data transition points, and in the present invention, Figure 2b, that is, τ=T, is the transition point of data. In this case, the opening degree of the eye pattern is the largest at the data transition point, so identification is determined at this point. In the case of c in the figure, that is, τ = 2T, the middle point (n-1) of the data transition points is used. Since the opening degree of the eye pattern is the largest at T, nT, (n+1)T, . . ., identification is determined at this point. At this time, the potential differences for identification determination are shown as E 1 , E 2 and E 3 in FIG.

ここで、識別時点における位相差φn(t)−φn
(t−τ)を調べる。まず、τ=Tとしたとき、
第2図からt=(n+1/2)T(n:整数)で識別 するから、識別点における位相差は 同様に、τ=2Tでは識別点t=nT(n:整数)
における位相差は φn(t)−φn(t−T)|t=oT =mπ/T〔∫nT (o-1)Tao.dt+∫(n-1)T (o-2)Tao−1
dt〕 =mπ〔ao≠ao-1〕 =0(ao≠ao-1) ±(ao=ao-1) となる。従つて、τ=T及びτ=2Tのそれぞれ
に対する余弦位相比較出力v(t)は 及び v(t)|t=oT=1(ao≠ao-1) −1(ao=ao-1) となり、2値識別できる。
Here, the phase difference φ n (t)−φ n at the time of identification
Examine (t-τ). First, when τ=T,
From Figure 2, since we identify by t=(n+1/2)T (n: integer), the phase difference at the identification point is Similarly, when τ=2T, the discrimination point t=nT (n: integer)
The phase difference at is φ n (t) − φ n (t − T) | t=oT = mπ/T [∫ nT (o-1)T a o . dt+∫ (n-1)T (o-2)T a o −1
dt] = mπ [a o ≠ a o-1 ] = 0 (a o ≠ a o-1 ) ±(a o = a o-1 ). Therefore, the cosine phase comparison output v(t) for each of τ=T and τ=2T is and v(t) | t=oT = 1 (a o ≠ a o-1 ) −1 ( a o = a o-1 ), and binary identification is possible.

ところで、余弦位相比較を行う遅延検波におい
て検波されたデータ符号列をdnとすれば、dnは
変調データ符号列bnとの間に dn=bnbo-1 (はmod.2の加算を示す。) の関係が存在する。ただしbo-1はboを1ビツトだ
け遅延したものである。したがつて、検波された
データ符号列を送信データ符号列と一致させるた
めには、送信データ符号列にあらかじめ1ビツト
の和分論理変換を施したものを変調データ符号列
にして、デイジタル周波数変調信号として送信し
なければならない。このとき、送信データ符号列
をaoとするaoとboの間には bo=aobo-1 の関係を有する。
By the way, if the data code string detected in delayed detection that performs cosine phase comparison is dn, then dn is between modulated data code string bn and dn=bnb o-1 (indicates addition of mod.2). A relationship exists. However, b o-1 is b o delayed by one bit. Therefore, in order to match the detected data code string with the transmitted data code string, the transmitted data code string is subjected to 1-bit summation logic conversion in advance, which is then converted into a modulated data code string, and then digital frequency modulation is performed. Must be sent as a signal. At this time, there is a relationship between a o and bo , where a o is the transmission data code string, and b o = a o b o-1 .

(実施例による説明) 第3図及び第4図は本発明の実施例装置のブロ
ツク構成図である。まず第3図に示す送信装置に
ついて説明する。データ符号列発生器1の信号出
力は排他的論理和回路2の一方の入力端子に入力
され、その信号出力は二分され、一方は1ビツト
遅延回路3に入り、この回路により遅延された出
力信号は、排他的論理和回路2のもう一方の入力
端子に入力される。2及び3は1ビツトの和分論
理変換回路を構成している。二分された排他的論
理和回路2の信号出力のもう一方は、送信ベース
バンド帯域制限フイルタ4を介してFM変調器5
に入力される。搬送波発生器6の出力はFM変調
器5に与えられ、送信ベースバンド帯域制限フイ
ルタの出力信号によつて、変調指数0.5でFM変調
され、デイジタル周波数変調信号出力として送信
アンテナ7から送信される。
(Explanation based on an embodiment) FIGS. 3 and 4 are block diagrams of an apparatus according to an embodiment of the present invention. First, the transmitting device shown in FIG. 3 will be explained. The signal output of the data code string generator 1 is input to one input terminal of the exclusive OR circuit 2, and the signal output is divided into two, one of which enters a 1-bit delay circuit 3, and the output signal delayed by this circuit. is input to the other input terminal of the exclusive OR circuit 2. 2 and 3 constitute a 1-bit summation logic conversion circuit. The other half of the signal output of the exclusive OR circuit 2 is sent to the FM modulator 5 via the transmission baseband band limiting filter 4.
is input. The output of the carrier wave generator 6 is applied to the FM modulator 5, where it is FM modulated with a modulation index of 0.5 by the output signal of the transmission baseband band limiting filter, and is transmitted from the transmission antenna 7 as a digital frequency modulation signal output.

次に、第4図に示す受信装置について説明す
る。受信アンテナ15により受信された受信信号
は受信機16に入り、その出力は余弦位相比較遅
延検波系に入る。すなわち、受信機16の信号出
力は二分され、一方は遅延回路17に入る。この
回路により遅延された受信機信号出力と受信機1
6の出力信号は乗算機18に与えられて、余弦位
相比較され、その信号出力は、低域フイルタ19
に入る。この低域フイルタ19の出力、すなわち
余弦位相比較遅延検波出力は識別発生器20に入
り、符号再生出力21を得る。
Next, the receiving device shown in FIG. 4 will be explained. The received signal received by the receiving antenna 15 enters the receiver 16, and its output enters a cosine phase comparison delay detection system. That is, the signal output of the receiver 16 is divided into two, one of which enters the delay circuit 17. Receiver signal output delayed by this circuit and receiver 1
The output signal of 6 is given to a multiplier 18 for cosine phase comparison, and the signal output is sent to a low pass filter 19.
to go into. The output of this low-pass filter 19, ie, the cosine phase comparison delayed detection output, is input to a discrimination generator 20 to obtain a code reproduction output 21.

ここで、遅延回路17の遅延時間は変調指数及
びデータの繰り返し周期と前述の関係を有するも
のとし、識別発生器20における識別タイミング
は遅延時間に対応して前述した時点に設定され
る。
Here, it is assumed that the delay time of the delay circuit 17 has the above-mentioned relationship with the modulation index and the data repetition period, and the identification timing in the identification generator 20 is set at the above-described time point corresponding to the delay time.

このような装置による動作測定結果の一例につ
いて、従来例装置と比較して説明する。第5図
は、変調指数m=0.5のデイジタル周波数変調信
号に対して、上記実施例による余弦位相比較遅延
検波方式と、従来例装置の正弦位相比較遅延検波
方式との特性比較を示す。第5図aは従来例の正
弦位相比較遅延検波方式によるもので、受信遅延
回路の遅延時間τは1ビツト分Tである。第2図
b及びcは上記実施例によるもので、受信遅延回
路17の遅延時間τは、同図bについては1ビツ
ト分T、同図cについては2ビツト分2Tである。
An example of operation measurement results obtained by such an apparatus will be explained in comparison with a conventional apparatus. FIG. 5 shows a comparison of characteristics between the cosine phase comparison delay detection method according to the above embodiment and the sine phase comparison delay detection method of the conventional device for a digital frequency modulation signal with a modulation index m=0.5. FIG. 5a shows a conventional sine phase comparison delay detection system, in which the delay time τ of the reception delay circuit is T for one bit. 2B and 2C are based on the above embodiment, and the delay time .tau. of the reception delay circuit 17 is T for 1 bit in FIG. 2B and 2T for 2 bits in FIG. 2C.

第5図の横軸は装置ベースバンド帯域制限の規
格化3dB帯域幅(BbT)の逆数を示す。縦軸は誤
り率10-3を得るために必要な1ビツト当りの信号
エネルギ対雑音密度Eb/Noの値を示している。
なお受信帯域制限の規格化3dB帯域幅BT=1.25
でありビツトレートは16kbpsである。
The horizontal axis in FIG. 5 represents the reciprocal of the normalized 3 dB bandwidth (BbT) of the device baseband band limit. The vertical axis indicates the value of the signal energy to noise density Eb/No per bit required to obtain an error rate of 10 -3 .
In addition, the normalized 3dB bandwidth BT of reception band limit = 1.25
The bit rate is 16kbps.

この図が示すように、強い送信ベースバンド帯
域制限を行つた場合には、従来の正弦位相比較遅
延検波に比べて余弦位相比較遅延検波の特性が優
れていることは明確である。また送信ベースバン
ド帯域制限を行わない場合にもτ=2Tとした余
弦位相比較遅延検波が、正弦位相比較遅延検波よ
りも優れていることがわかる。
As shown in this figure, it is clear that when strong transmission baseband band limitation is performed, the characteristics of cosine phase comparison differential detection are superior to conventional sine phase comparison differential detection. It can also be seen that cosine phase comparison differential detection with τ = 2T is superior to sine phase comparison differential detection even when the transmission baseband band is not limited.

(発明の効果) 以上説明したように、本発明による変調方式を
用いることにより、送信側で強い帯域制限を受け
る場合にも符号間干渉、または雑音による識別誤
り率の劣化を小さくし、良好な通信品質を確保す
ることができる。また受信側においても、より強
い帯域制限を許容することができるため、より高
い信号対雑音比で遅延検波の識別が可能となり、
通信品質が向上する優れた効果がある。
(Effects of the Invention) As explained above, by using the modulation method according to the present invention, even when the transmitting side is subject to strong band limitation, the deterioration of the identification error rate due to intersymbol interference or noise can be reduced, and a good result can be achieved. Communication quality can be ensured. Also, on the receiving side, stronger band limitations can be tolerated, making it possible to identify delayed detection with a higher signal-to-noise ratio.
This has the excellent effect of improving communication quality.

この方式は移動無線方式及び固定無線方式な
ど、限定された周波数帯域で通信を行う方式のほ
か、一般に広く応用することができる。
This system can be widely applied in general, in addition to systems that communicate in a limited frequency band, such as mobile wireless systems and fixed wireless systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はデイジタル周波数変調信号の位相遷移
特性例を示す図。第2図は強い帯域制限下の遅延
検波出力のアイパターンの例。第3図は本発明の
実施例送信装置のブロツク構成図。第4図は本発
明の実施例受信装置のブロツク構成図。第5図は
復調された信号の送信ベースバンド帯域制限の
(BT)-1対所要Eb/No特性の実施例を示す図。 1…データ符号列発生器、2…排他的論理和回
路、3…1ビツト遅延回路、4…送信ベースバン
ド帯域制限フイルタ、5…FM変調器、6…搬送
波発生器、7…送信アンテナ、15…受信アンテ
ナ、16…受信機、17…遅延回路、18…乗算
器、19…ローパスフイルタ、20…識別再生
器、21…符号再生出力。
FIG. 1 is a diagram showing an example of phase transition characteristics of a digital frequency modulation signal. Figure 2 is an example of an eye pattern of differential detection output under strong band limitation. FIG. 3 is a block diagram of a transmitting device according to an embodiment of the present invention. FIG. 4 is a block diagram of a receiving apparatus according to an embodiment of the present invention. FIG. 5 is a diagram showing an example of the (BT) -1 versus required Eb/No characteristics of the transmission baseband band limit of the demodulated signal. DESCRIPTION OF SYMBOLS 1... Data code string generator, 2... Exclusive OR circuit, 3... 1-bit delay circuit, 4... Transmission baseband band limiting filter, 5... FM modulator, 6... Carrier wave generator, 7... Transmission antenna, 15 ... Reception antenna, 16 ... Receiver, 17 ... Delay circuit, 18 ... Multiplier, 19 ... Low pass filter, 20 ... Identification regenerator, 21 ... Code regeneration output.

Claims (1)

【特許請求の範囲】 1 送信側で情報の繰り返し周期Tのデイジタル
情報信号に対して基底帯域制限を行つた後、周波
数変調を施して送信するデイジタル周波数変復調
方式において、 前記デイジタル情報信号に対して1ビツトの和
分論理変換を施す手段と、 この手段の出力信号を帯域制限して出力させる
基底帯域制限フイルタと、 このフイルタの出力信号を変調入力として変調
指数0.5で周波数変調を施す手段と、 を備え、 受信装置には、 上記送信装置からの出力信号を受信する手段
と、 この手段の出力信号とこの手段の出力信号を情
報の繰り返し周期Tだけ遅延させた信号とを余弦
位相比較する手段と、 この余弦位相比較する手段の出力信号の位相状
態の変化を、帯域制限の行われない場合の位相の
時間的変化の折れ曲がり点から、データの繰り返
し周期Tの半周期、T/2遅れた時点において、
識別判定する手段と、 を備えたデイジタル周波数変調信号の変復調方
式。 2 デイジタル情報信号に対して1ビツトの和分
論理変換を施す手段は、入力デイジタル情報信号
とデイジタル変調信号を1ビツト遅延させた信号
との排他的論理和をとるように構成された特許請
求の範囲第1項に記載のデイジタル周波数変調信
号の変復調方式。
[Claims] 1. In a digital frequency modulation/demodulation method in which a digital information signal with an information repetition period T is subjected to base band limitation on a transmitting side, and then frequency modulated and transmitted, the digital information signal is means for performing 1-bit sum logic conversion; a base band limiting filter for band-limiting and outputting the output signal of this means; and means for frequency modulating the output signal of this filter with a modulation index of 0.5 as a modulation input; The receiving device includes means for receiving an output signal from the transmitting device, and means for comparing the cosine phase of the output signal of this means with a signal obtained by delaying the output signal of this means by an information repetition period T. Then, the change in the phase state of the output signal of this cosine phase comparing means is delayed by T/2 by half the data repetition period T from the turning point of the temporal change in phase when no band limitation is performed. At the time,
A method for modulating and demodulating a digital frequency modulation signal, comprising means for identifying and determining. 2. The means for performing 1-bit summation logic conversion on a digital information signal is configured to take the exclusive OR of the input digital information signal and a signal obtained by delaying the digital modulation signal by 1 bit. A modulation/demodulation method for a digital frequency modulation signal according to the first item.
JP8106779A 1979-06-27 1979-06-27 Modulation and demodulation system for digital frequency-modulated signal Granted JPS564961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8106779A JPS564961A (en) 1979-06-27 1979-06-27 Modulation and demodulation system for digital frequency-modulated signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8106779A JPS564961A (en) 1979-06-27 1979-06-27 Modulation and demodulation system for digital frequency-modulated signal

Publications (2)

Publication Number Publication Date
JPS564961A JPS564961A (en) 1981-01-19
JPH0142180B2 true JPH0142180B2 (en) 1989-09-11

Family

ID=13736040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8106779A Granted JPS564961A (en) 1979-06-27 1979-06-27 Modulation and demodulation system for digital frequency-modulated signal

Country Status (1)

Country Link
JP (1) JPS564961A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6325942B2 (en) * 2014-08-07 2018-05-16 株式会社東芝 Wireless communication apparatus and integrated circuit
TWI691187B (en) * 2014-08-21 2020-04-11 日商新力股份有限公司 Signal processing device and method

Also Published As

Publication number Publication date
JPS564961A (en) 1981-01-19

Similar Documents

Publication Publication Date Title
JP3424183B2 (en) Receiver for direct spread spectrum
US4338579A (en) Frequency shift offset quadrature modulation and demodulation
US4615040A (en) High speed data communications system
US20030076898A1 (en) Digital modulation system using extended code set
US4438524A (en) Receiver for angle-modulated carrier signals
US6385254B1 (en) Transmission method and radio system
US10523416B2 (en) Independent packet detection method using synchronization words with orthogonality and receiver therefor
JPH0142180B2 (en)
US4726038A (en) Digital communication system
US6002725A (en) M-ary FSK receiver
JPS6013630B2 (en) Digital frequency modulation communication method
Brenig Data transmission for mobile radio
JP2540929B2 (en) Data transmission method
JPH053180B2 (en)
JPH06232939A (en) Frame synchronization circuit
US6496542B1 (en) Digital communication system
JP3633715B2 (en) Digital wireless transmission system
EP0215166A2 (en) Digital communication system
KR970000163B1 (en) Modulator and demodulator in tdma
JPH06237275A (en) Special eye pattern and modulating and demodulating system using the pattern
JPH02200043A (en) Delay detection demodulator
KR100219773B1 (en) Decision method of optimal threshold for m-cpfsk receiver
JPS59186452A (en) Demodulator for continuous phase fsk signal
JPH0193950A (en) Digital fm detecting and demodulating system
JPS6221352A (en) Phase continuous fsk modulation and demodulation system