JPS6013630B2 - Digital frequency modulation communication method - Google Patents

Digital frequency modulation communication method

Info

Publication number
JPS6013630B2
JPS6013630B2 JP10008679A JP10008679A JPS6013630B2 JP S6013630 B2 JPS6013630 B2 JP S6013630B2 JP 10008679 A JP10008679 A JP 10008679A JP 10008679 A JP10008679 A JP 10008679A JP S6013630 B2 JPS6013630 B2 JP S6013630B2
Authority
JP
Japan
Prior art keywords
signal
output
delay
phase
phase comparison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10008679A
Other languages
Japanese (ja)
Other versions
JPS5624851A (en
Inventor
重章 生越
和昭 室田
賢吉 平出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10008679A priority Critical patent/JPS6013630B2/en
Publication of JPS5624851A publication Critical patent/JPS5624851A/en
Publication of JPS6013630B2 publication Critical patent/JPS6013630B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying

Description

【発明の詳細な説明】 この発明はMSK(MinimmmShiftKe〆n
g)も含めた変調指数0.5の位相連続FSK(Fre
quemyShiftKeying)通信方式に関する
DETAILED DESCRIPTION OF THE INVENTION This invention is based on MSK (MinimmmShiftKe〆n
g) with a modulation index of 0.5 (Fre
(quemyShiftKeying) communication method.

ディジタル周波数変調信号の復調法として、受信信号と
その受信信号をある一定時間だけ遅延させた信号とを正
弦位相比較器により位相比較して復調する方式は遅延検
波方式として公知であり、回路構成の簡単さから広く用
いられている。ところでSCPC形式、即ち1搬送波に
1チャネルを割当てる形式の無線通信においては周波数
有効利用の観点から占有帯城幅の狭小化と帯域外幅射の
抑圧が絶対的要求条件となっている。以上の要求条件を
満足させるためには、送信側で基底帯域、もしくは搬送
波帯での帯域制限を行う必要がある。しかしながら、送
信側でそのような強い帯域制限を加えた場合には受信側
において従釆の正弦位相比較を行う遅延検波を用いよう
とすると、位相遷移が不十分となり受信特性を大きく劣
化させる欠点があった。また持欄昭51一116271
及び袴顔昭53一100被2に示されるように正弦位相
比較と余弦位相比較との符号拘束を利用した誤り訂正に
よる改善策があったが、これらの方法によっても前記強
い帯域制限条件のもとでは改善効果が失われる欠点があ
った。
As a method of demodulating digital frequency modulated signals, a method in which a received signal and a signal delayed by a certain period of time are demodulated by comparing the phases using a sine phase comparator is known as a delay detection method, and the method is known as a delay detection method, and the method is known as a delay detection method. It is widely used because of its simplicity. By the way, in wireless communication of the SCPC format, that is, a format in which one channel is assigned to one carrier wave, narrowing the occupied bandwidth and suppressing out-of-band radiation are absolute requirements from the viewpoint of effective frequency utilization. In order to satisfy the above requirements, it is necessary to limit the base band or carrier band on the transmitting side. However, if such a strong band restriction is applied on the transmitting side, if the receiving side tries to use delayed detection that performs a secondary sine phase comparison, the phase transition will be insufficient and the reception characteristics will deteriorate significantly. there were. Also, the column number 116271
As shown in Hakamagao Sho 53-100-2, there have been improvement measures based on error correction using code constraints in sine phase comparison and cosine phase comparison, but these methods also solve the above-mentioned strong band-limiting condition. This had the disadvantage that the improvement effect was lost.

この発明の目的は送信側や受信側で強い帯域制限を受け
、従釆の正弦&相比による復調では識別不能となるよう
な大きな符号間干渉を発生する場合でも正しい信号論捌
を可能とするディジタル周波数変調通信方式を提供する
ことにある。
The purpose of this invention is to enable correct signal processing even when the transmitting and receiving sides are subject to strong band limitations and generate large intersymbol interference that cannot be identified by demodulation using secondary sine and phase ratios. An object of the present invention is to provide a digital frequency modulation communication system.

この発明によれば送信側においてはディジタル情報信号
に対し、和分論理変換を施し、その和分論理変換出力に
より搬送波を変調指数0.5で周波数変調して送信し、
受信側においては受信信号を遅延時間がそれぞれT及び
の(Tはディジタル情報信号の繰返し周期)の信号に分
岐し、これ等遅延信号と遅延前の信号とをそれぞれ余弦
位相比較遅延検波を行い、これ等検波出力をその位相に
同相にして合成し、その合成信号のアィアパーチャが最
大となる時点で講捉りして復号する。
According to this invention, on the transmitting side, the digital information signal is subjected to summation logic conversion, and the carrier wave is frequency-modulated with a modulation index of 0.5 using the summation logic conversion output, and transmitted.
On the receiving side, the received signal is branched into signals with delay times T and (T is the repetition period of the digital information signal), respectively, and these delayed signals and the pre-delayed signal are subjected to cosine phase comparison delay detection, These detection outputs are combined in phase with the detected output, and the point in time when the combined signal has the maximum eye aperture is detected and decoded.

次にこの発明の通信方式を詳細に説明する。その説明を
簡単にするため、変調指数0.5のディジタル周波数信
号、即ちMSK(MinimumShiftKeyin
g)信号を例にする。一般に位相連続FSK方式、即ち
ディジタル周波数変調方式では、送信波S(t)は次の
ように表わせる。S(t)=私os{2mfct+のm
(t)}州(t)=学ハの z an・g(t‐中)d
tたゞし、an:データ符号列の各データ0、1にそれ
ぞれ対応し十1、一1をとる変数、g(t):変調器入
力端子におかれた基底緒戦フイルタのイン/ぐルスレス
ポンス、m:変調指数(=2△fd・T)、△fd:周
波数偏移、T:データ符号のくり返し周期、 広:中心周波数、のm(t):瞬時位相勺A:信号の尖
頭値。
Next, the communication method of the present invention will be explained in detail. To simplify the explanation, we will use a digital frequency signal with a modulation index of 0.5, namely MSK (Minimum Shift Keyin).
g) Use signals as an example. Generally, in the phase continuous FSK method, that is, the digital frequency modulation method, the transmitted wave S(t) can be expressed as follows. S(t) = i os {2mfct+m
(t)} State (t) = Gakuha's z an・g (t-medium) d
t, an: variable that corresponds to each data 0 and 1 of the data code string and takes 11 and 11, g(t): input/output of the basic filter placed at the modulator input terminal Response, m: modulation index (=2△fd・T), △fd: frequency deviation, T: repetition period of data code, wide: center frequency, m(t): instantaneous phase peak A: peak of signal value.

変調指数m=0.5のMSK信号の場合には、g(t)
は、g(t)=1(0≦t≦T) のく0、t>T となるから、変調出力信号の位相は中心周波数fcの位
相に対し、T秒間にデータが1のとき直線的にm/2相
対的に進み、データが0のときは直線的にm/2だけ相
対的に遅れる関係にある。
For an MSK signal with modulation index m=0.5, g(t)
Since g(t)=1(0≦t≦T), 0, t>T, the phase of the modulated output signal is linear with respect to the phase of the center frequency fc when the data is 1 for T seconds. When the data is 0, there is a relative linear delay of m/2.

受信信号とその受信信号を7秒遅延させた信号とを余弦
位相比較した出力v(t)は次式のように表わされる。
v(t)=cos{のm(t)−のm(t一7)}なお
通常の遅延検波においては正弦位相比較出力としてv(
t)ニSin{のm(t)−のm(t一7)}ィはデー
タ符号のくり返し周期Tに選ばれる。
The output v(t) obtained by comparing the cosine phase of the received signal and a signal obtained by delaying the received signal by 7 seconds is expressed by the following equation.
v(t) = cos {m(t)-m(t-7)} In normal delayed detection, v(
t) Sin{m(t)-m(t-7)} is selected as the repetition period T of the data code.

次に位相のm(t)の変化について説明する。第1図は
位相連続FSK信号の相対位相の推移の様子を示し、機
軸は時間、縦軸は相対位相である。同図でm=0.5と
したものがMSKに相当する。位相変化の折れ曲り点、
即ち時刻T、幻、虹、・…・・……において帯城制限に
よる符号間干渉が生じる。第1図において一′点鎖線は
厳しい帯域制限を受けた場合の位相遷移を示す。このよ
うな厳しい帯域制限下では、袴磯昭弘一81067号明
細書に示されたように糸弦位相比較を行う遅延検波によ
り良好な復調特性が得られる。いま帯城制限がない場合
において7=2T及び↑=Tとしたときの位相差のm(
t)一のm(t−丁)の値及びv(t)=cos〔のm
(t)−のm(t一↑)〕の値と送信データとの関係を
第5図に示す。
Next, changes in phase m(t) will be explained. FIG. 1 shows how the relative phase of a phase-continuous FSK signal changes, where the axis is time and the vertical axis is the relative phase. In the figure, m=0.5 corresponds to MSK. Bending point of phase change,
That is, at time T, phantom, rainbow, etc., intersymbol interference occurs due to band limit. In FIG. 1, the dashed line indicates a phase transition when severe band limitation is applied. Under such severe band limitations, good demodulation characteristics can be obtained by delay detection that performs string phase comparison as shown in Hakamaiso Akihiroichi No. 81067. In the case where there is no band limit, the phase difference m(
t) the value of m(t-d) and v(t)=cos[m
FIG. 5 shows the relationship between the value of m(t-↑)] of (t)- and the transmitted data.

同図Aは送信データ、Bは相対位相遷移、Cは位相差、
Dは朱弦位相比較遅延検波出力をそれぞれ示す。T,=
T、72 =2r=27,である。この図が示すように
二つの余弦位相比較遅延検波出力のピークはT,/2ず
れた時刻に表われる。この発明では遅延時間をT及びの
とする二つの余弦位相比較遅延検波出力を情報信号に対
して同相にして加算合成する。
In the same figure, A is transmission data, B is relative phase transition, C is phase difference,
D indicates the output of the differential phase comparison differential detection. T,=
T,72=2r=27. As shown in this figure, the peaks of the two cosine phase comparison differential detection outputs appear at times shifted by T,/2. In the present invention, two cosine phase comparison differential detection outputs with delay times T and are made in phase with the information signal and are added and synthesized.

これは第5図が示す二つの検波出力のピークの位置を合
わせて加算合成することに相当する。即ち7=Tの側の
検波出力を7,/2=T/2だけ遅延させて加算合成す
る。第2図A,B及びCは変調指数0.5のディジタル
周波数変調信号に対して遅延時間7=T(Tはデータ符
号列のくり返し周期)の正弦位相比較、余弦位相比較、
及び7i2rの余弦位相比較の各遅延検波の検波出力の
アィパタンをそれぞれ示し送信ベースバンド帯城制限用
ガウス型ローパスフイルタの規格化父旧帯域幅(BT)
の値を0.2ふ受信帯城制限の規格イヒ幻B帯城幅を1
.25とした場合である。
This corresponds to aligning the peak positions of the two detected outputs shown in FIG. 5 and adding and synthesizing them. That is, the detection output on the 7=T side is delayed by 7,/2=T/2 and then added and synthesized. Figures A, B, and C show sine phase comparison, cosine phase comparison, and delay time 7=T (T is the repetition period of the data code string) for a digital frequency modulation signal with a modulation index of 0.5.
and 7i2r cosine phase comparison showing the eye patterns of the detection outputs of each delayed detection.
The value of 0.2 is the standard for the reception band limit, and the phantom B band width is 1.
.. This is the case where it is set to 25.

強い帯城制限にもとずく符号間干渉で正弦位相比較のア
ィパタンは第2図Aに示すように劣化し、時刻舵Tでア
ィが可成り閉じる場合があり、その中心レベルにしきし
、値を設定しても信号がしきい値に対し何れの側である
か判定し簸い場合がある。余弦位相比較のアィパタンは
第2図B,Cに示すようにそれぞれ時刻(n十季)T、
nTにおいて十分開いていることが示される。このアイ
が開く時点のずれはT/2であり、この値‘ま第5欧洲
る7・/2=砦=。瓜一致する。
The eye pattern of the sinusoidal phase comparison deteriorates as shown in Figure 2A due to intersymbol interference based on the strong band limit, and the eye may close considerably at the time rudder T. Even if set, it may be necessary to determine which side the signal is on with respect to the threshold value. The eye patterns of cosine phase comparison are shown in Figure 2B and C, respectively, at time (n 10 seasons) T,
It is shown that it is fully open at nT. The deviation at the time when this eye opens is T/2, and this value is 7/2 = fort. It matches exactly.

第2図Dは同図Bの信号をT/2だけ遅延させたものと
同図Cの信号とを合成したときのアイパタンを示したも
のである。
FIG. 2D shows an eye pattern obtained by combining the signal shown in FIG. 2B delayed by T/2 with the signal shown in FIG. 2C.

この合成によりアイの開きが大きくなり、アィアパーチ
ャが最大となる時刻nTでしきし、値を適当に選定すれ
ば何れの状態でもその何れの側であるかを正確に判定で
きる。この発明において二つの余弦位相比較遅延検波出
力を加算合成しているが、これは雑音を含んだ信号を合
成する場合、雑音が互に相関を持たない程、合成信号の
SN比が増加することに着目したものであり、このよう
にして余弦位相比較を行う遅延検波を単独で用いた場合
よりも特性の改善を図ることができる。
This synthesis increases the eye opening, and the eye aperture reaches its maximum at time nT, and by selecting an appropriate value, it is possible to accurately determine which side of the eye it is in any state. In this invention, two cosine phase comparison delay detection outputs are added and synthesized, but this is because when a signal containing noise is synthesized, the more the noises have no correlation with each other, the more the S/N ratio of the synthesized signal increases. In this way, the characteristics can be improved more than when differential detection that performs cosine phase comparison is used alone.

ところで余弦&相比較を行う遅延検波において検波され
たデータ符号列をbnとすれば、bnは検波器入力での
データ符号列anとの間に、bn=an由an−,(由
はmod2の加算を示す)の関係が存在する。
By the way, if the data code string detected in the delayed detection that performs cosine & phase comparison is bn, then bn is between the data code string an at the detector input, bn=an y an-, (yield is mod 2). (indicating addition) exists.

たゞし、an‐,はanを1ビットだけ遅延したもので
ある。従って検波されたデータ符号列を送信データ符号
列と一致させるためには送信データ符号列に予め1ビッ
ト和分論理変換を施し、その論理変換出力により変調指
数0.5で搬送波をFSKしてディジタル周波数変調信
号として送信すればよい。即ち、この発明では送信側で
1ビット和分論理変換した後、FSKし、受信側で受信
信号を、遅延時間がT及び幻の二つの余弦位相比較遅延
検波し、その検波出力を同位相合成して復号化する。第
3図はこの発明の実施例である。まず送信側1 1につ
いて説明する。データ符号発生器12の信号出力13は
排他的論理和回路14の一方の入力端子に入力され、そ
の信号出力15は二分され、その一方は1ビット遅延回
路16に入り、その遅延された出力信号17は排他的論
理回路14の一方の入力される。排他的論理和回路14
及び1ビット遅延回路16により1ビットの和分論理変
換回路が構成される。前記二分された信号15のもう一
方は送信ベースバンド帯城制限フィル夕18に入力され
る。搬送波発生器19の出力21はFM変換器22に入
力され、送信ベースバンド帯城制限フィル夕18の出力
信号23によってFM変調され、そのディジタル周波数
変調信号出力24は送信アンテナ25から送信される。
つぎに受信側26について説明する。
However, an-, is an delayed by one bit. Therefore, in order to match the detected data code string with the transmitted data code string, the transmitted data code string is subjected to 1-bit sum logical conversion in advance, and the carrier wave is FSKed with a modulation index of 0.5 using the output of the logical conversion and digital It may be transmitted as a frequency modulated signal. That is, in this invention, after performing 1-bit summation logic conversion on the transmitting side, FSK is performed, and on the receiving side, the received signal is subjected to delay detection by comparing two cosine phases with a delay time of T and a phantom, and the detected output is synthesized in the same phase. and decrypt it. FIG. 3 shows an embodiment of this invention. First, the transmitting side 11 will be explained. The signal output 13 of the data code generator 12 is input to one input terminal of the exclusive OR circuit 14, and its signal output 15 is divided into two, one of which enters a 1-bit delay circuit 16 and its delayed output signal 17 is input to one side of the exclusive logic circuit 14. Exclusive OR circuit 14
The 1-bit delay circuit 16 constitutes a 1-bit summation logic conversion circuit. The other half of the split signal 15 is input to a transmission baseband bandwidth limiting filter 18 . The output 21 of the carrier wave generator 19 is input to the FM converter 22 and is FM modulated by the output signal 23 of the transmit baseband bandwidth limiting filter 18, and its digital frequency modulated signal output 24 is transmitted from the transmit antenna 25.
Next, the receiving side 26 will be explained.

受信アンテナ27により受信された受信信号28は受信
機29に入り、その出力31は余弦位相比較遅延検波回
総32及び33に入る。受信機信号出力31は四分され
、一つは2ビット遅延回路34に、一つは1ビット遅延
回路35に、一つは乗算器36に、最後の一つは乗算器
37にそれぞれ入る。2ビット遅延回路34の信号出力
38は乗算器36の一方の入力端子に入力され、信号3
1と余弦位相比較される。
The received signal 28 received by the receiving antenna 27 enters the receiver 29 and its output 31 enters the cosine phase comparison delay detection circuits 32 and 33. The receiver signal output 31 is divided into four parts: one goes into a two-bit delay circuit 34, one goes into a one-bit delay circuit 35, one goes into a multiplier 36, and the last goes into a multiplier 37. The signal output 38 of the 2-bit delay circuit 34 is input to one input terminal of the multiplier 36, and the signal output 38 is input to one input terminal of the multiplier 36.
1 and the cosine phase are compared.

また1ビット遅延回路35の信号出力39は乗算器37
の一方の入力端子に入力され、信号31と余弦位相比較
される。乗算器36の出力41はローパスフイルタ42
に入力される。また乗算器37の出力43は後述の信号
48と同相にするため1/2ビット遅延回路44に入力
され、その信号出力45はローパスフイルタ46に入力
され、ローパスフイルタ46の信号出力、即ち1ビット
遅延余弦位相比較遅延検波出力47は、ローパスフイル
タ42の信号出力即ち2ビット遅延余弦位相比較遅延検
波出力48とともに和算回路49に入力され合成される
。和算回路49の信号出力51は識別再生器52に入り
、しきし、値ら入上か以下かの判別より、符号再生出力
53を得る。2ビット遅延回路34、乗算器36、ロー
パスフィルタ42は余弦位相比較遅延検波回路32を構
成し、1ビット遅延回路35、乗算器37、ロ−パスフ
ィルタ46は余弦位相比較遅延検波回路33を礎成して
いる。
Also, the signal output 39 of the 1-bit delay circuit 35 is output to the multiplier 37.
is input to one input terminal of the signal 31, and is compared with the signal 31 in terms of cosine phase. The output 41 of the multiplier 36 is passed through a low pass filter 42
is input. Further, the output 43 of the multiplier 37 is inputted to a 1/2 bit delay circuit 44 in order to make it in phase with a signal 48 described later, and its signal output 45 is inputted to a low pass filter 46. The delayed cosine phase comparison delayed detection output 47 is input to the summation circuit 49 together with the signal output of the low-pass filter 42, that is, the 2-bit delayed cosine phase comparison delayed detection output 48, and is combined. The signal output 51 of the summation circuit 49 is input to a discriminating regenerator 52, and a code reproducing output 53 is obtained by determining whether it is above or below the threshold value. The 2-bit delay circuit 34, the multiplier 36, and the low-pass filter 42 form the cosine phase comparison delay detection circuit 32, and the 1-bit delay circuit 35, the multiplier 37, and the low-pass filter 46 form the cosine phase comparison delay detection circuit 33. has been completed.

次にこの発明による通信方式の実験結果の一例について
説明する。
Next, an example of experimental results of the communication system according to the present invention will be explained.

第4図は送信ベースバンド帯域制限を行った変調指数0
.5のディジタル周波数変調信号に対して遅延時間丁=
Tとした従来の正弦位相比比較遅延検波方式の誤り率特
性を曲線54です:T及び7=2Tとしたときの余弦位
相比較遅延検波方式の誤り率特性を曲線55及び56で
これ等2つの余弦位相比較遅延検波出力を情報信号に対
して同相にして利得1対1で合成したときの誤り率特性
を曲線57でそれぞれ示す。同図の横軸は送信ベースバ
ンド帯域制限の規格イヒ幻B帯城幅(BT)の逆数を、
縦軸は誤り率10‐3を得るのに必要な1ビット当りの
信号ェネルギ対雑音密度Eb/Noの値をそれぞれ示し
ている。なお受信帯城制限の規格化父旧帯城幅BT=1
.25でありビットレートは1舷bpsである。この図
が示すように強い送信ベースバンド帯城制限を行った場
合には第4図で右側程、従釆の正弦位相比較遅延検波に
比べて余弦位相比較遅延検波のEb/Noが小さく、後
者の特性が優れていることは明らかであり、2つの余弦
位相比較遅延検波出力を合成することにより、袴曲ま曲
線57となり、同一の帯域制限に対し、Eb/Noが小
さくて済み、余弦&相比較遅延検波を単独で使用する場
合よりも特性が更に改善されている。以上説明したよう
にこの発明によるディジタル周波数変調通信方式によれ
ば、送信側で強い帯域制限を受ける場合にも符号間干渉
、雑音による識別誤り率の劣化が小さく、良好な通信品
質を確保することができる。
Figure 4 shows a modulation index of 0 with transmission baseband band limitation.
.. For a digital frequency modulated signal of 5, the delay time d =
Curve 54 shows the error rate characteristics of the conventional sine phase ratio comparison delayed detection method, where T and 7 = 2T.Curves 55 and 56 show the error rate characteristics of the cosine phase comparison delay detection method, when T and 7 = 2T. A curve 57 shows the error rate characteristics when the cosine phase comparison differential detection output is made in phase with the information signal and combined with a gain of 1:1. The horizontal axis of the figure is the reciprocal of the phantom B band width (BT), which is the standard for limiting the transmission baseband band.
The vertical axis indicates the value of signal energy versus noise density Eb/No per bit required to obtain an error rate of 10-3. In addition, standardization father old belt width BT of reception belt castle limit = 1
.. 25, and the bit rate is 1 ship bps. As shown in this figure, when strong transmission baseband bandwidth restrictions are applied, the Eb/No of cosine phase comparison delayed detection is smaller as compared to the subordinate sine phase comparison delayed detection, and the Eb/No of the latter It is clear that the characteristics of 2 are excellent, and by combining the two cosine phase comparison delayed detection outputs, the Hakama curve 57 is obtained, and for the same band limit, Eb/No is small, and cosine & The characteristics are further improved than when phase comparison differential detection is used alone. As explained above, according to the digital frequency modulation communication system according to the present invention, even when the transmitting side is subject to strong band restrictions, the deterioration of the identification error rate due to intersymbol interference and noise is small, and good communication quality can be ensured. I can do it.

また受信側においても、より強い帯域制限を許容するこ
とができるため、より高い信号対雑音比で遅延検波の識
別が可能となり品質の向上がはかれる。この方式は移動
無線方式、固定無線方式など限定された周波数帯城で通
信を行う方式のほか、一般に広く適用、応用することが
できる。
Furthermore, since a stronger band restriction can be tolerated on the receiving side, differential detection can be identified with a higher signal-to-noise ratio, and quality can be improved. This method can be applied to a wide range of applications in general, in addition to mobile wireless systems, fixed wireless systems, and other systems that communicate in limited frequency bands.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はディジタル周波数変調信号の位相遷移特性を示
す図、第2図は強い帯域制限下の遅延検波出力のアィパ
タンを示す図、第3図はこの発明によるディジタル周波
数変調通信方式の実施例を示すブロック図、第4図はデ
ィジタル周波数変調信号を復調したときの送信ベースバ
ンド帯城制限の(BT)‐1対所要Eb/No特性の実
験例を示す図、第5図は送信データと対応するディジタ
ル周波数変調信号の位相遷移、位相差及び余弦位相比較
遅延検波出力を示す図である。 11:送信側、12:データ符号列発生器、14:排他
的論理和回路、16,35:1ビット遅延回路、18:
送信ベースバンド帯城制限フィル夕、22:FM変換器
、19:搬送波発生器、25:送信アンテナ、26:受
信側、27:受信アンテナ、29:受信機、32,33
:余弦位相比較遅延検波回路、34:2ビット遅延回路
、36,37:乗算器、42,46:ローパスフイルタ
、44:1/2ビット遅延回路、49:和算回略、52
:識別再生器。 オー図 オ2図 ネ3図 氷4図 汁5図
Fig. 1 is a diagram showing the phase transition characteristics of a digital frequency modulation signal, Fig. 2 is a diagram showing an eye pattern of differential detection output under strong band limitation, and Fig. 3 is a diagram showing an embodiment of the digital frequency modulation communication system according to the present invention. Fig. 4 is a diagram showing an experimental example of the (BT)-1 versus required Eb/No characteristics of the transmission baseband bandwidth limit when demodulating a digital frequency modulation signal, and Fig. 5 corresponds to the transmission data. FIG. 3 is a diagram showing phase transition, phase difference, and cosine phase comparison delay detection output of a digital frequency modulation signal. 11: Transmission side, 12: Data code string generator, 14: Exclusive OR circuit, 16, 35: 1-bit delay circuit, 18:
Transmission baseband band limit filter, 22: FM converter, 19: Carrier wave generator, 25: Transmission antenna, 26: Receiving side, 27: Receiving antenna, 29: Receiver, 32, 33
: Cosine phase comparison delay detection circuit, 34: 2-bit delay circuit, 36, 37: Multiplier, 42, 46: Low-pass filter, 44: 1/2-bit delay circuit, 49: Addition circuit, 52
:Identification regenerator. O figure O figure 2 figure Ne 3 figure ice 4 figure juice 5 figure

Claims (1)

【特許請求の範囲】[Claims] 1 送信側においてデイジタル情報信号に対し、1ビツ
トの和分論理変換を施し、その和分論理変換出力により
搬送波を変調指数0.5で周波数変調し、その周波数変
調出力を送信し、受信側においてデイジタル情報信号の
繰返し周期に遅延時間を設定したものと、その2倍に遅
延時間を設定したものとの二つの余弦位相比較遅延検波
器により上記受信信号をそれぞれ遅延検波し、これ等遅
延検波出力を情報信号に対し同位相で加算合成し、この
合成信号をそのアイアパーチヤが最大となる時点で識別
することにより送信デイジタル情報信号を復調すること
を特徴とするデイジタル周波数変調通信方式。
1 On the transmitting side, the digital information signal is subjected to 1-bit summation logic conversion, the summation logic conversion output is used to frequency modulate the carrier wave with a modulation index of 0.5, the frequency modulation output is transmitted, and the receiving side The received signals are differentially detected by two cosine phase comparison delay detectors, one with a delay time set to the repetition period of the digital information signal and the other with a delay time set to twice that, and these delay detection outputs are obtained. A digital frequency modulation communication system characterized in that a transmitted digital information signal is demodulated by adding and combining information signals in the same phase and identifying this combined signal at the time when its eye aperture reaches its maximum.
JP10008679A 1979-08-06 1979-08-06 Digital frequency modulation communication method Expired JPS6013630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10008679A JPS6013630B2 (en) 1979-08-06 1979-08-06 Digital frequency modulation communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10008679A JPS6013630B2 (en) 1979-08-06 1979-08-06 Digital frequency modulation communication method

Publications (2)

Publication Number Publication Date
JPS5624851A JPS5624851A (en) 1981-03-10
JPS6013630B2 true JPS6013630B2 (en) 1985-04-08

Family

ID=14264612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10008679A Expired JPS6013630B2 (en) 1979-08-06 1979-08-06 Digital frequency modulation communication method

Country Status (1)

Country Link
JP (1) JPS6013630B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8201533A (en) * 1982-04-13 1983-11-01 Philips Nv A TRANSMITTER DESIGNED FOR SENDING FM MODULATED SIGNALS.
JPS60108685A (en) * 1983-11-16 1985-06-14 石川島播磨重工業株式会社 Automatic charger for scrap for arc furnce
JPS6326595U (en) * 1986-08-06 1988-02-22

Also Published As

Publication number Publication date
JPS5624851A (en) 1981-03-10

Similar Documents

Publication Publication Date Title
US4338579A (en) Frequency shift offset quadrature modulation and demodulation
US4675880A (en) Antimultipath communication by injecting tone into null in signal spectrum
US5023889A (en) Trellis coded multilevel DPSK system with doppler correction for mobile satellite channels
EP0232626A2 (en) Method of digital signal transmission having a low error rate in the presence of multipath transmission
EP0085614B1 (en) Data transmitting-receiving system
US3838350A (en) Differential encoded quadriphase demodulator
CA1189912A (en) Receiver for angle-modulated carrier signals
JPS6013630B2 (en) Digital frequency modulation communication method
EP0793370B1 (en) Phase ambiguity resolution circuit for BPSK communication system
US4095187A (en) Demodulation system for a multi-level multi-phase superposition-modulated carrier wave
JP3267445B2 (en) Error detection circuit and method
EP0206203B1 (en) Recording and reproducing apparatus using a modulator/demodulator for Offset Quadrature Differential Phase-Shift Keying
US4726038A (en) Digital communication system
US6002725A (en) M-ary FSK receiver
CN115085745A (en) VDE-TER-based digital diversity communication system
Hirade et al. A study of modulation for digital mobile telephony
Ogose et al. A transmitter diversity for MSK with two-bit differential detection
JP3784900B2 (en) Millimeter-wave FSK transmission / reception system
US3971999A (en) Coherent phase demodulator for phase shift keyed suppressed carrier signals
JPH0142180B2 (en)
US5189564A (en) Magnetic recording/reproducing method and apparatus
FI84955C (en) Digital telecommunication system
US6496542B1 (en) Digital communication system
JP2903539B2 (en) Demodulator
JP3633715B2 (en) Digital wireless transmission system