JP2540929B2 - Data transmission method - Google Patents

Data transmission method

Info

Publication number
JP2540929B2
JP2540929B2 JP1017465A JP1746589A JP2540929B2 JP 2540929 B2 JP2540929 B2 JP 2540929B2 JP 1017465 A JP1017465 A JP 1017465A JP 1746589 A JP1746589 A JP 1746589A JP 2540929 B2 JP2540929 B2 JP 2540929B2
Authority
JP
Japan
Prior art keywords
data
signal
output
clock
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1017465A
Other languages
Japanese (ja)
Other versions
JPH02200042A (en
Inventor
喜好 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
NTT Mobile Communications Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, NTT Mobile Communications Networks Inc filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1017465A priority Critical patent/JP2540929B2/en
Publication of JPH02200042A publication Critical patent/JPH02200042A/en
Application granted granted Critical
Publication of JP2540929B2 publication Critical patent/JP2540929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は移動通信等の無線通信において、送信側にお
いて非線形増幅器を適用したときにスペクトラムの広が
りが狭くでき、受信側において簡易な方法で復調できる
無線データ伝送方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is applicable to wireless communication such as mobile communication, where the spread of the spectrum can be narrowed when a non-linear amplifier is applied on the transmitting side, and demodulation is performed by a simple method on the receiving side. The present invention relates to a possible wireless data transmission method.

(従来の技術) 移動通信においては、限られた周波数及び電力の有効
利用の観点から、スペクトラムの広がりが狭くしかも非
線形増幅器の適用が可能な変調方式が適している。この
ような条件を満足する変調方式の1つとして従来からオ
フセットQPSK方式(OQPSK)が知られている。
(Prior Art) In mobile communication, from the viewpoint of effective use of limited frequencies and electric power, a modulation method in which the spread of the spectrum is narrow and a nonlinear amplifier can be applied is suitable. An offset QPSK method (OQPSK) has been conventionally known as one of the modulation methods that satisfy such conditions.

第4図はQPSK及びOQPSK方式の位相変化を示した図で
ある。OQPSK方式は直交変調する前に直交成分のデータ
を1ビットだけ遅延させて変調したもので、データを遅
延させずに直交変調するQPSK方式に比べて振幅成分の変
化を少なくしたものである。QPSKでは位相が180゜変わ
るときに振幅が一旦0となるが、OQPSKでは一度に180゜
変わることはなく90゜毎に位相が変化するため振幅が0
になることはなく振幅の変化は比較的小さい。そのた
め、非線形増幅器を使用した場合のスペクトラムの広が
りが比較的少なく、しかもQPSKと同様の狭いスペクトラ
ム特性を持つ信号が得られる。このようにOQPSKは優れ
た点を持っているが、特開昭62−139450号公報にあるよ
うに、QPSK方式と異なり、I,Q直交成分がπ/2位相がず
れている。このため、信号を復調するときにキャリア成
分を再生して直交成分に分けて符号を判定する同期検波
方式しか適用できないとされていた。
FIG. 4 is a diagram showing phase changes in the QPSK and OQPSK systems. The OQPSK method is a method in which the data of the quadrature component is delayed by one bit before the quadrature modulation and is modulated, and the change in the amplitude component is smaller than that of the QPSK method in which the quadrature modulation is performed without delaying the data. In QPSK, the amplitude once becomes 0 when the phase changes 180 °, but in OQPSK, the amplitude does not change 180 ° at a time, and the phase changes every 90 °, so the amplitude becomes 0.
And the change in amplitude is relatively small. Therefore, when a nonlinear amplifier is used, the spread of the spectrum is relatively small, and a signal with a narrow spectrum characteristic similar to QPSK can be obtained. Thus, OQPSK has an excellent point, but as disclosed in Japanese Patent Laid-Open No. 62-139450, unlike the QPSK system, the I and Q quadrature components are out of phase by π / 2. For this reason, it has been considered that only a synchronous detection method is applicable when a signal is demodulated and a carrier component is reproduced and divided into orthogonal components to determine a code.

(発明が解決しようとする課題) そのため復調のための装置が複雑になるとともに、キ
ャリア再生のための引き込み時間が必要なためバースト
伝送のような短い時間でデータを伝送する方式には適さ
ないという欠点があった。
(Problem to be solved by the invention) Therefore, the device for demodulation becomes complicated, and the pull-in time for carrier recovery is required, so that it is not suitable for a method of transmitting data in a short time such as burst transmission. There was a flaw.

本発明の目的は、これらの欠点を解決するため、移動
信号に適した変調方式としてOQPSK方式を採用してデー
タ伝送を行う場合に受信側で簡易な復調が可能となるよ
うにしたデータ伝送方法を提供することにある。
In order to solve these drawbacks, an object of the present invention is to provide a data transmission method that enables simple demodulation on the receiving side when data transmission is performed by adopting the OQPSK method as a modulation method suitable for mobile signals. To provide.

(課題を解決するための手段) 前記目的を達成するための本発明の特徴は、送信側で
は、入力データに対して第1の和分論理変換を行い、そ
の出力とクロックの2倍の周期をもつ信号との排地的論
理和に対し第2の和分論理変換を行い、その出力をクロ
ックの2倍の周期をもつ信号で2ビットづつサンプル
し、2ビットのサンプルデータのうち一方を1クロック
周期だけ遅延させた信号と他方のサンプルデータを直交
変調器の同相及び直交成分として入力してオフセットQP
SK信号を得て送信し、受信側では遅延検波により復調す
るデータ伝送方法にある。
(Means for Solving the Problem) A feature of the present invention for achieving the above-mentioned object is that the transmitting side performs a first sum / addition logical conversion on input data, and a cycle twice as long as the output and the clock. The second disjunction logical conversion is performed on the disjunctive logical sum with the signal having, and the output is sampled every 2 bits with a signal having a period twice the clock, and one of the 2-bit sample data is sampled. The signal delayed by one clock cycle and the other sample data are input as the in-phase and quadrature components of the quadrature modulator, and the offset QP
This is a data transmission method in which an SK signal is obtained and transmitted, and the receiving side demodulates by differential detection.

(作用) 上記構成により得られるオフセットQPSK信号は、受信
側で簡易な復調が可能で、従来のQPSK信号の復調に用い
られる遅延検波、全波整流及び識別回路の組合せで復調
することができる。なお、送信側における和分論理変換
と排地的論理和は本発明の重要な特徴である。
(Operation) The offset QPSK signal obtained by the above configuration can be easily demodulated on the receiving side, and can be demodulated by the combination of the differential detection, the full-wave rectification and the discrimination circuit used for demodulation of the conventional QPSK signal. The sum logical conversion and the disjunctive logical conversion on the transmitting side are important features of the present invention.

(実施例) 第1図は本発明の特許請求範囲(1)の実施例であ
る。送信データ1は和分論理変換回路3を通り和分論理
変換され、クロックの2倍の周期の信号2と排地的論理
和を求められ、再び和分論理変換回路4を通り和分論理
変換され、サンプル回路5でクロックの2倍の周期の信
号の2ビットサンプリングされる。なお、和分論理変換
回路は1ビット前の信号と現在の信号との排地的論理和
をとる回路である。
(Embodiment) FIG. 1 shows an embodiment of claim (1) of the present invention. The transmission data 1 is subjected to the sum logical conversion through the sum logical conversion circuit 3, the signal 2 having a period of twice the clock and the disjunctive logical sum are obtained, and again the sum logical conversion circuit 4 is performed. Then, the sampling circuit 5 samples 2 bits of a signal having a cycle twice that of the clock. The sum-and-logical conversion circuit is a circuit for performing an unconditional logical sum of the signal one bit before and the current signal.

2ビットのうち前の1ビットは直交変換器7の同相成
分に直接入力され、後の1ビットは遅延回路6を通り1
ビット分遅延され直交変調器7の直交成分に入力され、
送信機8を通り送信アンテナ9から送信される。
Of the two bits, the previous 1 bit is directly input to the in-phase component of the quadrature converter 7, and the subsequent 1 bit passes through the delay circuit 6 to 1
It is delayed by a bit and input to the quadrature component of the quadrature modulator 7,
The signal is transmitted from the transmitting antenna 9 through the transmitter 8.

送信波10は受信アンテナ11により受信され、受信機12
を通り受信信号13を出力する。受信信号13は遅延回路14
により1ビット遅延された信号と乗算され高周波を除去
するローパスフィルタ15を通り遅延検波される。この信
号はクロック再生回路18に入力されてクロックを再生す
るとともに全波整流回路16で整流され、識別回路17で識
別して受信データ19を出力する。
The transmitted wave 10 is received by the receiving antenna 11, and the receiver 12
And the reception signal 13 is output. Received signal 13 is delay circuit 14
Then, the signal is multiplied by the signal delayed by 1 bit and is subjected to delay detection through a low-pass filter 15 that removes high frequencies. This signal is input to the clock reproduction circuit 18 to reproduce the clock, rectified by the full-wave rectification circuit 16, identified by the identification circuit 17, and output as reception data 19.

このような方法で送信データが受信側で再生される原
理について以下説明する。第2図は第1図で示した本発
明実施例の各部分での信号の例を示したものである。排
地的論理和を挟んで2回和分論理変換されたデータは2
ビット毎にサンプリングされ2ビットのうち一方は1ビ
ット遅延されてそれぞれ同相(I)成分及び直交(Q)
成分となり直交変調器で変調される。変調波の位相はI,
Q成分が(1,1)のとき45゜、(0,1)のとき135゜、(0,
0)のとき225゜、(1,0)のとき315゜となる。受信側の
遅延検波出力は1ビット前に送られてきた信号との位相
差をΔΦとすれば SIN(ΔΦ) で出力される。つまり90゜増えたときに1、90゜減った
とき−1、変化しないときに0を出力する。全波整流す
ると1または−1のとき1、0のとき0を出力する。識
別回路では整流出力が1のとき論理出力0を、整流出力
が0のとき論理出力1を出力するようにすると、第2図
で示したように送信データを受信側で再生することがで
きる。
The principle that the transmission data is reproduced on the receiving side by such a method will be described below. FIG. 2 shows an example of signals in each part of the embodiment of the present invention shown in FIG. The data that has been logically converted twice by sandwiching the disjunctive logical sum is 2
Each bit is sampled and one of the two bits is delayed by one bit to obtain the in-phase (I) component and the quadrature (Q), respectively.
It becomes a component and is modulated by the quadrature modulator. The phase of the modulated wave is I,
When the Q component is (1,1) it is 45 °, when it is (0,1) it is 135 °, (0,
It becomes 225 ° for 0) and 315 ° for (1,0). Differential detection output of the receiving side are output at SIN (ΔΦ s) if the phase difference between the signal sent to 1 bit before and .DELTA..PHI s. In other words, it outputs 1 when it increases by 90 °, -1 when it decreases by 90 °, and 0 when it does not change. When full-wave rectified, 1 is output when 1 or -1, and 0 is output when 0. In the discrimination circuit, when the rectified output is 1, the logical output 0 is output, and when the rectified output is 0, the logical output 1 is output, so that the transmission data can be reproduced on the receiving side as shown in FIG.

第3図は本発明の別の実施例である。送信データ20は
和分論理変換回路21を通り和分論理変換され、クロック
の2倍の周期の信号22と排地的論理和を求められ、再び
和分論理変換回路23を通り和分論理変換され、サンプル
回路24でクロックの2倍の周期の信号で2ビットサンプ
リングされる。2ビットのうちの前の1ビットはローパ
スフィルタ26を通り直交変調器28の同相成分に直接入力
され、後の1ビットは遅延回路25を通り1ビット分遅延
されローパスフィルタ27を通り直交変調器28の直交成分
に入力され、送信器29を通り送信アンテナ30から送信さ
れる。送信波31は受信アンテナ32により受信され、受信
機33を通り受信信号34を出力する。受信信号34はリミッ
タ35を通り遅延回路36により1ビット遅延された信号と
乗算され高周波を除去するローパスフィルタ37を通り遅
延検波される。この信号はクロック再生回路38に入力さ
れてクロックを再生するとともに全波整流回路39で整流
され、識別回路40で識別して受信データ41を出力する。
FIG. 3 shows another embodiment of the present invention. The transmission data 20 passes through a summation / logic conversion circuit 21 to undergo a summation / logic conversion to obtain a signal 22 having a double cycle of a clock and a disjunctive logical sum, and again passes through a summation / logic conversion circuit 23 to perform a summation / logic conversion. Then, the sampling circuit 24 performs 2-bit sampling with a signal having a cycle twice that of the clock. The first one bit of the two bits passes through the low pass filter 26 and is directly input to the in-phase component of the quadrature modulator 28, and the second one bit passes through the delay circuit 25 and is delayed by one bit, and passes through the low pass filter 27 and then the quadrature modulator. It is input to the quadrature component 28 and is transmitted from the transmission antenna 30 through the transmitter 29. The transmitted wave 31 is received by the receiving antenna 32, passes through the receiver 33, and outputs a received signal 34. The received signal 34 passes through a limiter 35, is multiplied by a signal delayed by 1 bit by a delay circuit 36, and is passed through a low-pass filter 37 for removing a high frequency and is subjected to delay detection. This signal is input to the clock reproduction circuit 38 to reproduce the clock, rectified by the full-wave rectification circuit 39, identified by the identification circuit 40, and output as reception data 41.

一般に直交変調器に入力する前でローパスフィルタを
通すことによって送信スペクトラムを狭くできることが
知られている。しかし、このようにベースバンドで帯域
制限されて変調された信号は受信側で遅延検波するとき
に位相が変動し振幅も判定する時点で小さくなるため受
信信号レベルに対するデータの誤り率特性が劣化する。
そのため、ベースバンド帯域制限を行うローパスフィル
タのデータを入力したときの時間応答を、受信側での判
定時点すなわちI及びQ成分に入力されるデータの中央
から前後1/2ビットの時点で1の値を取り、それ以外で
は0となるようにすることによって帯域制限を行わない
ときと同じ誤り率特性となるようにすることが可能であ
る。また、遅延検波で必要な情報は位相差の情報だけで
あるので受信信号をリミッタに通してもデータを再生す
ることができる。
It is generally known that the transmission spectrum can be narrowed by passing a low-pass filter before inputting to the quadrature modulator. However, in such a signal that is band-limited and modulated at the base band, the phase fluctuates when the differential detection is performed on the receiving side, and the amplitude becomes small at the time when the amplitude is also determined, so that the data error rate characteristic with respect to the received signal level deteriorates. .
Therefore, the time response when the data of the low-pass filter that performs baseband band limitation is input is 1 at the time of judgment at the receiving side, that is, at the time of 1/2 bit before and after the center of the data input to the I and Q components. By taking a value and setting it to 0 in other cases, it is possible to obtain the same error rate characteristic as when band limitation is not performed. Further, since the information required for the differential detection is only the information on the phase difference, the data can be reproduced even if the received signal is passed through the limiter.

なお、遅延検波出力を2つのレベルで識別し、1また
は−1のとき論理出力0を、0のとき論理出力1を出力
するようにしてもよい。
The differential detection output may be identified by two levels, and the logical output 0 may be output when 1 or −1 and the logical output 1 may be output when 0.

(発明の効果) 以上説明したように、本発明ではOQPSK信号を遅延検
波により復調してデータの伝送を行うことができるた
め、受信装置を簡易にでき、バースト信号のような短い
信号の伝送に適するという利点がある。なお、本発明は
無線通信に限定されることはなく、有線通信にも適用す
ることができる。
(Effects of the Invention) As described above, in the present invention, the OQPSK signal can be demodulated by differential detection to perform data transmission, so that the receiving device can be simplified and transmission of a short signal such as a burst signal can be performed. It has the advantage of being suitable. The present invention is not limited to wireless communication and can be applied to wired communication.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の特許請求範囲(1)の実施例、第2図
は第1図に示した実施例の各部分の信号の例を示した
図、第3図は本発明の別の実施例、第4図はQPSK及びOQ
PSK変調方式の位相変化を示した図である。 1:送信データ、 2:クロックの2倍の周期の信号、 3:和分論理変換回路、4:和分論理変換回路、 5:サンプル回路、6:遅延回路、 7:直交変調回路、8:送信機、 9:送信アンテナ、10:送信波、 11:受信アンテナ、12:受信機、 13:受信信号、14:遅延回路、 15:ローパスフィルタ、16:全波整流回路、 17:識別回路、18:クロック再生回路、 19:受信データ、20:送信データ、 21:和分論理変換回路、 22:クロックの2倍の周期の信号、 23:和分論理変換回路、24:サンプル回路、 25:遅延回路、26:ローパスフィルタ、 27:ローパスフィルタ、28:直交変調回路、 29:送信機、30:送信アンテナ、 31:送信波、32:受信アンテナ、 33:受信機、34:受信信号、 35:リミッタ、36:遅延信号、 37:ローパスフィルタ、38:クロック再生、 39:全波整流、40:識別回路、 41:受信データ。
FIG. 1 is an embodiment of claims (1) of the present invention, FIG. 2 is a diagram showing an example of signals of respective portions of the embodiment shown in FIG. 1, and FIG. 3 is another embodiment of the present invention. Example, FIG. 4 shows QPSK and OQ
It is a figure showing a phase change of a PSK modulation system. 1: Transmission data, 2: Signal with twice the cycle of clock, 3: Addition-and-deduction logic conversion circuit, 4: Addition-and-deduction logic conversion circuit, 5: Sample circuit, 6: Delay circuit, 7: Quadrature modulation circuit, 8: Transmitter, 9: transmit antenna, 10: transmit wave, 11: receive antenna, 12: receiver, 13: receive signal, 14: delay circuit, 15: low-pass filter, 16: full-wave rectifier circuit, 17: identification circuit, 18: Clock recovery circuit, 19: Received data, 20: Transmission data, 21: Addition / disjunction logic conversion circuit, 22: Signal with twice the cycle of clock, 23: Addition / disjunction logic conversion circuit, 24: Sample circuit, 25: Delay circuit, 26: Low-pass filter, 27: Low-pass filter, 28: Quadrature modulation circuit, 29: Transmitter, 30: Transmit antenna, 31: Transmit wave, 32: Receive antenna, 33: Receiver, 34: Receive signal, 35 : Limiter, 36: Delayed signal, 37: Low pass filter, 38: Clock recovery, 39: Full wave rectification, 40: Discrimination circuit, 41: Received data.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】送信側では、 入力データに対して第1の和分論理変換を行い、 その出力とクロックの2倍の周期をもつ信号との排地的
論理和に対し第2の和分論理交換を行い、 その出力をクロックの2倍の周期をもつ信号で2ビット
づつサンプルし、2ビットのサンプルデータのうち一方
を1クロック周期だけ遅延させた信号と他方のサンプル
データを直交変調器の同相及び直交成分として入力して
オフセットQPSK信号を得て送信し、 受信側では、遅延検波により復調することを特徴とする
データ伝送方法。
1. The transmitting side performs a first summation logical conversion on input data, and a second summation is performed on the output logical sum of its output and a signal having a cycle twice that of a clock. Logic exchange is performed, the output is sampled every 2 bits by a signal having a cycle of twice the clock, and one of the 2-bit sample data is delayed by 1 clock cycle and the other sample data is quadrature modulator. A data transmission method characterized by inputting as the in-phase and quadrature components of, obtaining and transmitting an offset QPSK signal, and demodulating by differential detection on the receiving side.
【請求項2】送信側において、直交変調器にデータを入
力する前にローパスフィルタを通し、そのローパスフィ
ルタを通すことによるデータの時間応答が、データの中
心から前後クロック周期の1/2の時点で1となり、当該
時点からクロック周期離れるごとに0となるようにした
ことを特徴とする請求項1記載のデータ伝送方法。
2. The transmitting side is passed through a low-pass filter before inputting the data to the quadrature modulator, and the time response of the data obtained by passing the low-pass filter is at a time point of 1/2 of the clock cycle before and after the center of the data. 2. The data transmission method according to claim 1, wherein the value becomes 1 every time, and the value becomes 0 each time a clock cycle is deviated from the time.
JP1017465A 1989-01-30 1989-01-30 Data transmission method Expired - Lifetime JP2540929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017465A JP2540929B2 (en) 1989-01-30 1989-01-30 Data transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1017465A JP2540929B2 (en) 1989-01-30 1989-01-30 Data transmission method

Publications (2)

Publication Number Publication Date
JPH02200042A JPH02200042A (en) 1990-08-08
JP2540929B2 true JP2540929B2 (en) 1996-10-09

Family

ID=11944771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017465A Expired - Lifetime JP2540929B2 (en) 1989-01-30 1989-01-30 Data transmission method

Country Status (1)

Country Link
JP (1) JP2540929B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445600B2 (en) * 2012-02-20 2014-03-19 沖電気工業株式会社 Digital data transmitting apparatus, digital data receiving apparatus and digital data transmission system

Also Published As

Publication number Publication date
JPH02200042A (en) 1990-08-08

Similar Documents

Publication Publication Date Title
CA1328681C (en) Differential phase-shift keying demodulator
KR20010072039A (en) Differentiate and multiply based timing recovery in a quadrature demodulator
US4438524A (en) Receiver for angle-modulated carrier signals
US6549588B2 (en) Communications system and corresponding receiver unit
JPS59104847A (en) Radio communicating system
CA2256169A1 (en) Circuit for reproducing bit timing and method of reproducing bit timing
JPH07264091A (en) Communication equipment for radio card
US10924311B1 (en) Multi-standard BCPM demodulator using Viterbi algorithm
JP2959498B2 (en) Automatic frequency control circuit
EP0484914B1 (en) Demodulator and method for demodulating digital signals modulated by a minimum shift keying
JP2540929B2 (en) Data transmission method
US5541966A (en) System and circuit for estimating the carrier frequency of a PSK numeric signal
JP3252820B2 (en) Demodulation and modulation circuit and demodulation and modulation method
US5572551A (en) Carrier loop acquisition for staggered phase shift keying
KR20000064287A (en) Ary frequency shift receiver
JP2696948B2 (en) Carrier recovery circuit
US20050201490A1 (en) Zero-crossing detector for receivers
KR950010928B1 (en) Differential biphase-shift keying demodulator and method thereof
KR950003667B1 (en) Minimum shift keying modulator and demodulator using bfsk demodulating method
JPH0142180B2 (en)
EP0215166A2 (en) Digital communication system
KR100368013B1 (en) Direct conversion receiver
JP2958612B2 (en) Multi-level QAM demodulator
JPH03124133A (en) Demodulator
JP2004235693A (en) Communication system, and transmitter and receiver therefor