JPH0142127B2 - - Google Patents
Info
- Publication number
- JPH0142127B2 JPH0142127B2 JP55124823A JP12482380A JPH0142127B2 JP H0142127 B2 JPH0142127 B2 JP H0142127B2 JP 55124823 A JP55124823 A JP 55124823A JP 12482380 A JP12482380 A JP 12482380A JP H0142127 B2 JPH0142127 B2 JP H0142127B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- crystal semiconductor
- scanning
- semiconductor layer
- energy beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013078 crystal Substances 0.000 claims description 81
- 239000004065 semiconductor Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 13
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000012212 insulator Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Recrystallisation Techniques (AREA)
Description
【発明の詳細な説明】
本発明は、非単結晶層の単結晶化方法に係りシ
リコン基板上に設けた酸化膜上(SiO2)の非単
結晶の多結晶シリコンを単結晶化させるようにし
た結晶化方法に関する。[Detailed Description of the Invention] The present invention relates to a method for single-crystallizing a non- single -crystal layer. This invention relates to a crystallization method.
従来よりイオン打ち込み等によつて生じた半導
体基板の損傷層等に高出力レーザ光を照射するこ
とで、上記損傷層が結晶回復され単結晶化するこ
とが知られている。このような結晶回復機能はパ
ルスレーザの照射では主に液相エピタキシヤル機
構により、CW(連続励起)レーザの照射では主
に固相エピタキシヤル機構によるものとされてい
るがCWレーザでも充分にエネルギー密度が高け
れば液相エピタキシヤル成長が可能である。 It has been known that by irradiating a damaged layer of a semiconductor substrate caused by ion implantation or the like with a high-power laser beam, the damaged layer can be crystallized and turned into a single crystal. Such crystal recovery function is said to be mainly due to the liquid phase epitaxial mechanism in pulsed laser irradiation, and mainly due to the solid phase epitaxial mechanism in CW (continuous excitation) laser irradiation, but even CW laser has sufficient energy. If the density is high, liquid phase epitaxial growth is possible.
上述の如きレーザアニーリングはレーザ光にと
どまらず粒子線等をも含んで考えられ本発明では
これらを含めてエネルギー線として説明を進め
る。 Laser annealing as described above is considered to include not only laser light but also particle beams and the like, and in the present invention, explanation will be given as energy beams including these.
本出願人は先にエネルギー線アニール方法とし
て、第1図に示すような多結晶シリコンを基板シ
リコンを核にメルトさせつつ一定方向に上記エネ
ルギー線を走査させて単結晶化する方法を提案し
た。 The present applicant has previously proposed a method as shown in FIG. 1 as an energy beam annealing method in which polycrystalline silicon is made into a single crystal by scanning the energy beam in a fixed direction while melting the silicon substrate as a core.
即ち、第1図に於いて、シリコン基板1上に熱
酸化による酸化膜2(SiO2)を形成し該酸化膜
上に多結晶シリコン又は非晶質シリコン層3を例
えばCVD法等により形成する。尚、本発明では
多結晶シリコン又は非晶質シリコンを含めて以後
非単結晶シリコンとして説明を進める。 That is, in FIG. 1, an oxide film 2 (SiO 2 ) is formed by thermal oxidation on a silicon substrate 1, and a polycrystalline silicon or amorphous silicon layer 3 is formed on the oxide film by, for example, CVD method. . In the present invention, polycrystalline silicon or amorphous silicon will be included in the description hereinafter as non-monocrystalline silicon.
更に酸化膜2の1部をエツチング等により除去
4して基板1の単結晶層を露出させ、該露出部分
よりエネルギー線5を矢印で示すように5′の位
置迄走査させることで非単結晶シリコン層3をメ
ルト6して単結晶化させるようにしたものであ
る。上述の如くエネルギー線を基板の単結晶を核
のように働かせ該核を出発点として走査させた場
合に、非単結晶シリコン層と隣接するエネルギー
線の両端部は単結晶化されないことを、本発明者
は見出した。これら状態を第2図A,Bを用いて
説明する。第2図Aは非単結晶層上をエネルギー
線が走査する過程を示す平面図第2図Bは側断面
を示すものであり、第2図Bは第1図と同様に基
板1上に酸化膜2を形成し、該酸化膜を露呈4さ
せて単結晶成長時の核となしこれらの上に非単結
晶シリコン3を被覆する。該核を出発点としてレ
ーザー等のエネルギー線5を第2図Aの矢印X方
向に走査させる。エネルギー線はスポツト直径D
に相当する巾で非結晶層のシリコン3表面を順次
メルト6させる。この時、エネルギー線5の中心
部5aの頂部は単結晶化されるが、非単結晶層シ
リコン3と接しているエネルギー線5の両端面
a,b部分では非単結晶が成長してしまう。これ
は、エネルギー線スポツトの移動に伴つて、非単
結晶シリコンがメルトされてできた溶液が順次冷
却され再結晶化していくとき、その溶液のエネル
ギー線の進行方向に対して後方にあたる部分は単
結晶に接しているものの、溶液の他の方向は非単
結晶シリコンと接しているが故に、単結晶を核と
する結晶成長と同時に非単結晶を核とする結晶成
長も並行しておこるためである。従つて、エネル
ギー線の進行方向と平行な側面付近をも単結晶化
するためには、前記溶液の側面も単結晶に接して
いることが好ましい。 Furthermore, a part of the oxide film 2 is removed 4 by etching or the like to expose the single crystal layer of the substrate 1, and the energy beam 5 is scanned from the exposed part to the position 5' as shown by the arrow to form a non-single crystal layer. The silicon layer 3 is melted 6 and made into a single crystal. As mentioned above, when the single crystal of the substrate acts as a nucleus and the energy beam is scanned using the nucleus as a starting point, both ends of the energy beam adjacent to the non-single crystal silicon layer are not converted into single crystals. The inventor discovered this. These states will be explained using FIGS. 2A and 2B. FIG. 2A is a plan view showing the process in which energy rays scan a non-single crystal layer, FIG. 2B is a side cross-sectional view, and FIG. A film 2 is formed, the oxide film is exposed 4 and used as a nucleus during single crystal growth, and non-single crystal silicon 3 is coated thereon. Starting from the nucleus, an energy beam 5 such as a laser is scanned in the direction of the arrow X in FIG. 2A. The energy ray has a spot diameter D
The surface of the silicon 3 of the amorphous layer is sequentially melted 6 with a width corresponding to . At this time, the top of the center portion 5a of the energy beam 5 is made into a single crystal, but a non-single crystal grows on both end surfaces a and b of the energy beam 5 that are in contact with the non-single crystal layer silicon 3. This is because when the solution formed by melting non-single-crystal silicon is sequentially cooled and recrystallized as the energy ray spot moves, the part of the solution that is backward in the direction of travel of the energy ray is a single crystal. Although the solution is in contact with the crystal, the other direction of the solution is in contact with non-single crystal silicon, so crystal growth with the single crystal as the nucleus occurs simultaneously with crystal growth with the non-single crystal as the nucleus. be. Therefore, in order to single-crystallize the vicinity of the side surfaces parallel to the traveling direction of the energy rays, it is preferable that the side surfaces of the solution are also in contact with the single crystal.
本発明は上述の点に鑑みて、エネルギー線の進
行方向と平行な側面付近での単結晶化を阻害する
弊害をエネルギー線の走査方法によつて、極めて
簡単に解決することを目的とする。 In view of the above-mentioned points, it is an object of the present invention to extremely easily solve the problem of inhibiting single crystallization in the vicinity of side surfaces parallel to the traveling direction of energy rays by using an energy ray scanning method.
本発明の特徴とするところは、絶縁物上の非単
結晶層にエネルギー線を照射して、結晶化する方
法に於て、単結晶化すべき非単結晶層の一部が単
結晶に接するように配置し、これにまずエネルギ
ー線のスポツトが非単結晶と単結晶にまたがるよ
うにしてエネルギー線を走査した後、順次、エネ
ルギー線のスポツトがそれに先立つ走査により形
成された単結晶化領域にオーバラツプするように
走査して、非単結晶層を単結晶化するところにあ
る。 A feature of the present invention is that in the method of crystallizing a non-single crystal layer on an insulator by irradiating energy rays, a part of the non-single crystal layer to be made into a single crystal comes into contact with the single crystal. First, the energy beam spot is scanned so that it spans the non-single crystal and the single crystal, and then the energy beam spot overlaps the single crystal region formed by the previous scan. The non-single-crystal layer is converted into a single-crystal layer by scanning in a manner that
以下、本発明の実施例を第3図乃至第9図につ
いて詳記する。 Embodiments of the present invention will be described in detail below with reference to FIGS. 3 to 9.
本発明の実施例に於て、非単結晶層を広い範囲
に渡つて単結晶化させるようにするために、第3
図に示すように単結晶化しようとする領域を単結
晶部分でとり囲み該単結晶部分を核として、エネ
ルギー線の走査を開始させるようにする。照射す
るエネルギー線5の出力はCWアルゴンレーザで
10W乃至18W程度でよい。即ち図に於て、非単結
晶層3よりなるポリシリコンを形成した領域内の
少くとも2辺3a,3bに単結晶を有し、その結
晶方位は例えば(100)と同一となるように選択
する。即ち、上記、第1及び第2の辺3a,3b
の断面Y−Y′及びZ−Z′は第4図aの如く構成さ
れ、非単結晶層3の下端は基板1に直接的に接
し、該基板と非単結晶層3とが接する面1aの基
板は単結晶よりなり、その面方向の結晶方位は同
一であるようにする。更に辺3aにおいて、多結
晶が成長するのを防ぐために、第4図bの如く、
基板面a上で非単結晶層3を選択酸化層2aで分
断してもよい。 In the embodiment of the present invention, in order to cause the non-single crystal layer to become single crystal over a wide range, the third
As shown in the figure, a region to be made into a single crystal is surrounded by a single crystal portion, and scanning of the energy beam is started using the single crystal portion as a core. The output of the energy beam 5 to be irradiated is a CW argon laser.
Approximately 10W to 18W is sufficient. That is, in the figure, at least two sides 3a and 3b have single crystals in the region where polysilicon made of non-single crystal layer 3 is formed, and the crystal orientation is selected to be the same as, for example, (100). do. That is, the first and second sides 3a, 3b
The cross sections Y-Y' and Z-Z' are constructed as shown in FIG. The substrate is made of a single crystal, and the crystal orientation in the plane direction is the same. Furthermore, in order to prevent the growth of polycrystals on the side 3a, as shown in FIG. 4b,
The non-single crystal layer 3 may be separated by selective oxidation layers 2a on the substrate surface a.
今、第3図に示す如く、エネルギー線5を矢印
X方向に走査していけば、単結晶を構成する1辺
3bの出発点Sでは非単結晶層がエネルギー線で
メルトされ、基板1の単結晶の結晶方位と同一の
単結晶の成長が開始される。次にエネルギー線5
を単結晶を構成する他辺3aの縁に沿うか或は辺
3aにオーバラツプするように走査を行えば、該
辺3a上の非単結晶層3はメルトされてエネルギ
ー線5の中心線5aより上側の辺5b部分では辺
3aの単結晶を核として結晶化が進むため単結晶
化され、下側の辺5cではこれと接している非単
結晶を核とした結晶成長のため多結晶化が進むこ
とになる。そこで本実施例では第5図に示すよう
には1本目の走査線が単結晶化した部分5bを残
して2本目以後の走査線は多結晶化されている部
分5cをメルトするようにオーバラツプし、且つ
上記単結晶化された部分5bに沿つて走査を進め
る。2回目以後の走査は1回目の走査線巾に50%
〜60%以上重ねて、走査する必要がある。このよ
うに走査を行うと、前回の走査で単結晶化されな
かつた非単結晶化部分5cは次の走査で単結晶化
され、最終的には単結晶化したい領域の最下端線
3e上を走査し終ることで全領域を単結晶化する
ことが出来る。 Now, as shown in FIG. 3, if the energy beam 5 is scanned in the direction of arrow X, the non-single crystal layer will be melted by the energy beam at the starting point S of one side 3b forming the single crystal, Growth of a single crystal with the same crystal orientation as that of the single crystal is started. Next, energy ray 5
If scanning is performed along the edge of the other side 3a constituting the single crystal or so as to overlap the side 3a, the non-single crystal layer 3 on the side 3a will be melted, and On the upper side 5b, crystallization progresses using the single crystal on side 3a as the nucleus, resulting in single crystallization, and on the lower side 5c, polycrystalization occurs as crystal growth occurs using the non-single crystal in contact with this as the nucleus. I will move on. Therefore, in this embodiment, as shown in FIG. 5, the first scanning line leaves the monocrystalline portion 5b, and the second and subsequent scanning lines overlap so as to melt the polycrystalline portion 5c. , and the scanning proceeds along the single crystallized portion 5b. The second and subsequent scans are 50% of the first scan line width.
It is necessary to scan with ~60% overlap. When scanning is performed in this way, the non-single crystallized portion 5c that was not single crystallized in the previous scan will be single crystallized in the next scan, and eventually the area will be moved over the bottom line 3e of the area to be single crystallized. By completing the scanning, the entire area can be made into a single crystal.
第5図に示す場合は右側下面に単結晶よりなる
辺3bの有る場合で右上端より走査を開始させた
が、第6図の如く左側に単結晶よりなる辺3cを
配せば左上端より走査を開始させ辺3aに沿つて
1本目の走査を行ない、以後の走査を第5図と同
様に行うことが出来る。 In the case shown in Fig. 5, when there is side 3b made of single crystal on the lower right side, scanning is started from the upper right edge, but if side 3c made of single crystal is arranged on the left side as shown in Fig. 6, scanning starts from the upper left edge. Scanning is started and a first scan is performed along the side 3a, and subsequent scans can be performed in the same manner as in FIG.
第7図に示すものは単結晶化しようとする領域
の3辺3a〜3cに単結晶の辺を有する場合、走
査開始点は右上方又は左上方より始め、走査方向
を左(右)から右(左)とその走査方向を順次変
換して走査することが可能となる。 In the case shown in Fig. 7, when the area to be single crystallized has single crystal sides on three sides 3a to 3c, the scanning start point starts from the upper right or upper left, and the scanning direction is changed from left (right) to right. (left) and its scanning direction can be sequentially converted and scanned.
更に、第8図に示すものは単結晶化しようとす
る非結晶化領域の周囲に、図では4つの辺3a〜
3dを単結晶化された辺で囲繞させたもので走査
方法としては第5図乃至第7図の走査方法は勿
論、辺3a又は辺3dより辺3d又は3a側に上
から下又は下から上に或は上下に交互の走査して
もよく、更に第8図示の如く渦巻状の走査をなし
てもよい。 Furthermore, in the case shown in FIG. 8, four sides 3a to 3a are formed around the amorphous region to be made into a single crystal.
3d is surrounded by single crystallized sides, and the scanning method is of course the scanning method shown in Figs. Alternatively, scanning may be performed alternately vertically or vertically, or spiral scanning may be performed as shown in FIG.
更に第9図に示す様に中心に単結晶となる核3
fを配し、該核に沿つて渦巻状にエネルギー線を
走査してもよい。上記各実施例では単結晶化しよ
うとする領域が長方形又は正方形状のものについ
て述べたが、これらの形状は円形や多角形状でも
よいことは明白である。 Furthermore, as shown in Figure 9, there is a nucleus 3 that becomes a single crystal at the center.
f, and the energy beam may be scanned spirally along the nucleus. In each of the above embodiments, the region to be single crystallized has a rectangular or square shape, but it is clear that these shapes may also be circular or polygonal.
本発明は、以上説明したように、エネルギー線
スポツトの最初の走査で、それ以降の走査の核と
なる広い単結晶領域が確実に得られ、しかも、前
の走査で多結晶化した部分を完全に融かすように
順次オーバーラツプして走査していくので、エネ
ルギー線の進行方向と平行な側面付近をも残らず
単結晶化していくことができ、よつて非単結晶層
を広領域にわたつて確実に単結晶化させることが
できるという効果を有するものである。 As explained above, the present invention enables the first scan of the energy beam spot to reliably obtain a wide single-crystal region that will serve as the nucleus for subsequent scans, and also completely removes the polycrystalline area in the previous scan. Since the energy beams are sequentially overlapped and scanned so as to melt the energy beams, it is possible to convert the non-single crystal layer into a single crystal over a wide area. This has the effect of reliably achieving single crystallization.
第1図は従来の非単結晶層を単結晶化する方法
を説明するための基板の側断面図、第2図A,B
は非単結晶層上をエネルギー線が走査する過程を
示す、従来の説明用平面図、第2図Bは第2図A
の側断面図、第3図は本発明のエネルギー線走査
方法を説明するための平面図、第4図は第3図Y
−Y′、Z−Z′方向矢視断面図、第5図は本発明の
エネルギー線の走査順序を示す平面図、第6図、
第7,8図及び第9図は本発明のエネルギー線の
走査順序を示す他の実施例の平面図である。
1…基板、2…絶縁層、3…非単結晶層、4…
エツチング部、5…エネルギー線、6…メルト
部、3a,3b,3c,3d…単結晶部である。
Figure 1 is a side sectional view of a substrate for explaining the conventional method of converting a non-single crystal layer into a single crystal, and Figures 2A and B
2B is a conventional explanatory plan view showing the process of scanning energy rays on a non-single crystal layer, and FIG. 2A is
3 is a plan view for explaining the energy beam scanning method of the present invention, and FIG. 4 is a side sectional view of FIG.
-Y′, Z-Z′ direction arrow sectional view, FIG. 5 is a plan view showing the scanning order of energy rays of the present invention, FIG.
7, 8 and 9 are plan views of other embodiments showing the scanning order of energy rays of the present invention. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Insulating layer, 3...Non-single crystal layer, 4...
Etched part, 5... Energy beam, 6... Melt part, 3a, 3b, 3c, 3d... Single crystal part.
Claims (1)
ルギー線を照射して単結晶半導体層を核として前
記非単結晶半導体層を単結晶化する方法に於い
て、 前記非単結晶半導体層を前記単結晶半導体領域
に対してその屈曲部を介して少なくとも2方向に
おいて接するように形成し、その後、前記単結晶
半導体領域の屈曲部上の前記非単結晶半導体層か
ら、少なくとも前記単結晶半導体領域を含むよう
にして前記単結晶半導体領域に沿つてエネルギー
線スポツトを走査して、前記単結晶半導体領域に
接する単結晶化された半導体層領域を形成し、次
いで、順次、それに先立つエネルギー線スポツト
の走査により形成されて成る単結晶化された半導
体層領域にその一部がまたがるようにエネルギー
線スポツトを走査することを特徴とする非単結晶
半導体層の単結晶化方法。 2 前記単結晶半導体領域が、前記非単結晶半導
体層にとりかこまれるように配置され、前記単結
晶半導体領域から渦巻状に前記エネルギー線スポ
ツトを走査することを特徴とする特許請求の範囲
第1項記載の非単結晶半導体層の単結晶化方法。[Scope of Claims] 1. A method of irradiating a non-single-crystal semiconductor layer formed on an insulator with energy rays to single-crystallize the non-single-crystal semiconductor layer using the single-crystal semiconductor layer as a core, comprising: A single crystal semiconductor layer is formed so as to be in contact with the single crystal semiconductor region in at least two directions via the bent portion thereof, and then at least An energy beam spot is scanned along the single crystal semiconductor region so as to include the single crystal semiconductor region to form a single crystal semiconductor layer region that is in contact with the single crystal semiconductor region, and then, the energy ray spot is scanned along the single crystal semiconductor region so as to include the single crystal semiconductor region. 1. A method for single-crystalizing a non-single-crystalline semiconductor layer, which comprises scanning an energy beam spot so that a portion thereof straddles a single-crystal semiconductor layer region formed by scanning the line spot. 2. Claim 1, wherein the single crystal semiconductor region is arranged so as to be surrounded by the non-single crystal semiconductor layer, and the energy beam spot is scanned in a spiral form from the single crystal semiconductor region. A method for single crystallizing a non-single crystal semiconductor layer as described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12482380A JPS5749225A (en) | 1980-09-09 | 1980-09-09 | Single-crystallizing method for non-single crystalline semiconductor layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12482380A JPS5749225A (en) | 1980-09-09 | 1980-09-09 | Single-crystallizing method for non-single crystalline semiconductor layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5749225A JPS5749225A (en) | 1982-03-23 |
JPH0142127B2 true JPH0142127B2 (en) | 1989-09-11 |
Family
ID=14894982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12482380A Granted JPS5749225A (en) | 1980-09-09 | 1980-09-09 | Single-crystallizing method for non-single crystalline semiconductor layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5749225A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59194423A (en) * | 1983-04-20 | 1984-11-05 | Agency Of Ind Science & Technol | Manufacture of semiconductor crystal layer |
-
1980
- 1980-09-09 JP JP12482380A patent/JPS5749225A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5749225A (en) | 1982-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5371381A (en) | Process for producing single crystal semiconductor layer and semiconductor device produced by said process | |
JPH0157078B2 (en) | ||
KR900004267B1 (en) | Method of producting single crystal silicon film | |
JPS6339092B2 (en) | ||
JPH0142127B2 (en) | ||
JPS6329819B2 (en) | ||
JPS6317329B2 (en) | ||
JPS58162032A (en) | Crystalization | |
JPH0140485B2 (en) | ||
JPS641046B2 (en) | ||
JPS6320011B2 (en) | ||
JPH0442358B2 (en) | ||
JPH0652712B2 (en) | Semiconductor device | |
JPH0136972B2 (en) | ||
JPS5856457A (en) | Manufacture of semiconductor device | |
JPH01230221A (en) | Single-crystallizing method for non-single crystal semiconductor layer | |
JPH0142126B2 (en) | ||
JPH0157491B2 (en) | ||
JPH0377654B2 (en) | ||
JPS58180019A (en) | Semiconductor base body and its manufacture | |
JPH0368532B2 (en) | ||
JPH0340513B2 (en) | ||
JPH0461491B2 (en) | ||
JPH0330285B2 (en) | ||
JPS629212B2 (en) |