JPS6317329B2 - - Google Patents

Info

Publication number
JPS6317329B2
JPS6317329B2 JP56137546A JP13754681A JPS6317329B2 JP S6317329 B2 JPS6317329 B2 JP S6317329B2 JP 56137546 A JP56137546 A JP 56137546A JP 13754681 A JP13754681 A JP 13754681A JP S6317329 B2 JPS6317329 B2 JP S6317329B2
Authority
JP
Japan
Prior art keywords
single crystal
scanning direction
scanning
cross
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56137546A
Other languages
Japanese (ja)
Other versions
JPS5839012A (en
Inventor
Junji Sakurai
Haruhisa Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56137546A priority Critical patent/JPS5839012A/en
Publication of JPS5839012A publication Critical patent/JPS5839012A/en
Publication of JPS6317329B2 publication Critical patent/JPS6317329B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 本発明は例えば絶縁物上に形成された非単結晶
半導体層を、エネルギ線照射により単結晶化する
方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for single crystallizing a non-single crystal semiconductor layer formed on an insulator by irradiating energy beams.

半導体基板例えばシリコン(Si)基板表面を被
覆する二酸化シリコン(SiO2)膜のような絶縁
物上に、多結晶シリコン層または非晶質シリコン
層を形成し、これにレーザビーム或いは荷電粒子
線[以下エネルギ線と総称する]を照射すること
により単結晶化する方法が既に種々提晶されてい
る。
A polycrystalline silicon layer or an amorphous silicon layer is formed on an insulating material such as a silicon dioxide (SiO 2 ) film covering the surface of a semiconductor substrate, for example, a silicon (Si) substrate, and then a laser beam or a charged particle beam [ Various methods have already been proposed for single crystallization by irradiation with energy beams.

例えば第1図aの要部上面図、及び同図bのB
−B矢視部断面図に示すように、Si基板1上に加
熱酸化法によりSiO2膜2を形成し、該SiO2膜2
の一部を選択的に除去して開口3を設けることに
よりSi基板1の表面を露出せしめ、この露出せる
表面上を含むSiO2膜2上に非単結晶シリコン層
4を化学気相成長(CVD)法等により形成する。
For example, the top view of the main part in Figure 1a, and B in Figure 1b.
As shown in the cross-sectional view of arrow -B, a SiO 2 film 2 is formed on a Si substrate 1 by a thermal oxidation method, and the SiO 2 film 2 is
The surface of the Si substrate 1 is exposed by selectively removing a part of it to form an opening 3, and a non-single-crystal silicon layer 4 is formed by chemical vapor deposition (chemical vapor deposition) on the SiO 2 film 2 including the exposed surface. Formed by CVD method etc.

次いで非単結晶シリコン層4がSi基板1の表面
と直接接触している開口3部を始点として、強度
分布が略一様な長方形状のエネルギ線5をX方向
(エネルギ線5′の方向)に移動させる。このよう
に非単結晶シリコン層4はエネルギ線5の照射を
受けると溶融し、エネルギ線5が通過してしまう
と再び凝固する。このときエネルギ線の中心部が
通過した部分は単結晶3′を底辺とする3角形の
単結晶層6が形成されるが、その上側及び下側に
は多結晶6a,6bが形成される。
Next, starting from the opening 3 where the non-single crystal silicon layer 4 is in direct contact with the surface of the Si substrate 1, a rectangular energy line 5 with a substantially uniform intensity distribution is drawn in the X direction (the direction of the energy line 5'). move it to In this way, the non-single crystal silicon layer 4 melts when irradiated with the energy beam 5, and solidifies again when the energy beam 5 passes through. At this time, a triangular single crystal layer 6 having the single crystal 3' as the base is formed in the portion through which the center of the energy beam has passed, and polycrystals 6a and 6b are formed above and below the triangular single crystal layer 6.

このようにエネルギ線の中央部のごく狭い範囲
のみが単結晶化し、他は多結晶となるのは、図示
せる如く固相−液相の界面7が走査の進行方向の
後ろ側に凹状に長く伸びるためである。即ち、前
記長方形ビームの中央部は周辺部より温度が高
く、従つて最後に凝固するのであるが、そのとき
は開口3部において接触する基板1の結晶方位に
従つて固相が成長し、単結晶層6が形成される。
しかし温度の低い周辺部は中央部より先に凝固
し、しかもその近傍に無数に存在する結晶粒を核
として固相が中央に両側から成長するので、単結
晶核3から遠い所では周辺部から伸びた多結晶層
6a,6bだけとなつてしまう。
In this way, only a very narrow range in the center of the energy line becomes single crystal, and the rest becomes polycrystalline.As shown in the figure, the solid phase-liquid phase interface 7 is elongated in a concave shape toward the rear in the scanning direction. This is because it stretches. That is, the temperature of the central part of the rectangular beam is higher than that of the peripheral part, and therefore it solidifies last, but at that time, a solid phase grows according to the crystal orientation of the substrate 1 that comes in contact with the opening 3, and a single A crystal layer 6 is formed.
However, the peripheral part, where the temperature is low, solidifies earlier than the central part, and the solid phase grows from both sides of the center, using the countless crystal grains in the vicinity as nuclei. Only the stretched polycrystalline layers 6a and 6b remain.

上述の如く従来方法ではエネルギ線の断面形状
を長方形状としても単結晶化し得るのは初めのし
かも中央部のごく僅かな範囲に限られ、能率的で
はなかつた。
As mentioned above, in the conventional method, even if the cross-sectional shape of the energy line is rectangular, it is only possible to form a single crystal in a very small area at the beginning and in the center, which is not efficient.

本発明の目的は一回の走査で広い範囲を単結晶
化し得る非単結晶層の単結晶化方法を提供するこ
とにある。
An object of the present invention is to provide a method for single-crystallizing a non-single-crystal layer that can single-crystallize a wide area in one scan.

本発明の特徴は、エネルギ線の強度分布を略一
様とし、且つ前記エネルギ線の走査面上における
投影像を、前記走査方向に対して後方の辺の少な
くとも中央部から一方の端部近傍に到る部分が、
連続した滑らかな線で且つ走査時に中央部が前記
一方の端部に先行する如く走査方向に対して斜交
する形状とし、前記走査に当たつて非単結晶層上
には前記一方の端部側を位置させて該エネルギ線
の走査を行なうことにある。
A feature of the present invention is that the intensity distribution of the energy beam is substantially uniform, and the projected image of the energy beam on the scanning plane is distributed from at least the center of the rear side with respect to the scanning direction to the vicinity of one end. The part that reaches
It is a continuous smooth line and has a shape that is oblique to the scanning direction so that the center part precedes the one end part during scanning, and the one end part is on the non-single crystal layer during the scanning. The purpose is to scan the energy beam by positioning the side.

以下本発明を実施例により詳細に説明する。 The present invention will be explained in detail below with reference to Examples.

第2図及び第3図は本発明の一実施例を示す要
部上面図であつて、第1図a及びbに示した従来
例とは断面形状が走査の進行方向に凸の「く」の
字状及び単結晶側が先に進む傾斜パターンとした
ことが異なる。
FIGS. 2 and 3 are top views of main parts showing an embodiment of the present invention, and the cross-sectional shape is convex in the scanning direction, which is different from the conventional example shown in FIGS. 1a and 1b. The difference is that it is shaped like a square and has an inclined pattern in which the single crystal side advances first.

先ず第2図は第1本目の走査の模様を示す図で
あつて、第1図とはエネルギ線の断面形状のみが
異なる。エネルギ線としては例えばアルゴン
(Ar)のCWレーザビームを用いることができる。
First, FIG. 2 is a diagram showing the pattern of the first scan, and differs from FIG. 1 only in the cross-sectional shape of the energy line. For example, a CW laser beam of argon (Ar) can be used as the energy beam.

図に示す如く本実施例ではレーザビーム15の
断面形状を進行方向に凸状としたことにより、固
相−液相界面17も中央部において進行方向に
凸、即ち中央部が先に凝固し、周縁部は遅く凝固
する。
As shown in the figure, in this embodiment, the cross-sectional shape of the laser beam 15 is convex in the direction of travel, so that the solid-liquid phase interface 17 is also convex in the direction of travel at the center, that is, the center solidifies first. The periphery solidifies slowly.

中央部は前述した如く開口3部において、露呈
された基板1表面の結晶方位に従つて成長した単
結晶層である。周縁部には前記従来例と同じく多
結晶層16a,16bが形成されるが、周縁部が
凝固する時期は中央部よりかなり遅いので、多結
晶層16a,16bの幅はごく小さくてすみ、幅
の広い単結晶層16が形成される。
The central portion is a single crystal layer grown in accordance with the crystal orientation of the exposed surface of the substrate 1 in the opening 3 as described above. Polycrystalline layers 16a and 16b are formed at the periphery as in the conventional example, but since the period at which the periphery solidifies is much later than that at the center, the width of the polycrystalline layers 16a and 16b can be very small. A wide single crystal layer 16 is formed.

以上のようにして第1本目の走査を終つた後、
第3図に示すように断面形状が長方形状のレーザ
ビーム15′を、第1回目の走査領域側(即ち単
結晶層16側)が先に進むよう走査の進行方向に
対して斜交させて第2本目の走査を行なう。この
ときレーザビーム15′を図示せる如く、第1回
目の走査において形成された多結晶層16bを越
え、単結晶層16にオーバラツプさせること、及
び開口3部を始点として走査を開始することが必
要である。
After completing the first scan as described above,
As shown in FIG. 3, a laser beam 15' having a rectangular cross section is oriented obliquely to the scanning direction so that the first scanning area side (that is, the single crystal layer 16 side) advances first. Perform the second scan. At this time, as shown in the figure, it is necessary for the laser beam 15' to go beyond the polycrystalline layer 16b formed in the first scan and overlap the single crystal layer 16, and to start scanning from the opening 3 as the starting point. It is.

このようにすると固相−液相の界面17′に示
すように前の走査領域側から凝固するので、単結
晶層16に従つて固相が成長し、単結晶層16′
が形成される。今回の走査において多結晶層1
6′bは走査領域の下側にのみ形成され、その幅
もごく僅かである。以下この操作を繰り返すこと
により所望領域を能率よく単結晶化することがで
きる。
In this way, as shown at the solid phase-liquid phase interface 17', solidification occurs from the previous scanning area side, so the solid phase grows along the single crystal layer 16, and the single crystal layer 16'
is formed. In this scan, polycrystalline layer 1
6'b is formed only below the scanning area, and its width is also very small. By repeating this operation, a desired region can be efficiently single-crystallized.

なお上記一実施例では開口3において露出され
た基板表面を核として単結晶層16を成長せしめ
た。しかし本実施例の方法は必ずしも核となる単
結晶が存在しなくてもよく、その場合は第1本目
の走査において中央部で最初に形成された微小結
晶が核となり、その結晶方位に従つて単結晶層が
成長する。
In the above example, the single crystal layer 16 was grown using the substrate surface exposed in the opening 3 as a nucleus. However, the method of this embodiment does not necessarily require the presence of a single crystal as a nucleus; in that case, the microcrystal that was first formed in the center in the first scan becomes the nucleus, and A single crystal layer grows.

第4図は本発明の変形例を示すもので、開口3
をL字状として核となる結晶面を2方向に設けた
例である。この場には始めから第3図の走査方向
に斜交する長方形状断面を有するレーザビーム1
5′を用い、開口3の2辺の交点部を始点とし、
一方の辺に沿つて第1回目の走査を行ない、以後
これを繰り返す方法によつても良い。この場合も
走査方向に斜交する長方形状レーザビームは、単
結晶側(図の上側)が先に進むような配置とする
ことが必要である。
FIG. 4 shows a modification of the present invention, in which the opening 3
This is an example in which the crystal plane is L-shaped and the crystal planes serving as the nucleus are provided in two directions. From the beginning, a laser beam 1 having a rectangular cross section obliquely intersecting the scanning direction as shown in FIG.
5', with the intersection of the two sides of the opening 3 as the starting point,
A method may also be used in which the first scan is performed along one side and then this is repeated. In this case as well, the rectangular laser beam obliquely intersecting the scanning direction needs to be arranged so that the single crystal side (upper side in the figure) advances first.

以上説明した一実施例及び変形例ではエネルギ
線の断面形状を「く」の字状及び走査方向に斜交
する長方形状とした例を掲げて説明したが、ビー
ムの断面形状はこれに限定されるものではなく
種々選択し得る。例えば前記「く」の字状パター
ンに変えて、第5図に示すような、走査の進行方
向に対して後側の辺を「く」の字状としたパター
ン[同図a]、三日月状パターン[同図b]、或い
は走査の進行方向に対して前側も後側も「く」の
字状とした糸巻き状パターン[同図c]としても
よい。これらのうち、断面形状を糸巻き状とした
場合は、往復走査が可能である。
In the above-described embodiment and modification, the cross-sectional shape of the energy beam is a dogleg shape and a rectangular shape obliquely intersecting the scanning direction. However, the cross-sectional shape of the beam is limited to this. You can choose from a variety of options. For example, instead of the dogleg pattern described above, a pattern with the rear side in the scanning direction shaped like a dogleg [a], as shown in Figure 5, or a crescent-shaped pattern. A pattern [b in the same figure] or a pincushion pattern [c in the same figure] in which both the front and rear sides are dogleg-shaped with respect to the scanning direction may be used. Among these, when the cross-sectional shape is a pincushion shape, reciprocating scanning is possible.

また走査方向に斜交する長方形状パターンに変
えて、楕円状パターン[第6図a]、三角形状パ
ターン[同図b,c]、台形状パターン[同図d]
等を用いてもよい。これらのうちパターンに対称
性を持たせた同図c及びdの三角形状及び台形状
パターンの場合は往復走査が可能である。
In addition, instead of a rectangular pattern oblique to the scanning direction, an elliptical pattern [Fig. 6a], a triangular pattern [Fig. 6 b, c], and a trapezoidal pattern [Fig. 6 d]
etc. may also be used. Among these, in the case of the triangular and trapezoidal patterns shown in c and d of the same figure, which have symmetry, reciprocating scanning is possible.

上述の如くエネルギ線の断面形状は種々選択し
得るが、要は走査の進行方向に対して後側に走査
方向と斜交する辺を設けることが必要である。更
に核となる単結晶領域または層が、全然存在しな
いとき及び走査の始点側にのみ存在する場合は、
ビームの断面形状を走査の進行方向に対して後側
を凹(「く」の字状)にする、つまり走査方向に
斜交する辺を2個組み合わせる。また走査方向に
平行する単結晶領域または層が既に存在するとき
は、走査の進行方向に対して後側の辺を「く」の
字状とせず、単結晶領域または層側が先行する片
流れ状とすればよい。
As mentioned above, the cross-sectional shape of the energy line can be selected from various shapes, but the important thing is to provide a side obliquely intersecting the scanning direction on the rear side with respect to the scanning direction. Furthermore, when the core single crystal region or layer does not exist at all or exists only on the scanning starting point side,
The cross-sectional shape of the beam is made concave (in a dogleg shape) at the rear with respect to the scanning direction, that is, two sides diagonally intersecting in the scanning direction are combined. In addition, when a single crystal region or layer parallel to the scanning direction already exists, the rear side in the scanning direction should not be shaped like a dogleg, but instead be shaped like a one-sided flow with the single crystal region or layer side leading. do it.

エネルギ線の断面形状を所望のパターンに形成
するには種々の方法を用いてよい。例えばエネル
ギ線の径路中に所望パターンのスリツトを配設す
ることにより、エネルギ線を整形し得る。またレ
ーザビームを第7図に示すように2枚のシリンド
リカルレンズを透過せしめることにより長方形状
ビームが得られる。更に第8図に示すように、光
フアイバ束の一端を円形に、他端を所望の形状
[図では長方形の場合を示す]に束ね、レーザビ
ームを円形状端部で受光し、他端より放射せしめ
ることによりレーザビームの断面形状を所望パタ
ーンに形成し得る。
Various methods may be used to form the cross-sectional shape of the energy line into a desired pattern. For example, the energy beam can be shaped by arranging slits in a desired pattern in the path of the energy beam. Furthermore, a rectangular beam can be obtained by transmitting the laser beam through two cylindrical lenses as shown in FIG. Furthermore, as shown in Fig. 8, one end of the optical fiber bundle is bundled into a circular shape and the other end into a desired shape (the figure shows a rectangular case), and the laser beam is received at the circular end, and the laser beam is received from the other end. By emitting the laser beam, the cross-sectional shape of the laser beam can be formed into a desired pattern.

以上説明した如く本発明はエネルギ線の断面形
状を制御し、再結晶化を所望の位置から開始さ
せ、他の場所からの再結晶化(多結晶の成長)の
進行を極力抑え込むことにより、一回の走査によ
つて得られる単結晶層の面積が拡大され、非単結
晶層を効率良く単結晶化できる。
As explained above, the present invention controls the cross-sectional shape of the energy beam, starts recrystallization from a desired position, and suppresses the progress of recrystallization (growth of polycrystals) from other locations as much as possible. The area of the single-crystal layer obtained by multiple scans is expanded, and a non-single-crystal layer can be efficiently turned into a single crystal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来方法の説明に供するための
要部上面図及び要部断面図、第2図及び第3図は
本発明の一実施例を示す要部上面図、第4図は本
発明の変形例を示す要部上面図、第5図及び第6
図は使用し得るエネルギ線の各種断面形状を示す
図、第7図及び第8図はエネルギ線の整形方法を
示す要部斜視図である。 図において、2は絶縁層、3は開口、4は非単
結晶層、15,15′はエネルギ線、16,1
6′は単結晶層、16a,16b,16′bは多結
晶層、17,17′は固相−液相界面を示す。
FIGS. 1a and 1b are top views and sectional views of essential parts for explaining the conventional method, FIGS. 2 and 3 are top views of essential parts showing an embodiment of the present invention, and FIG. A top view of main parts showing a modification of the present invention, FIGS. 5 and 6
The figure shows various cross-sectional shapes of energy lines that can be used, and FIGS. 7 and 8 are perspective views of essential parts showing a method of shaping energy lines. In the figure, 2 is an insulating layer, 3 is an opening, 4 is a non-single crystal layer, 15, 15' are energy lines, 16, 1
6' is a single crystal layer, 16a, 16b, 16'b are polycrystalline layers, and 17, 17' are solid phase-liquid phase interfaces.

Claims (1)

【特許請求の範囲】 1 非単結晶半導体層を含む半導体層表面をエネ
ルギ線で走査して前記非単結晶半導体層を単結晶
化するに際し、 前記エネルギ線の査面上における投影像を、前
記走査の進行方向後ろ側の辺の中央部近傍から該
辺の少なくとも一方の端部近傍に到る部分が、連
続した滑らかな線で且つ走査時に前記中央部が前
記一方の端部側より先行する如く走査方向に対し
て斜交する形状とし、 前記走査に当たつて非単結晶半導体層上には前
記一方の端部側を位置させて走査することを特徴
とする非単結晶半導体層の単結晶化方法。
[Scope of Claims] 1. When scanning the surface of a semiconductor layer including a non-single-crystal semiconductor layer with an energy beam to single-crystallize the non-single-crystal semiconductor layer, a projected image on the scan plane of the energy beam is A portion from near the center of the rear side in the scanning direction to near at least one end of the side is a continuous smooth line, and the center portion precedes the one end side during scanning. A single crystal semiconductor layer of a non-single crystal semiconductor layer having a shape obliquely perpendicular to the scanning direction as shown in FIG. Crystallization method.
JP56137546A 1981-08-31 1981-08-31 Single-crystalization of non-single crystal semiconductor layer Granted JPS5839012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56137546A JPS5839012A (en) 1981-08-31 1981-08-31 Single-crystalization of non-single crystal semiconductor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56137546A JPS5839012A (en) 1981-08-31 1981-08-31 Single-crystalization of non-single crystal semiconductor layer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP813889A Division JPH01230221A (en) 1989-01-17 1989-01-17 Single-crystallizing method for non-single crystal semiconductor layer

Publications (2)

Publication Number Publication Date
JPS5839012A JPS5839012A (en) 1983-03-07
JPS6317329B2 true JPS6317329B2 (en) 1988-04-13

Family

ID=15201214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56137546A Granted JPS5839012A (en) 1981-08-31 1981-08-31 Single-crystalization of non-single crystal semiconductor layer

Country Status (1)

Country Link
JP (1) JPS5839012A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925215A (en) * 1982-08-02 1984-02-09 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS60152017A (en) * 1984-01-20 1985-08-10 Agency Of Ind Science & Technol Electron beam annealing device
JPH0722119B2 (en) * 1984-02-06 1995-03-08 富士通株式会社 Beam annealing method
JPS61245517A (en) * 1985-04-23 1986-10-31 Agency Of Ind Science & Technol Formation of soi crystal
EP0431685A1 (en) * 1989-12-05 1991-06-12 Koninklijke Philips Electronics N.V. Method of forming thin defect-free strips of monocrystalline silicon on insulators
JP2002057105A (en) * 2000-08-14 2002-02-22 Nec Corp Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
TW521310B (en) 2001-02-08 2003-02-21 Toshiba Corp Laser processing method and apparatus
JP2006100661A (en) * 2004-09-30 2006-04-13 Sony Corp Method of manufacturing thin film semiconductor device
JP2007281421A (en) 2006-03-13 2007-10-25 Sony Corp Method of crystallizing semiconductor thin film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143755A (en) * 1976-05-26 1977-11-30 Hitachi Ltd Laser, zone melting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143755A (en) * 1976-05-26 1977-11-30 Hitachi Ltd Laser, zone melting device

Also Published As

Publication number Publication date
JPS5839012A (en) 1983-03-07

Similar Documents

Publication Publication Date Title
EP0071471B1 (en) Method of forming a single-crystal semiconductor film on an amorphous insulator
US4545823A (en) Grain boundary confinement in silicon-on-insulator films
US5371381A (en) Process for producing single crystal semiconductor layer and semiconductor device produced by said process
JPS59108313A (en) Manufacture of semiconductor single crystal layer
JPS6317329B2 (en)
JPS62206816A (en) Manufacture of semiconductor crystal layer
JPH0353772B2 (en)
JPS6329819B2 (en)
JPS58162032A (en) Crystalization
JPS61179524A (en) Single crystallization method of polycrystalline silicon film
JPH0652712B2 (en) Semiconductor device
JPH01261291A (en) Laser annealing process
JPS60136306A (en) Manufacture of semiconductor substrate
JPS59202622A (en) Manufacture of single crystal thin film
JP2566663B2 (en) Method for manufacturing semiconductor single crystal film
JPH0556316B2 (en)
JPS5886716A (en) Forming of single crystal semiconductor film
JPS62208620A (en) Manufacture of semiconductor device
JPH0142127B2 (en)
JPS59151421A (en) Laser annealing device
JPH0140485B2 (en)
JPS60191090A (en) Manufacture of semiconductor device
JPS61251114A (en) Manufacture of single crystal silicon film
JPH0479993B2 (en)
JPH0799734B2 (en) Single crystal growth method