JPH0135908B2 - - Google Patents

Info

Publication number
JPH0135908B2
JPH0135908B2 JP1086781A JP1086781A JPH0135908B2 JP H0135908 B2 JPH0135908 B2 JP H0135908B2 JP 1086781 A JP1086781 A JP 1086781A JP 1086781 A JP1086781 A JP 1086781A JP H0135908 B2 JPH0135908 B2 JP H0135908B2
Authority
JP
Japan
Prior art keywords
less
steel
slabs
cracks
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1086781A
Other languages
Japanese (ja)
Other versions
JPS57126952A (en
Inventor
Yoshiji Iwasaki
Hiroshi Seki
Koichi Nakamura
Yukio Ochiai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1086781A priority Critical patent/JPS57126952A/en
Publication of JPS57126952A publication Critical patent/JPS57126952A/en
Publication of JPH0135908B2 publication Critical patent/JPH0135908B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は連続鋳造法による熱間圧延用キルド鋼
鋳片の製造方法に関するもので、特に本発明は含
Nb鋼、含V鋼、含Nb−V鋼特有の鋳片の表面に
発生する表面割れを防止するためになされたもの
である。 従来の表面疵対策として微量〔Ti〕添加によ
る〔N〕の固定方法が有効であるが〔N〕と
〔Ti〕の当量バランスよりも過剰〔Ti〕になると
TiC化合物を析出し靭性に悪影響をおよぼす結果
となり〔Ti〕添加本来の役割を果せないという
欠点があつた。 本発明の骨子は含Nb鋼、含V鋼、含Nb−V鋼
の鋳片表面割れ防止対策としての〔Ti〕の添加
を〔Zr〕に置換することにより、〔Zr〕により
〔N〕を固定し過剰〔Zr〕による介在物の形態制
御を行ない、かつ靭性を低下せしめないという点
にある。 ラインパイプ用鋼板、厚肉鋼板、熱延用厚中
板、冷延用薄板、条鋼などの如く圧延ままである
いは熱処理を施すことにより高強度、高靭性が要
求される製品の製造には一般に含Nb鋼、含V鋼
および含Nb−V鋼が主流として用いられる。そ
の理由は圧延ままでも高強度が得られ、加熱
工程、圧延工程および熱処理条件を適宜に選ぶこ
とにより高強度および高靭性が共に得られるから
である。 これらの強度向上のメカニズムはNbCN、
VCN、V3C4等のカーボ・ナイトライド(Carbo
−Nitride)の析出物によることが知られている。
含Nb鋼、含V鋼、含Nb−V鋼はこのような長所
を持つているにもかかわらず鋳片に表面割れ疵が
発生しやすいという大きな欠点を持つている。 現在、製鉄業界では従来の造塊−分塊法より製
造コストの安い連続鋳造法へと操業形態を変えよ
うとしている。しかしながら含Nb鋼、含V鋼、
含Nb−V鋼を連続鋳造法で製造する場合、造塊
法に比べて鋳片に表面割れ疵(ヒビ割れ疵等)が
発生しやすいので、疵の手入除去に多大の費用が
必要であり、また疵の程度が甚しい場合は手入除
去が極めて困難となり、そのため実用性のある鋳
片を製造することが不可能となり、連続鋳造法の
鋼種拡大や連鋳比率の向上を妨げる大きな要因と
なつている。 連続鋳造法による鋳片の表面割れ疵の発生原因
として、高温域における熱ひずみ、連続鋳造
機のロールアライメント不良による歪あるいは曲
がり、彎曲型連続鋳造機による鋳片の曲げおよ
び曲げもどしによる外部応力等が考えられる。 この割れ発生メカニズムとしてオーステナイト
粒界に窒化物が析出し、この粒界析出物を核とす
るボイドが発生し、この状態において上記条件が
付加されることによりボイドが成長するとともに
各ボイドが互いに連結し、このボイドが旧オース
テナイト粒界に沿つて割れることにより、粒界割
れというべきヒビ割れが発生するものと考えられ
る。 この説明を助ける意味で含Nb鋼、含V鋼、含
Nb−V鋼の高温引張りデーターを第2図に示す。
この図は之等の鋼がAr3点直下で最低の絞り値を
示し、特定の温度域で脆化していることを示すも
のである。この原因はフエライト・オーステナイ
トの二相共存域以下に温度が低下すると、
NbCN、VCNの析出が急激に加速され、しかも
之等がオーステナイト粒界に選択的に析出するこ
とによる。これに上記条件が付加されることによ
り、強度的に弱い粒界より変形が起り、NbCN、
VCNの存在によりオーステナイト粒界の変形能
が低いので絞り値が急激に低下し割れに進展する
ものとみられる。 以上のことから特定の温度域にて絞り値が急激
に低下する脆化温度域が存在することが判明し、
ヒビ割れの原因を説明することができる。 ところで現在実用化されている連続鋳造機の場
合は含Nb鋼、含V鋼、含Nb−V鋼の脆化温度域
で曲げ矯正が行なわれており、したがつてヒビ割
れを発生させる条件下にて外部応力をあたえる操
業法となつている。最近ではこの脆化域温度を回
避する操業法として二次冷却水量の変更をはかる
方法あるいは割れ疵防止法として微量のTiを添
加する方法等が提案されているが完全には解決さ
れていない。 本発明の目的は連続鋳造法による含Nb鋼、含
V鋼、含Nb−V鋼の表面疵の発生を完全に回避
しようとするものである。 上記鋼種の鋳片の表面疵発生防止対策として、
微量〔Ti〕添加による〔N〕固定方法が有効で
あるが、〔N〕と〔Ti〕の当量バランスがこわれ
過剰〔Ti〕になるとTiC化合物を析出し靭性に悪
影響をおよぼす結果となり〔Ti〕添加本来の役
割を果せないという欠点がある。 かかる欠点を排除すべく本発明はTiの代りに
Zrを鋼中含有量0.005〜0.06%でかつTotal〔Zr〕−
6.5Total〔N〕>0なる関係式を満足するように含
Nb鋼、含V鋼、含Nb−V鋼に添加することによ
り鋳片表面疵の発生を回避するだけでなく要求品
質特性を更に向上した熱間圧延用キルド鋼鋳片の
製造方法を提供せんとするものである。 本発明の基本的な考え方は脆化域部での断面収
縮率の低下の軽減にある。しかして断面収縮率低
下の軽減はNb、Vが窒化物となりオーステナイ
ト粒界に析出する現象を防止することによつて達
成される。すなわちNbCN、VCNが析出すると
前記した外部応力が加わることにより、断面収縮
率を低下させるのでNbCN、VCNを析出させな
いようにすればよい。之等を析出させないように
するためには、窒化物が析出しないようにNの
インプツト量を皆無にする方法と、Nb、Vよ
りNとの親和力の大きな他の種類の元素を用いる
方法とがあげられる。 の方法は鋼製造上不可能に近いことから、本
発明はNのインプツト量を極力少くなるように
し、かつの方法である適量のZrを添加するこ
とによりZrNとしてNを固定し之によつてFree
〔N〕=0にすることにより連続鋳造法による鋳片
の表面疵の発生を皆無にすると共に要求品質特性
を満足させようとするものである。 第1図はTotal〔Zr〕−6.5Total〔N〕>0を満足
する鋼の鋳片の連続鋳造に際しての矯正点での温
度と表面割れ(ヒビ割れ)個数の関係を示すもの
である。この図より連続鋳造法の操業条件(二次
冷却水パターン等の変更、1ストランドの場合は
通常の冷却パターンを採用、2ストランドの場合
は、緩冷却にして脆化域の上限温度を上側にかわ
すパターンを採用)にもかかわらず両パターンの
場合共表面割れは発生していない。 第1図から明らかな如く1ストランドの場合に
通常の冷却パターンを採用するときは、鋳片の長
辺、短辺共に脆化域内に入つているにもかかわら
ず表面割れが発生しておらず従つてTotal〔Zr〕−
6.5Total〔N〕>0を満足する鋼において断面収縮
率の低下が軽減されていることが説明できるとと
もに断面収縮率低下の起因は窒化物の生成にある
ことも判る。 このことは本発明に従つた含Nb−V−ZrN鋼
の高温引張り試験結果を示す第2図からも明らか
である。すなわち○イ含Nb鋼、○ロ含V鋼、○ハ含Nb
−V鋼の場合には深い断面収縮率低下の深い谷間
がみられるのに対し、○ニの本発明による含Nb−
V−ZrN鋼の場合は○ホの脆化域の全くみられない
Si−Mn鋼の場合と同じ断面収縮率を示している。 本発明により含Nb鋼、含V鋼、含Nb−V鋼の
鋳片表面割れ防止効果が達成される理由は適量の
Zrを添加することにより、連続鋳片製造時にZrN
が高温域で析出し、NbCN、VCNを全く析出さ
せないためである。 次に本発明の対象鋼の成分範囲の限定理由につ
いて詳細に説明する。 本発明の対象鋼はラインパイプ用鋼板(API規
格等)、厚肉鋼板(JISG3211、JISG3212、
BS4360)、熱冷延用鋼板(JISG3313、
JISG3141)、条鋼(JISG3503、JISG4051)等で
あり、鋼板の強度、靭性確保の必要性から、Nb、
V、Nb−Vを添加する鋼種であるから、Nb、
V、Nb−V等に起因する連続鋳造鋳片の表面割
れの防止対策を必要とするものである。Mnは2.0
%を超すと溶接部の靭性を劣化させるため2.0%
を上限とした。Zrの添加量は鋼中含有量が0.005
%未満では鋳片のZrNが不足し鋳片表面割れを防
止することができずまた0.06%以上になるとZrO2
酸化物が多くなり品質を著しく劣化させるため
0.005〜0.06%の含有量となる範囲に限定した。
Nは鋳片表面割れを考慮すれば低い程良いがこれ
もZrとの関係よりZrの上限0.06%と当量関係を保
つため0.008%以下とした。またTotal〔Zr〕−
6.5Total〔N〕>0とした理由は本発明の基本思想
である窒化物を析出させないことが必須条件であ
ることからZrとNの当量かそれよりも少しZr過
剰にすることによりFree〔N〕=0となることを
目標としているからである。Free〔N〕>0とな
ると鋳片表面割れが発生しZr添加の効果は認め
られなくなる。 第1表に本発明による鋼および従来鋼の鋳片表
面割れ発生有無を示す。この結果からFree〔N〕
>0である従来鋼において鋳片表面割れ発生があ
ることが明らかである。
The present invention relates to a method for producing killed steel slabs for hot rolling using a continuous casting method.
This was done to prevent surface cracks that occur on the surface of slabs peculiar to Nb steel, V-containing steel, and Nb-V-containing steel. As a conventional method of fixing [N] by adding a small amount of [Ti], it is effective as a countermeasure against surface defects, but if the amount of [Ti] exceeds the equivalent balance between [N] and [Ti],
The drawback was that the TiC compound precipitated and adversely affected the toughness, making it impossible for [Ti] to fulfill its original role. The gist of the present invention is to replace the addition of [Ti] with [Zr] as a measure to prevent cracking of the slab surface of Nb-containing steel, V-containing steel, and Nb-V steel. The point is that it fixes and controls the morphology of inclusions due to excess [Zr], and does not reduce toughness. It is generally used in the manufacture of products that require high strength and toughness, such as steel plates for line pipes, thick steel plates, thick and medium plates for hot rolling, thin plates for cold rolling, long steel, etc., either as rolled or after heat treatment. Nb steel, V-containing steel, and Nb-V-containing steel are mainly used. The reason for this is that high strength can be obtained even as rolled, and by appropriately selecting the heating step, rolling step, and heat treatment conditions, both high strength and high toughness can be obtained. The mechanism of these strength improvements is NbCN,
Carbo nitrides such as VCN, V 3 C 4 , etc.
-Nitride) is known to be caused by the precipitates.
Although Nb-containing steel, V-containing steel, and Nb-V-containing steel have these advantages, they have a major drawback in that surface cracks are likely to occur in slabs. Currently, the steel industry is trying to change its operating format to a continuous casting method, which is cheaper in production cost than the conventional ingot-blowing method. However, Nb-containing steel, V-containing steel,
When manufacturing Nb-V steel using the continuous casting method, surface cracks (cracks, etc.) are more likely to occur on the slab than when using the ingot casting method, so a large amount of cost is required to remove the defects. In addition, if the degree of flaw is severe, it becomes extremely difficult to remove it by hand, making it impossible to produce slabs of practical use. This is a contributing factor. Causes of surface cracks on slabs caused by continuous casting methods include thermal strain in high temperature ranges, distortion or bending due to poor roll alignment in continuous casting machines, external stress due to bending and unbending of slabs in curved continuous casting machines, etc. is possible. The crack generation mechanism is that nitrides precipitate at austenite grain boundaries, and voids are generated with these grain boundary precipitates as nuclei.In this state, when the above conditions are added, the voids grow and connect with each other. However, it is thought that cracks, which should be called intergranular cracks, occur when these voids crack along the prior austenite grain boundaries. To help explain this, Nb-containing steel, V-containing steel,
Figure 2 shows the high temperature tensile data of Nb-V steel.
This figure shows that these steels exhibit the lowest reduction of area just below the Ar 3 point, indicating that they become brittle in a specific temperature range. The reason for this is that when the temperature drops below the two-phase coexistence region of ferrite and austenite,
This is due to the rapid acceleration of the precipitation of NbCN and VCN, and their selective precipitation at austenite grain boundaries. By adding the above conditions to this, deformation occurs from grain boundaries with weak strength, and NbCN,
Due to the presence of VCN, the deformability of the austenite grain boundaries is low, which appears to cause the reduction of area to drop rapidly and develop into cracks. From the above, it has been found that there is a embrittlement temperature range in which the aperture value rapidly decreases in a specific temperature range.
The cause of cracks can be explained. By the way, in the case of continuous casting machines that are currently in practical use, bending straightening is performed in the embrittlement temperature range of Nb-containing steel, V-containing steel, and Nb-V-containing steel, and therefore there are conditions that cause cracks to occur. The method of operation is to apply external stress. Recently, methods have been proposed to avoid this temperature in the embrittlement range, such as changing the amount of secondary cooling water or adding a small amount of Ti to prevent cracking, but these have not been completely solved. An object of the present invention is to completely avoid the occurrence of surface flaws in Nb-containing steel, V-containing steel, and Nb-V-containing steel by continuous casting. As a measure to prevent the occurrence of surface defects on slabs of the above steel types,
A method of fixing [N] by adding a small amount of [Ti] is effective, but if the equivalence balance between [N] and [Ti] is broken and there is an excess of [Ti], TiC compounds will precipitate, which will have an adverse effect on the toughness [Ti] It has the disadvantage that it cannot fulfill its original role. In order to eliminate such drawbacks, the present invention uses Ti instead of Ti.
Zr content in steel is 0.005 to 0.06% and Total [Zr]−
6.5Total[N]>0.
We provide a method for producing killed steel slabs for hot rolling that not only avoids the occurrence of surface defects in slabs but also further improves the required quality characteristics by adding Nb steel, V-containing steel, and Nb-V-containing steel. That is. The basic idea of the present invention is to reduce the reduction in cross-sectional shrinkage in the embrittled region. Therefore, reduction in cross-sectional shrinkage is achieved by preventing Nb and V from turning into nitrides and precipitating at austenite grain boundaries. That is, when NbCN and VCN precipitate, the above-mentioned external stress is applied and the cross-sectional shrinkage rate decreases, so it is sufficient to prevent NbCN and VCN from precipitating. In order to prevent such things from precipitating, there are two methods: one is to completely eliminate the input amount of N so that nitrides do not precipitate, and the other is to use other types of elements that have a greater affinity for N than Nb and V. can give. Since this method is almost impossible in terms of steel manufacturing, the present invention aims to minimize the input amount of N, and also fixes N as ZrN by adding an appropriate amount of Zr. Free
By setting [N]=0, it is possible to completely eliminate the occurrence of surface defects on slabs due to the continuous casting method, and also to satisfy the required quality characteristics. Figure 1 shows the relationship between the temperature at the straightening point and the number of surface cracks (cracks) during continuous casting of steel slabs satisfying Total [Zr] - 6.5 Total [N] > 0. This figure shows the operating conditions of the continuous casting method (changes in the secondary cooling water pattern, etc.; in the case of 1 strand, the normal cooling pattern is adopted; in the case of 2 strands, slow cooling is used to raise the upper limit temperature of the embrittlement region). Despite this, no surface cracking occurred in both patterns. As is clear from Figure 1, when a normal cooling pattern is used for one strand, no surface cracks occur even though both the long and short sides of the slab are within the embrittlement zone. Therefore, Total〔Zr〕−
It can be explained that the decrease in cross-sectional shrinkage rate is reduced in steels satisfying 6.5Total [N]>0, and it can also be seen that the cause of the decrease in cross-sectional shrinkage rate is the formation of nitrides. This is also clear from FIG. 2, which shows the high temperature tensile test results of the Nb-V-ZrN steel according to the present invention. In other words, ○A steel containing Nb, ○B steel containing V, ○C containing Nb
In the case of -V steel, there is a deep valley where the cross-sectional shrinkage rate decreases, whereas
In the case of V-ZrN steel, the embrittlement region of ○ho is not seen at all.
The cross-sectional shrinkage rate is the same as that of Si-Mn steel. The reason why the present invention achieves the effect of preventing slab surface cracking in Nb-containing steel, V-containing steel, and Nb-V-containing steel is that
By adding Zr, ZrN can be used during continuous slab production.
This is because NbCN and VCN precipitate in a high temperature range and do not precipitate at all. Next, the reason for limiting the composition range of the target steel of the present invention will be explained in detail. The target steels of the present invention are line pipe steel plates (API standards, etc.), thick steel plates (JISG3211, JISG3212,
BS4360), hot and cold rolling steel plate (JISG3313,
Nb,
V, Nb-Since it is a steel type with V added, Nb,
It is necessary to take measures to prevent surface cracks in continuously cast slabs caused by V, Nb-V, etc. Mn is 2.0
If it exceeds 2.0%, the toughness of the weld will deteriorate.
was set as the upper limit. The amount of Zr added is 0.005 in the steel.
If it is less than 0.06%, ZrN in the slab will be insufficient and cracks on the slab surface cannot be prevented, and if it is more than 0.06%, ZrO 2
Because the amount of oxides increases and the quality deteriorates significantly.
The content was limited to 0.005-0.06%.
The lower the N content, the better, considering surface cracking of the slab, but it was set to 0.008% or less in order to maintain an equivalence relationship with the upper limit of Zr, 0.06%, from the relationship with Zr. Also Total〔Zr〕−
The reason for setting 6.5Total [N] > 0 is that it is an essential condition to prevent nitride precipitation, which is the basic concept of the present invention. ]=0. When Free [N] > 0, cracks occur on the slab surface and the effect of Zr addition is no longer recognized. Table 1 shows whether or not cracks occurred on the slab surface of the steel according to the present invention and the conventional steel. Free [N] from this result
It is clear that cracks occur on the surface of slabs in conventional steels with >0.

【表】 特許請求の範囲第2項の発明においては、特許
請求の範囲第1項の発明の鋼成分に、更にMoを
0.50%以下含有した鋼を対象とする。Moの添加
量は0.50%を超えると母材、溶接部靭性に悪影響
をおよぼすため0.50%を上限とした。Moによる
鋳片表面割れ防止効果の向上は期待できないので
あるがZrによる前述の防止効果を何ら妨げるも
のではないので強度向上のため添加しても本発明
の特性を損うものではない。 特許請求の範囲第3項の発明においては特許請
求の範囲第1項の発明の鋼成分に加えて、Ni5.0
%以下、Cr1.0%以下、Cu1.0%以下、W1.0%以
下からなる群の元素の1種または2種類以上を
含有させるか、あるいはREM0.0005〜0.03%、
Ca0.0005〜0.03%、Hf0.01%以下からなる群の
元素の1種または2種類以上のうち群または
群を含有させた鋼を対象とするものである。 Ni、Cr、Cu、Wは強度および靭性を向上させ
る元素であるが多過ぎると母材および溶接部の靭
性を劣化させるため、それぞれの上限をNi5.0%、
Cr1.0%、Cu1.0%、W1.0%とする。 REM、Ca、Hfはサルフアイドを変成すること
で知られているがREM0.0005%未満であると効
果がなく、そのため下限を0.0005%とした。また
多過ぎるとREMサルフアイドが大型化するばか
りでなく、REMオキシサルフアイドが大量に生
成し大型介在物となり清浄度を著しく損うことに
なる。このためREMの添加量の上限を0.03%と
した。同様にCaの範囲は0.0005〜0.03%、また
Hfは0.10%以下とする。 以上の如く本発明によれば連続鋳造時に表面ヒ
ビ割れ欠陥の少ない鋳片を得ることができる。
[Table] In the invention of claim 2, Mo is further added to the steel composition of the invention of claim 1.
Applies to steel containing 0.50% or less. The upper limit of the amount of Mo added was set at 0.50% because if it exceeded 0.50%, it would have a negative effect on the base metal and the toughness of the weld. Although Mo cannot be expected to improve the effect of preventing slab surface cracking, it does not in any way interfere with the above-mentioned preventive effect of Zr, so adding it to improve strength will not impair the characteristics of the present invention. In the invention of claim 3, in addition to the steel components of the invention of claim 1, Ni5.0
% or less, Cr1.0% or less, Cu1.0% or less, W1.0% or less, or REM0.0005 to 0.03%,
The object is steel containing one or more of the elements of the group consisting of Ca0.0005 to 0.03% and Hf0.01% or less. Ni, Cr, Cu, and W are elements that improve strength and toughness, but too much of them deteriorates the toughness of the base metal and weld, so the upper limit for each is set to 5.0% Ni,
Cr1.0%, Cu1.0%, W1.0%. REM, Ca, and Hf are known to metamorphose sulfides, but they are ineffective if REM is less than 0.0005%, so the lower limit was set at 0.0005%. If the amount is too large, not only will the REM sulfide become large, but also a large amount of REM oxysulfide will be generated, forming large inclusions and significantly impairing cleanliness. For this reason, the upper limit of the amount of REM added was set at 0.03%. Similarly, the range of Ca is 0.0005-0.03%, and
Hf shall be 0.10% or less. As described above, according to the present invention, a slab with fewer surface crack defects can be obtained during continuous casting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は連続鋳造プロセス中の鋳片表面温度と
表面ヒビ割れ個数の関係を示す図、第2図は本発
明による鋼および比較鋼の高温引張り試験結果を
示す図である。
FIG. 1 is a diagram showing the relationship between the slab surface temperature and the number of surface cracks during the continuous casting process, and FIG. 2 is a diagram showing the high temperature tensile test results of the steel according to the present invention and comparative steel.

Claims (1)

【特許請求の範囲】 1 C0.6%以下、Si0.75%以下、Mn2.0%以下、
P0.04%以下、S0.05%以下、Al0.09%以下、
N0.008%以下、Zr0.005〜0.06%に加えてNb0.01
〜0.10%、V0.01〜0.20%の1種または2種を含
有させ、残部Feおよび不可避的不純物からなり、
かつTotal〔Zr〕−6.5Total〔N〕>0なる関係を満
足する鋼を連続鋳造して鋳片とすることを特徴と
する熱間圧延用キルド鋼鋳片の製造方法。 2 C0.6%以下、Si0.75%以下、Mn2.0%以下、
P0.04%以下、S0.05%以下、Al0.09%以下、
N0.008%以下、Mo0.50%以下、Zr0.005〜0.06%
に加えてNb0.01〜0.10%、V0.01〜0.20%の1種
または2種を含有させ、残部Feおよび不可避的
不純物からなり、かつTotal〔Zr〕−6.5Total〔N〕
>0なる関係を満足する鋼を連続鋳造して鋳片と
することを特徴とする熱間圧延用キルド鋼鋳片の
製造方法。 3 C0.6%以下、Si0.75%以下、Mn2.0%以下、
P0.04%以下、S0.05%以下、Al0.09%以下、
N0.008%以下、Zr0.005〜0.06%に加えてNi5.0%
以下、Cr1.0%以下、Cu1.0%以下、W1.0%以下
からなる群の元素またはREM0.0005〜0.03%、
Ca0.0005〜0.03%、Hf0.01%以下からなる群の
元素のうち一群あるいは両群から選ばれた1種又
は2種以上の元素を含有させ、さらにNb0.01〜
0.10%、V0.01〜0.20%を含有させ、残部Feおよ
び不可避的不純物からなり、かつTotal〔Zr〕−
6.5Total〔N〕>0なる関係を満足する鋼を連続鋳
造して鋳片とすることを特徴とする熱間圧延用キ
ルド鋼鋳片の製造方法。
[Claims] 1 C 0.6% or less, Si 0.75% or less, Mn 2.0% or less,
P0.04% or less, S0.05% or less, Al0.09% or less,
N0.008% or less, Zr0.005~0.06% plus Nb0.01
~0.10%, V0.01~0.20%, and the remainder consists of Fe and unavoidable impurities,
A method for manufacturing killed steel slabs for hot rolling, characterized by continuously casting steel that satisfies the relationship: Total [Zr] - 6.5Total [N] > 0 to obtain a slab. 2 C0.6% or less, Si0.75% or less, Mn2.0% or less,
P0.04% or less, S0.05% or less, Al0.09% or less,
N0.008% or less, Mo0.50% or less, Zr0.005~0.06%
In addition to Nb0.01~0.10% and V0.01~0.20%, it contains one or two types, the balance consists of Fe and unavoidable impurities, and Total [Zr] - 6.5Total [N]
A method for producing killed steel slabs for hot rolling, characterized by continuously casting steel satisfying the relationship >0 to produce slabs. 3 C0.6% or less, Si0.75% or less, Mn2.0% or less,
P0.04% or less, S0.05% or less, Al0.09% or less,
N0.008% or less, Zr0.005~0.06% plus Ni5.0%
Below, elements of the group consisting of Cr1.0% or less, Cu1.0% or less, W1.0% or less or REM0.0005 to 0.03%,
Contains one or more elements selected from one or both of the elements in the group consisting of Ca0.0005~0.03% and Hf0.01% or less, and further Nb0.01~0.01%.
0.10%, V0.01~0.20%, the balance consists of Fe and unavoidable impurities, and Total [Zr]-
6.5 A method for producing killed steel slabs for hot rolling, characterized by continuously casting steel that satisfies the relationship of Total [N] > 0 to obtain slabs.
JP1086781A 1981-01-29 1981-01-29 Production of killed steel ingot for hot rolling Granted JPS57126952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086781A JPS57126952A (en) 1981-01-29 1981-01-29 Production of killed steel ingot for hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086781A JPS57126952A (en) 1981-01-29 1981-01-29 Production of killed steel ingot for hot rolling

Publications (2)

Publication Number Publication Date
JPS57126952A JPS57126952A (en) 1982-08-06
JPH0135908B2 true JPH0135908B2 (en) 1989-07-27

Family

ID=11762290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086781A Granted JPS57126952A (en) 1981-01-29 1981-01-29 Production of killed steel ingot for hot rolling

Country Status (1)

Country Link
JP (1) JPS57126952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383066A (en) * 2011-11-14 2012-03-21 山东省汇丰机械集团总公司章丘市铸造厂 Abrasion resistant cast steel and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204353A (en) * 1985-03-07 1986-09-10 Nippon Steel Corp Steel material having superior strength and toughness in as warm forged state
JPS61204352A (en) * 1985-03-07 1986-09-10 Nippon Steel Corp High strength nontemper steel material as warm forged
JPH01228643A (en) * 1988-03-09 1989-09-12 Nippon Steel Corp Method for uniformly and finely dispersing-precipitating mns in steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383066A (en) * 2011-11-14 2012-03-21 山东省汇丰机械集团总公司章丘市铸造厂 Abrasion resistant cast steel and preparation method thereof

Also Published As

Publication number Publication date
JPS57126952A (en) 1982-08-06

Similar Documents

Publication Publication Date Title
KR20130034044A (en) - austenitic-ferritic stainless steel having improved machinability
US5234512A (en) Fe-ni alloy sheet for shadow mask, excellent in etching pierceability, preventing sticking during annealing, and inhibiting production of gases
JPH06220545A (en) Production of cr-series stainless steel thin strip excellent in toughness
JP2707839B2 (en) Martensitic seamless steel pipe and its manufacturing method
JPH0135908B2 (en)
JPS5884958A (en) Manufacture of killed steel slab for hot rolling
JP4830239B2 (en) Manufacturing method of low carbon martensitic stainless hot rolled steel sheet with excellent punchability
JPH0135907B2 (en)
JP2838468B2 (en) Method for producing Cr-Ni stainless steel alloy for preventing cracking in hot rolling
JP3598771B2 (en) Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, method of bulk rolling thereof, seamless steel pipe using these, and method of manufacturing the same
JP2838467B2 (en) Method for producing Cr-Ni stainless steel alloy free from surface flaws
JPH07268455A (en) Production of cr-ni stainless alloy free from microracking in hot rolling
JPH046249A (en) Fe-ni magnetic alloy excellent in magnetic property and surface characteristic and its production
JP4240576B2 (en) Steel sheet with excellent surface properties
JPH0359124B2 (en)
JPH0333777B2 (en)
JP3687315B2 (en) B-containing stainless steel and method for producing hot rolled sheet thereof
JPH10296396A (en) Production of bar steel for hot-forging
JPH0790487A (en) Hot rolled steel sheet excellent in hydrogen induced cracking resistance
KR100450612B1 (en) A continuous casting method of austenitic stainless steel containing high si content
KR102508125B1 (en) ferritic stainless steel
JP3271787B2 (en) How to make stainless steel
JP3471699B2 (en) Austenitic stainless steel slab that hardly generates hot rolling defects and method for producing the same
JP3018888B2 (en) Continuous casting method for stainless steel pipe material
JP2987732B2 (en) Method for producing Cr-Ni stainless steel alloy free from surface flaws by hot rolling