JPH0134719B2 - - Google Patents

Info

Publication number
JPH0134719B2
JPH0134719B2 JP58071226A JP7122683A JPH0134719B2 JP H0134719 B2 JPH0134719 B2 JP H0134719B2 JP 58071226 A JP58071226 A JP 58071226A JP 7122683 A JP7122683 A JP 7122683A JP H0134719 B2 JPH0134719 B2 JP H0134719B2
Authority
JP
Japan
Prior art keywords
core
vacuum
brazing
assembly structure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58071226A
Other languages
Japanese (ja)
Other versions
JPS59197375A (en
Inventor
Teruo Kurachi
Tetsuo Abiko
Keiji Tsunoda
Shuichi Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP7122683A priority Critical patent/JPS59197375A/en
Publication of JPS59197375A publication Critical patent/JPS59197375A/en
Publication of JPH0134719B2 publication Critical patent/JPH0134719B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、組立構造物の真空ろう付けに関す
る。 酸化性材料を母材とする組立構造物、例えばア
ルミニウム製熱交換器等のろう付けは、通常真空
ろう付けにて行なわれている。 真空ろう付けは、輻射スクリーンを備えた真空
炉内に治具にて仮止めした施ろう組立構造物を収
容し、熱源からの輻射熱で構造物全体をろう付け
温度に加熱することによつて行なうのであるが、
輻射熱による加熱は構造物全体がろう付け温度と
なるまでにかなりの長時間を要することまた、ろ
う付け構造物が例えば第1図に示すプレート・フ
イン式熱交換器用コア1のように2種類のろう接
母材、チユーブ・プレート2と波形フイン3とを
順次積み重ねた形の所謂積層構造をなす場合、第
1表の熱伝導率側定データに示す如く、Z方向す
なわち上下方向の熱伝導率Zλは両側面X,Y方
向の熱伝導率XλおよびYλに比べて極めて小さ
く、このためコア1の表層部と中心部とでかなり
の温度差を生じる。
This invention relates to vacuum brazing of assembled structures. BACKGROUND OF THE INVENTION Brazing of assembled structures made of oxidizing materials, such as aluminum heat exchangers, is usually carried out by vacuum brazing. Vacuum brazing is performed by placing the brazed assembled structure temporarily fixed with a jig in a vacuum furnace equipped with a radiant screen, and heating the entire structure to the brazing temperature using radiant heat from a heat source. However,
Heating by radiant heat requires a considerable amount of time for the entire structure to reach the brazing temperature; When the soldering base material, the tube plate 2, and the corrugated fin 3 are stacked one after another to form a so-called laminated structure, the thermal conductivity in the Z direction, that is, in the vertical direction, as shown in the thermal conductivity data in Table 1. Zλ is extremely small compared to the thermal conductivities Xλ and Yλ in the X and Y directions on both sides, and therefore a considerable temperature difference occurs between the surface layer and the center of the core 1.

【表】 さらに、コア1を上下から締着する仮止め治具
(図示せず)は、通常ステンレス・スチール製で
あり、アルミニウム製のコアよりも輻射吸収率が
大きいために、コア1の上記治具と接触する部分
だけが特に急速に加熱され、長時間ろう付け温度
にさらされることとなる結果、この部分における
チユーブ・プレート2とフイン3とのろう付け部
(フイレツト)が痩せ、これが耐圧強度不足の原
因となること等の問題があつた。 このため、従来の真空ろう付けでは、この種の
ろう付け構造物の外表面に黒灰色の塗料を塗布し
たり、あるいは構造物の外表面を機械的または化
学的処理にて粗面とすること等によつて構造物表
面の反射能を低下させ、輻射熱吸収率を高めよう
とする種々の対策が講じられてきたのであるが、
いずれも前記した問題を解消できるほどの効果を
奏するものではなかつた。 このような実状に鑑み、本発明者は真空ろう付
け用構造物の輻射熱吸収率を高める方法について
種々の実験、研究を行なつた結果、Na0.1〜0.4
%、Al0.1〜0.5%、Si8.0〜30%、Mn5.0〜20%、
Fe7.0〜28%、Cu1.2〜4.7%を含有する揮発性塗
料が構造物の輻射熱吸収率を飛躍的に高める優れ
た効果を有することを知見した。そして、斯かる
揮発性塗料を前記プレート・フイン式熱交換器用
コア1の治具締着部を除く外表面全体に塗布して
真空加熱を行なつたところ、コア全体がろう付け
温度に達するまでの加熱所要時間が大巾に短縮さ
れた許りでなく、コア全体を略々均一に加熱する
ことができ、偏熱によるろう付け欠陥の発生も全
く認められなかつた。これについては、上記の揮
発性塗料をコア1の通路側両端面以外の外側面部
すなわちサイドバー4表面およびチユーブ・プレ
ート2端面にのみ塗布した場合でも、上記と略々
同様の効果を得ることができた。また揮発成分の
ろう付け性への影響も全く認められなかつた。 すなわち本発明は、治具にて仮止めした真空ろ
う付け用組立構造物の外側面部または仮止め部を
除く外表面全体にNa0.1〜0.4%、Al0.1〜0.5%、
Si8.0〜30%、Mn5.0〜20%、Fe7.0〜28%、Cu1.2
〜4.7%を含有し、残部実質的に揮発成分よりな
る塗料を塗布し、真空炉内でろう付け温度まで加
熱することを特徴とする組立構造物の真空ろう付
け法を要旨とする。 第2表は、本発明に係る方法を実施したサイド
バー4の輻射熱吸収率を、無処理のサイドバーお
よび表面をサンドペーパー仕上げしたサイドバー
の輻射熱吸収率と比較して示したものである。
[Table] Additionally, the temporary fixing jigs (not shown) for tightening core 1 from above and below are usually made of stainless steel, which has a higher radiation absorption rate than aluminum cores. Only the part that comes into contact with the jig is heated particularly rapidly and exposed to brazing temperature for a long time. As a result, the brazed part (fillet) between the tube plate 2 and the fin 3 in this part becomes thinner, which reduces the pressure resistance. There were problems such as causing insufficient strength. For this reason, conventional vacuum brazing involves applying black-gray paint to the outer surface of this type of brazed structure, or roughening the outer surface of the structure by mechanical or chemical treatment. Various measures have been taken to reduce the reflective ability of the surface of structures and increase the absorption rate of radiant heat.
None of them were effective enough to solve the above-mentioned problems. In view of these circumstances, the present inventor conducted various experiments and research on methods for increasing the radiant heat absorption rate of vacuum brazing structures, and found that Na0.1 to 0.4
%, Al0.1~0.5%, Si8.0~30%, Mn5.0~20%,
It has been found that a volatile paint containing 7.0 to 28% Fe and 1.2 to 4.7% Cu has an excellent effect of dramatically increasing the radiant heat absorption rate of structures. Then, when the volatile paint was applied to the entire outer surface of the core 1 for the plate-fin type heat exchanger except for the jig fastening part and vacuum heating was performed, the temperature remained until the entire core reached the brazing temperature. Not only was the time required for heating significantly reduced, but the entire core could be heated almost uniformly, and no brazing defects due to uneven heat were observed. Regarding this, even if the volatile paint described above is applied only to the outer surface of the core 1 other than both end surfaces on the passage side, that is, the surface of the side bar 4 and the end surface of the tube plate 2, almost the same effect as described above can be obtained. did it. Further, no influence of volatile components on brazing properties was observed at all. That is, in the present invention, Na0.1-0.4%, Al0.1-0.5%,
Si8.0~30%, Mn5.0~20%, Fe7.0~28%, Cu1.2
The gist is a vacuum brazing method for assembled structures, which is characterized by applying a paint containing up to 4.7%, with the remainder consisting essentially of volatile components, and heating it to a brazing temperature in a vacuum furnace. Table 2 shows the radiant heat absorption rate of the side bar 4 subjected to the method according to the present invention in comparison with the radiant heat absorption rate of the untreated side bar and the side bar whose surface was finished with sandpaper.

【表】 第2表に見る如く、本発明を実施したサイドバ
ーの輻射熱吸収率は、従来のサンドペーパー処理
を施したサイドバーの輻射熱吸収率より0.661も
高く、飛躍的に向上していることがわかる。 なお、上記の輻射熱吸収率は、上記の処理を施
した各サイドバーの拡散反射率および垂直反射率
を予め測定し、この測定値より次式、にて
夫々算出したものである。 ε=∫0(1−σ1・λ−σ2・λ)Eb・λdλ/∫
0Eb・λdλ… Eb・λ =3.218×108/λ5 1/exp(1.439×104/λT)−1
… Kcal/m2hμm 但、ε:吸収率 σ:反射率 T:温度(300゜K) E:輻射能 λ:波長 b:黒体 1:拡散分 2:垂直分 次に実施例について記載する。 第1図に示すプレート・フイン式熱交換器用コ
ア1(700W×550H×1150L)を組立て、治具に
て固定後、本発明法に従つてNa0.1〜0.4%、
Al0.1〜0.5%、Si8.0〜30%、Mn5.0〜20%、
Fe7.0〜28%、Cu1.2〜4.7%を含有し、残部実質
的に揮発成分よりなる塗料をコア1の治具締着部
を除く外表面全体に塗布した。この場合、塗料は
シンナーで適度に希釈し、常温にて約10〜20μの
塗膜で3〜5回重ね塗りを行なつた。 また、コアの開口部には塗料が付着しないよう
マスキングをしておいた。 約24時間自然乾燥させた後、上記コアを真空炉
内に収容し、真空急速加熱冷却試験を行なつた。 比較例として、上記塗料を塗布しない無処理の
プレート・フイン式熱交換器用コア(700W×
550H×1150L)を上記同様の真空急速加熱冷却
試験に供した。 その結果、コア全体が所定のろう付け温度550
℃に加熱されるまでの所要時間が、塗料を塗布し
ない無処理のコアでは第2図に見る如く5.0時間
であつたのに対し、塗料を塗布した本発明法に係
るコアでは第3図に見る如く3.6時間であり1.4時
間も短縮することができた。 また、コア中央部における上下方向(前記Z方
向)の温度差を中段の−点〇と最下段の−点△に
ついて見ると、その最大温度差が、塗料を塗布し
ない無処理のコアでは第2図に見る如く148℃で
あつたのに対し、塗料を塗布した本発明法に係る
コアでは第3図に見る如く121℃まで減少してい
た。 同じく、コア外表面の角部すなわち治具締着部
における上下方向の温度差を最上段の−点×と中
段の−点□について見ると、その最大温度差が、
塗料を塗布しない無処理のコアでは第2図に見る
如く112℃であつたのに対し、塗料を塗布した本
発明法に係るコアでは第3図に見る如く59℃まで
減少していた。 以上に説明した通り、本発明によれば真空ろう
付けにおける輻射加熱の効率が著るしく向上する
から、ろう付け構造物を短時間で、かつ均一に加
熱することができ、また、ろう付け欠陥を生じる
こともない等の優れた効果が得られる。
[Table] As shown in Table 2, the radiant heat absorption rate of the sidebar according to the present invention is 0.661 higher than that of the sidebar treated with conventional sandpaper, which is a dramatic improvement. I understand. The above-mentioned radiant heat absorption coefficient was calculated by measuring the diffuse reflectance and vertical reflectance of each sidebar subjected to the above-mentioned treatment in advance, and using the measured values using the following equations. ε=∫ / 0 (1−σ 1・λ−σ 2・λ)Eb・λdλ/∫
/ 0 Eb・λdλ… Eb・λ = 3.218×10 8 /λ5 1/exp(1.439×10 4 /λT)−1
... Kcal/m 2 hμm However, ε: Absorption rate σ: Reflectance T: Temperature (300°K) E: Radiance λ: Wavelength b: Black body 1: Diffusion component 2: Vertical component Next, examples will be described. . After assembling the core 1 for the plate-fin heat exchanger (700W x 550H x 1150L) shown in Fig. 1 and fixing it with a jig, Na0.1-0.4% was added according to the method of the present invention.
Al0.1~0.5%, Si8.0~30%, Mn5.0~20%,
A paint containing 7.0 to 28% Fe and 1.2 to 4.7% Cu, with the remainder substantially consisting of volatile components, was applied to the entire outer surface of the core 1 except for the jig fastening area. In this case, the paint was appropriately diluted with thinner and coated three to five times at room temperature to form a coating film of about 10 to 20 microns. Additionally, the opening of the core was masked to prevent paint from adhering to it. After air drying for about 24 hours, the core was placed in a vacuum furnace and subjected to a vacuum rapid heating and cooling test. As a comparative example, an untreated plate-fin heat exchanger core (700W x
550H x 1150L) was subjected to the same vacuum rapid heating and cooling test as above. As a result, the entire core is heated to a predetermined brazing temperature of 550
The time required to heat the core to ℃ was 5.0 hours as shown in Figure 2 for the untreated core without coating, while the time required for heating it to ℃ was 5.0 hours as shown in Figure 3 for the core coated with paint according to the method of the present invention. As you can see, it took 3.6 hours, which was a reduction of 1.4 hours. Furthermore, when looking at the temperature difference in the vertical direction (Z direction) at the center of the core between the - point 〇 in the middle row and the - point △ in the bottom row, the maximum temperature difference is the second largest in the untreated core without coating. As shown in the figure, the temperature was 148°C, whereas in the case of the coated core according to the method of the present invention, the temperature decreased to 121°C as shown in Fig. 3. Similarly, if we look at the temperature difference in the vertical direction at the corner of the outer surface of the core, that is, the jig fastening part, between the - point x on the top row and the - point □ on the middle row, the maximum temperature difference is
In the untreated core with no paint applied, the temperature was 112°C as shown in Figure 2, while in the core coated with paint according to the method of the present invention, the temperature decreased to 59°C as shown in Figure 3. As explained above, according to the present invention, the efficiency of radiation heating in vacuum brazing is significantly improved, so the brazed structure can be heated uniformly in a short time, and brazing defects can be avoided. Excellent effects such as no occurrence of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施要領説明のために掲
げたプレート・フイン式熱交換器用コアの斜視
図、第2図は本発明法に係る塗料を塗布しない無
処理のコアを真空急速加熱冷却試験に供した結果
を示すコア各部の温度グラフ、第3図は本発明法
に係る塗料を塗布したコアを真空急速加熱冷却試
験に供した結果を示すコア各部の温度グラフであ
る。 1:コア、2:チユーブ・プレート、3:フイ
ン、4:サイドバー。
Figure 1 is a perspective view of a core for a plate-fin heat exchanger shown to explain the implementation procedure of the method of the present invention, and Figure 2 is a vacuum rapid heating and cooling of an untreated core that is not coated with paint according to the method of the present invention. FIG. 3 is a temperature graph of each part of the core showing the results of a vacuum rapid heating and cooling test on a core coated with the paint according to the method of the present invention. 1: core, 2: tube plate, 3: fin, 4: side bar.

Claims (1)

【特許請求の範囲】 1 治具にて仮止めした真空ろう付け用組立構造
物の外側面部または仮止め部を除く外表面全体
に、Na0.1〜0.4%、Al0.1〜0.5%、Si8.0〜30%、
Mn5.0〜20%、Fe7.0〜28%、Cu1.2〜4.7%を含
有し、残部実質的に揮発成分よりなる塗料を塗布
し、真空炉内でろう付け温度まで短時間で加熱す
ることを特徴とする組立構造物の真空ろう付け方
法。 2 治具にて仮止めした真空ろう付け用組立構造
物の外表面をNa0.1〜0.4%、Al0.1〜0.5%、Si8.0
〜30%、Mn5.0〜20%、Fe7.0〜28%、Cu1.2〜
4.7%を含有し、残部実質的に揮発成分よりなる
塗料で通路側両端面以外の外側面のみを部分的に
塗り分けることにより、前記組立構造物を均一に
加熱することを特徴とする組立構造物の真空ろう
付け方法。
[Scope of Claims] 1. Na0.1 to 0.4%, Al0.1 to 0.5%, Si8 on the entire outer surface excluding the outer side surface part or the temporary fixing part of the assembly structure for vacuum brazing temporarily fixed with a jig. .0~30%,
A paint containing 5.0 to 20% Mn, 7.0 to 28% Fe, and 1.2 to 4.7% Cu, with the remainder essentially volatile components, is applied and heated in a vacuum furnace to brazing temperature in a short time. A method for vacuum brazing an assembled structure, characterized by: 2. The outer surface of the vacuum brazing assembly structure temporarily fixed with a jig was coated with Na0.1-0.4%, Al0.1-0.5%, Si8.0.
~30%, Mn5.0~20%, Fe7.0~28%, Cu1.2~
The assembly structure is characterized in that the assembly structure is heated uniformly by partially painting only the outer surface other than both end surfaces on the passage side with a paint containing 4.7% and the remainder substantially consisting of volatile components. How to vacuum braze things.
JP7122683A 1983-04-21 1983-04-21 Vacuum brazing method of assembled structure Granted JPS59197375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7122683A JPS59197375A (en) 1983-04-21 1983-04-21 Vacuum brazing method of assembled structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7122683A JPS59197375A (en) 1983-04-21 1983-04-21 Vacuum brazing method of assembled structure

Publications (2)

Publication Number Publication Date
JPS59197375A JPS59197375A (en) 1984-11-08
JPH0134719B2 true JPH0134719B2 (en) 1989-07-20

Family

ID=13454552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7122683A Granted JPS59197375A (en) 1983-04-21 1983-04-21 Vacuum brazing method of assembled structure

Country Status (1)

Country Link
JP (1) JPS59197375A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8079508B2 (en) * 2008-05-30 2011-12-20 Foust Harry D Spaced plate heat exchanger
JP5276466B2 (en) * 2009-02-16 2013-08-28 三菱重工業株式会社 Manufacturing method of laminated heat-resistant alloy sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464048A (en) * 1977-10-31 1979-05-23 Sumitomo Precision Prod Co Integrally soldering fabrication of structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464048A (en) * 1977-10-31 1979-05-23 Sumitomo Precision Prod Co Integrally soldering fabrication of structure

Also Published As

Publication number Publication date
JPS59197375A (en) 1984-11-08

Similar Documents

Publication Publication Date Title
EP1453089B1 (en) Semiconductor substrates of high reliability
US20140329109A1 (en) Method for brazing sheet material and heat exchanger
JPH0134719B2 (en)
JP7256760B2 (en) Brazing method
EP1195241B1 (en) Forming process for cellulose paper based honeycomb structures
JPH0786703A (en) Ceramic circuit board
JPH01261283A (en) Method for bonding copper plate to substrate made of electric insulating material
US20050126626A1 (en) Solar battery and fabrication method thereof
JP3035212B2 (en) Brazing method and cushion rail used therefor
GB2164665A (en) Spacers for use in brazing
JP2615702B2 (en) Heat treatment furnace
JPS6356024B2 (en)
JPH0258036B2 (en)
JPS59104963A (en) Preparation of thermal head
JPH02852B2 (en)
JPS5874373A (en) Thermal head and manufacture thereof
JPH02153868A (en) Method for brazing ceramic plate and metallic plate
JPS6218857Y2 (en)
JPH0429588Y2 (en)
JPH0698478B2 (en) Method for manufacturing aluminum honeycomb panel
KR20130038060A (en) Method for manufacturing clad metal product
JPS63147576A (en) Painting method for baking paint
JPS62214865A (en) Brazing method for plate fin type heat exchanger
JPS6192790A (en) Production of heat exchange panel
JP4840284B2 (en) Joining layer-containing member and manufacturing method thereof