JPH02852B2 - - Google Patents
Info
- Publication number
- JPH02852B2 JPH02852B2 JP9295484A JP9295484A JPH02852B2 JP H02852 B2 JPH02852 B2 JP H02852B2 JP 9295484 A JP9295484 A JP 9295484A JP 9295484 A JP9295484 A JP 9295484A JP H02852 B2 JPH02852 B2 JP H02852B2
- Authority
- JP
- Japan
- Prior art keywords
- plate
- molybdenum
- copper
- rolling
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052750 molybdenum Inorganic materials 0.000 claims description 48
- 239000011733 molybdenum Substances 0.000 claims description 48
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 47
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 43
- 239000010949 copper Substances 0.000 claims description 43
- 229910052802 copper Inorganic materials 0.000 claims description 43
- 239000002131 composite material Substances 0.000 claims description 39
- 239000007772 electrode material Substances 0.000 claims description 25
- 238000005096 rolling process Methods 0.000 claims description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 230000003746 surface roughness Effects 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 10
- 238000005098 hot rolling Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- WUUZKBJEUBFVMV-UHFFFAOYSA-N copper molybdenum Chemical compound [Cu].[Mo] WUUZKBJEUBFVMV-UHFFFAOYSA-N 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002751 molybdenum Chemical class 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4871—Bases, plates or heatsinks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Die Bonding (AREA)
Description
【発明の詳細な説明】
〔産業上利用分野〕
本発明は複合電極材料、特に、半導体の支持に
用いられる複合電極材料の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite electrode material, and in particular to a method for manufacturing a composite electrode material used for supporting semiconductors.
従来から半導体支持用の電極材料として、半導
体の熱膨張率に極めて近い熱膨張率を持つタング
ステン(W)及びモリブデン(Mo)が用いられ
てきた。
Conventionally, tungsten (W) and molybdenum (Mo), which have a coefficient of thermal expansion extremely close to that of a semiconductor, have been used as electrode materials for supporting semiconductors.
一般に、半導体支持用電極材料に求められる性
質としては、熱伝導性が良いこと、電気伝導性が
良いこと及び半導体とのろう付性が良い(半導体
をしつかりと固定できる)ことなどである。この
点に鑑みて、モリブデン材と銅とを複合した複合
電極材料が提案されている。 In general, properties required of an electrode material for supporting a semiconductor include good thermal conductivity, good electrical conductivity, and good brazing ability with a semiconductor (able to securely fix the semiconductor). In view of this point, a composite electrode material made of a composite of molybdenum material and copper has been proposed.
ところが、モリブデン材は2600℃という高温の
融点を有するとともに加工が困難である。一方、
銅は比較的融点も低く、加工性も良いというモリ
ブデンと相反する性質を持つており、したがつ
て、モリブデン板材の片面あるいは両面に銅板を
配置する場合、これをメツキ処理する方法によつ
て複合化しているが、このメツキ処理は非常に面
倒であり、また、非常に不経済であつたのであま
り用いられていない。 However, molybdenum material has a high melting point of 2600°C and is difficult to process. on the other hand,
Copper has properties that are contradictory to molybdenum, such as a relatively low melting point and good workability. Therefore, when placing a copper plate on one or both sides of a molybdenum plate, it is difficult to make a composite by plating it. However, this plating process is very troublesome and very uneconomical, so it is not used much.
従来、一般に用いられている複合電極材料の製
造方法は、(1)モリブデン板材と銅板との間に接着
媒介層を設けて、冷間圧延を行い、モリブデン板
材と銅板材を接合し、複合電極材料を作製する方
法、またはモリブデン板材と銅板材とをろう付す
る方法、(2)モリブデン板材と銅板とを重ね合わせ
て熱間圧延加工によつて接合して複合電極材料と
する方法、(3)モリブデン板材と銅板を重ね合わせ
て、これをステンレス合金などで包んで加熱圧延
を行なつた後、ステンレス合金を除去する方法、
などである。 Conventionally, the manufacturing method of composite electrode materials that has been generally used is as follows: (1) An adhesive layer is provided between a molybdenum plate and a copper plate, cold rolling is performed, and the molybdenum plate and copper plate are joined to form a composite electrode. A method for producing the material, or a method for brazing a molybdenum plate material and a copper plate material, (2) a method for laminating a molybdenum plate material and a copper plate material and joining them by hot rolling to make a composite electrode material, (3) ) A method in which a molybdenum plate and a copper plate are overlapped, wrapped in a stainless steel alloy, heated and rolled, and then the stainless alloy is removed.
etc.
ところが、上記の(1)においては、接着媒介層や
ろう付部分に不均一が生ずることが避けられず、
接着強度にムラがあり、この複合電極材料を用い
た場合、モリブデンと銅との熱膨張率の相違によ
つて、モリブデン板と銅板とが剥離したり、複合
電極材料が反るなどの問題点がある。また上記の
(2)の方法においては、モリブデン及び銅は大気中
での加熱によつてその表面に酸化物膜を形成し易
く、特にモリブデンでは大気中で500℃以上に加
熱すると、モリブデンの表面上に形成された酸化
物膜が昇華してしまうという問題点があり、熱間
圧延を行う雰囲気及び加熱温度等を決定すること
が難しく、モリブデン板と銅板とを完全に接合す
ることが困難である。上記(3)の方法では、モリブ
デン板及び銅板をステンレス合金で包む際の脱気
処理や、圧延後の複合電極材料を取り出す作業が
非常に面倒であるという問題点がある。 However, in (1) above, it is inevitable that non-uniformity will occur in the adhesion mediating layer and the brazed area.
The adhesive strength is uneven, and when using this composite electrode material, there are problems such as the molybdenum plate and copper plate peeling off or the composite electrode material warping due to the difference in thermal expansion coefficient between molybdenum and copper. There is. Also the above
In method (2), molybdenum and copper tend to form an oxide film on their surfaces when heated in the air, and especially when molybdenum is heated to 500°C or higher in the air, an oxide film forms on the surface of the molybdenum. There is a problem that the rolled oxide film sublimes, and it is difficult to determine the atmosphere, heating temperature, etc. for hot rolling, and it is difficult to completely join the molybdenum plate and the copper plate. The above method (3) has the problem that the degassing process when wrapping the molybdenum plate and the copper plate with the stainless steel alloy and the work of taking out the composite electrode material after rolling are extremely troublesome.
本発明の目的は、使用中に剥離や反りを生じる
ことのないモリブデン・銅複合電極材料を容易に
製造することのできる方法を提供することであ
る。
An object of the present invention is to provide a method for easily manufacturing a molybdenum/copper composite electrode material that does not peel or warp during use.
本発明では、モリブデン板材の少なくとも一面
を平均5乃至30μmの表面粗さで粗面化し、該粗
面化された面のそれぞれに銅板を配置した複合板
を、酸素含有量が500ppm以下の水素ガスあるい
は不活性ガス雰囲気中において、700乃至950℃に
加熱して、前記雰囲気中で複数回の圧延加工を行
うようにしたことを特徴とする銅・モリブデン複
合電極材料の製造方法が得られる。なお、前記複
数回の圧延加工のうちの最初の圧延加工の圧延率
が35乃至55%であればよい。
In the present invention, at least one surface of a molybdenum plate material is roughened to an average surface roughness of 5 to 30 μm, and a composite plate in which a copper plate is placed on each of the roughened surfaces is heated using hydrogen gas with an oxygen content of 500 ppm or less. Alternatively, a method for producing a copper-molybdenum composite electrode material is obtained, which is characterized in that the material is heated to 700 to 950° C. in an inert gas atmosphere and rolled several times in the atmosphere. Note that it is sufficient that the rolling ratio of the first rolling process among the plurality of rolling processes is 35 to 55%.
以下、本発明について実施例を基に説明する。 The present invention will be described below based on examples.
まず、厚さ1mm×幅70mm×高さ4500mmの純銅板
2枚、厚さ1mm×幅70mm×高さ3500mmの純モリブ
デン板1枚を準備する。このモリブデン板の表面
及び裏面の2面に対して、液体ホーニング装置を
用いて、平均20μmの表面粗さに処理した。また
上記の銅板及びモリブデン板からは予め酸化物被
膜及び油脂分を除去した。 First, prepare two pure copper plates with a thickness of 1 mm x width of 70 mm x height of 4500 mm, and one pure molybdenum plate with a thickness of 1 mm x width of 70 mm x height of 3500 mm. Two surfaces, the front and back surfaces, of this molybdenum plate were treated to an average surface roughness of 20 μm using a liquid honing device. In addition, the oxide film and oil were removed from the copper plate and molybdenum plate in advance.
次に第1図に示すように、モリブデン板2を銅
板1ではさみ、銅板1の左端近傍及びモリブデン
板2の左端近傍にスポツト溶接3(あるいは銅鋲
でもよい)を施して、銅板1同士及び銅板1とモ
リブデン板2とを仮りに固定する。(以下これを
複合板素材と呼ぶ)。さらに第2図を参照すると、
この複合板素材4は電気炉5中に挿入され、この
複合板素材4の先端部(第1図において左側)は
圧延機6に挿入されている。この状態において、
ガス送入口7より、含有酸素量が100ppm以内の
水素ガスを電気炉5内に送り込むとともに、電気
炉5の加熱ヒータ51に通電して、炉内温度を
900℃に保持した。 Next, as shown in FIG. 1, the molybdenum plate 2 is sandwiched between the copper plates 1, and spot welding 3 (or copper rivets may be used) is applied near the left end of the copper plate 1 and near the left end of the molybdenum plate 2. A copper plate 1 and a molybdenum plate 2 are temporarily fixed. (Hereinafter, this will be referred to as composite board material). Further referring to Figure 2,
This composite plate material 4 is inserted into an electric furnace 5, and the leading end (left side in FIG. 1) of this composite plate material 4 is inserted into a rolling mill 6. In this state,
Hydrogen gas with an oxygen content of 100 ppm or less is fed into the electric furnace 5 from the gas inlet 7, and the heater 51 of the electric furnace 5 is energized to control the temperature inside the furnace.
It was maintained at 900°C.
次に圧延機6を回転させて、複合板素材4を図
中左側に移動させて、第1回目の圧延を行なつ
た。なおこの時の圧延率は40%に保持した。さら
に上記の炉内雰囲気において熱間圧延を行ない、
最終的に複合板素材4の厚さを1mmとした。その
後、この熱間圧延された複合板素材4を電気炉6
から取り出して、表面を洗浄し、室温において所
定の厚さに冷間加工(圧延)をして、銅・モリブ
デン複合電極材料を作製した。そして、このよう
にして作製された銅・モリブデン複合電極材料は
耐剥離性がすぐれており、また使用中に反りが発
生しないことがわかつた。 Next, the rolling mill 6 was rotated, the composite plate material 4 was moved to the left side in the figure, and the first rolling was performed. Note that the rolling ratio at this time was maintained at 40%. Furthermore, hot rolling is performed in the above furnace atmosphere,
Finally, the thickness of the composite plate material 4 was set to 1 mm. Thereafter, this hot-rolled composite plate material 4 is placed in an electric furnace 6.
The electrode material was taken out, the surface was washed, and it was cold worked (rolled) to a predetermined thickness at room temperature to produce a copper/molybdenum composite electrode material. It was also found that the copper/molybdenum composite electrode material produced in this manner has excellent peeling resistance and does not warp during use.
ところで、発明者らは上述した銅・モリブデン
複合電極材料の作製にあたつて、予め設定した条
件を種々変化させて、作製後の銅・モリブデン複
合電極材料について調べたところ、設定条件と
銅・モリブデン複合電極材料の性質(特性)との
関係は次のとおりであつた。なお、使用した銅板
及びモリブデン板の寸法は前述の実施例と同一の
ものを使用し、表示しない設定条件は実施例と同
じとした。 By the way, when the inventors produced the above-mentioned copper/molybdenum composite electrode material, they varied the preset conditions and investigated the produced copper/molybdenum composite electrode material. The relationship with the properties (characteristics) of the molybdenum composite electrode material was as follows. The dimensions of the copper plate and molybdenum plate used were the same as in the previous example, and the setting conditions for not displaying were the same as in the example.
複合板素材を作製するにあたつて、モリブデン
板の表面粗さを平均で5μm以下とした場合、銅
板とモリブデン板との接着強度が低下し、したが
つて複合電極材料が剥離現象を生ずることがあ
る。またモリブデン板の表面粗さが平均30μmを
超えると、熱間圧延時において、銅板とモリブデ
ン板との摩擦抵抗が大きいため、複合板素材を所
定の厚さに圧延するための制御が極めて困難とな
つてしまう。 When producing a composite plate material, if the surface roughness of the molybdenum plate is set to 5 μm or less on average, the adhesive strength between the copper plate and the molybdenum plate will decrease, resulting in the composite electrode material peeling phenomenon. There is. Furthermore, if the surface roughness of the molybdenum plate exceeds 30μm on average, the frictional resistance between the copper plate and the molybdenum plate during hot rolling will be large, making it extremely difficult to control the rolling of the composite plate material to a predetermined thickness. I get used to it.
次に、電気炉内の雰囲気について実験したとこ
ろ、電気炉内に送入される水素ガスに含有される
酸素量が550ppmを超えると、熱間圧延中におい
てモリブデン板と銅板との圧接面に微量の酸化物
が形成され、この酸化物によつて部分的に接合状
態の不良があらわれ、複合電極材料の使用中に、
この接合不良箇所にふくらみなどが発生して、電
極として性能が劣化した。さらに、電気炉内の温
度は、圧接の観点からすれば、銅の融点に近い
1000〜1050℃に設定することが好ましいけれど
も、上記の温度範囲では銅の軟化が著しく、圧延
することは不適当であり、さらに、モリブデンの
再結晶温度は約950℃であるため、電気炉内温度
は800〜950℃に設定することが最もよく、銅板と
モリブデン板とをしつかりと圧接することができ
る。炉内温度が750℃を下まわると銅板の軟化が
不足して、モリブデン板と銅板との接合強度が低
くなつて、複合電極材料の使用時に剥離現象が生
ずることがある。 Next, we conducted an experiment on the atmosphere inside the electric furnace and found that if the amount of oxygen contained in the hydrogen gas fed into the electric furnace exceeds 550 ppm, a small amount of oxygen will be deposited on the pressure contact surface between the molybdenum plate and the copper plate during hot rolling. oxide is formed, and this oxide partially causes poor bonding, and during use of the composite electrode material,
Bulges and the like occurred at the defective joints, deteriorating the performance of the electrodes. Furthermore, the temperature inside the electric furnace is close to the melting point of copper from the perspective of pressure welding.
Although it is preferable to set the temperature between 1000 and 1050°C, copper softens significantly in the above temperature range, making it unsuitable for rolling. Furthermore, the recrystallization temperature of molybdenum is approximately 950°C, so it cannot be used in an electric furnace. It is best to set the temperature at 800 to 950°C, so that the copper plate and molybdenum plate can be firmly pressed together. If the furnace temperature is below 750°C, the copper plate will not be softened enough, and the bonding strength between the molybdenum plate and the copper plate will be low, which may cause a peeling phenomenon when using the composite electrode material.
さらに、圧延機による圧延率についても調べた
ところ、複数回行う熱間圧延において、最初の圧
延の圧延率は35%以上を必要とし、圧延率が30%
以下となると、モリブデン板と銅板との接合状態
が低下し、複合電極材料に剥離現象が生ずること
がある。また最初の圧延率が55%を超えた場合、
銅とモリブデンとは特性(加工性)が相違するた
め、複合板素材を所定の厚さに制御することが極
めて困難となつてしまう。甚だしい場合には、銅
板とモリブデン板との加工硬化量の相異によつ
て、モリブデン板が割れる場合もある。なお、最
初の圧延率は好ましくは40〜50%とするほうがよ
いことがわかつた。なお上述の実施例ではモリブ
デン板の両面を粗面化し、この両面に銅板を配置
する場合について述べたが、片面を粗面化して、
この面に銅板を配置して複合電極材料としてもよ
い。 Furthermore, we investigated the rolling rate of rolling mills and found that in hot rolling performed multiple times, the rolling rate of the first rolling needs to be 35% or more;
Below this, the bonding state between the molybdenum plate and the copper plate may deteriorate, and a peeling phenomenon may occur in the composite electrode material. Also, if the initial rolling reduction exceeds 55%,
Since copper and molybdenum have different properties (workability), it becomes extremely difficult to control the composite plate material to a predetermined thickness. In extreme cases, the molybdenum plate may crack due to the difference in the amount of work hardening between the copper plate and the molybdenum plate. It has been found that the initial rolling reduction is preferably 40 to 50%. In the above embodiment, both sides of the molybdenum plate are roughened, and copper plates are placed on both sides.
A copper plate may be placed on this surface to form a composite electrode material.
以上、説明したように本発明による製造方法を
用いれば、耐剥離性等のすぐれた銅・モリブデン
複合電極材料が得られるばかりでなく、特別の器
具等を使用する必要がなく、極めて簡便な製造方
法が得られる。
As explained above, by using the manufacturing method according to the present invention, not only can a copper-molybdenum composite electrode material with excellent peeling resistance etc. method is obtained.
第1図は銅板及びモリブデン板による複合板素
材を示すための斜視図、第2図は第1図に示した
複合板素材を熱間圧延する状態を示すための図で
ある。
1……銅板、2……モリブデン板、3……スポ
ツト溶接、4……複合板素材、5……電気炉、6
……圧延機、7……水素送込口。
FIG. 1 is a perspective view showing a composite plate material made of a copper plate and a molybdenum plate, and FIG. 2 is a diagram showing a state in which the composite plate material shown in FIG. 1 is hot rolled. 1... Copper plate, 2... Molybdenum plate, 3... Spot welding, 4... Composite plate material, 5... Electric furnace, 6
...Rolling mill, 7...Hydrogen inlet.
Claims (1)
30μmの表面粗さで粗面化し、該粗面化された面
に銅板を配置した複合板を、酸素含有量が
500ppm以下の水素ガスあるいは不活性ガス雰囲
気中において、700乃至950℃に加熱して、前記雰
囲気中で、複数回の圧延加工を行うようにし該圧
延加工のうち最初の圧延加工の圧延率が35乃至55
%であることを特徴とする銅・モリブデン複合電
極材料の製造方法。1 At least one side of the molybdenum plate has an average of 5~
A composite plate whose surface is roughened with a surface roughness of 30 μm and a copper plate placed on the roughened surface is
In a hydrogen gas or inert gas atmosphere of 500 ppm or less, heating is performed at 700 to 950°C, and rolling is performed multiple times in the atmosphere, so that the rolling rate of the first rolling is 35. ~55
% of a copper/molybdenum composite electrode material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9295484A JPS60239032A (en) | 1984-05-11 | 1984-05-11 | Manufacture of copper-molybdenum composite electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9295484A JPS60239032A (en) | 1984-05-11 | 1984-05-11 | Manufacture of copper-molybdenum composite electrode material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60239032A JPS60239032A (en) | 1985-11-27 |
JPH02852B2 true JPH02852B2 (en) | 1990-01-09 |
Family
ID=14068848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9295484A Granted JPS60239032A (en) | 1984-05-11 | 1984-05-11 | Manufacture of copper-molybdenum composite electrode material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60239032A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0436349U (en) * | 1990-07-23 | 1992-03-26 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4988392A (en) * | 1989-05-30 | 1991-01-29 | Nicholson Richard D | Composite sheet made of molybdenum and dispersion-strengthened copper |
CN100404197C (en) * | 2006-04-10 | 2008-07-23 | 安泰科技股份有限公司 | Preparation method of copper/molybdenum/copper electronic package composite material |
-
1984
- 1984-05-11 JP JP9295484A patent/JPS60239032A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0436349U (en) * | 1990-07-23 | 1992-03-26 |
Also Published As
Publication number | Publication date |
---|---|
JPS60239032A (en) | 1985-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7776454B2 (en) | Ti brazing strips or foils | |
US3261724A (en) | Stainless steel clad aluminum and methods of making same | |
US4029479A (en) | Plated foil for liquid interface bonding of titanium | |
JPH06268115A (en) | Manufacture of heat radiating substrate for semiconductor device | |
JP3047752B2 (en) | Manufacturing method of titanium clad steel sheet | |
JPH02852B2 (en) | ||
JPH11284111A (en) | Heat sink member, manufacture thereof and semiconductor package using the hear sink member | |
JP3110170B2 (en) | Plate soldering method | |
JPH05185245A (en) | Method for resistant-welding low electric resistant metal member | |
JP2503778B2 (en) | Substrate for semiconductor device | |
US3302280A (en) | Methods of bonding secondary materials to beryllium-copper | |
EP3023189B1 (en) | Brazing sheet for surface joining | |
JP2003001302A (en) | Production method for aluminum-dispersed reinforced copper strip | |
JPS59185588A (en) | Production of clad steel plate | |
JPH04367381A (en) | Abreast contact member and its manufacture | |
JPS6036652A (en) | Manufacture of electrical contact | |
JP3090030B2 (en) | Liquid phase diffusion bonding method | |
JPH09300085A (en) | Manufacture of clad material having flat joined interface | |
JPS63194880A (en) | Manufacture of stainless clad al band plate | |
JPH04228278A (en) | Manufacture of complex material of copper/stainless steel | |
JPH05169281A (en) | Manufacture of tantalum/copper/stainless steel (carbon steel) clad | |
JPH11770A (en) | Aluminum honeycomb and its manufacture | |
JPH0512077B2 (en) | ||
JP2016112585A (en) | Brazing filler material sheet for surface joint | |
JPH0669630B2 (en) | Method for producing titanium clad steel sheet using nickel as an intermediate contact material |