JPH0133566B2 - - Google Patents

Info

Publication number
JPH0133566B2
JPH0133566B2 JP60216134A JP21613485A JPH0133566B2 JP H0133566 B2 JPH0133566 B2 JP H0133566B2 JP 60216134 A JP60216134 A JP 60216134A JP 21613485 A JP21613485 A JP 21613485A JP H0133566 B2 JPH0133566 B2 JP H0133566B2
Authority
JP
Japan
Prior art keywords
acrylonitrile
spinning
value
fibers
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60216134A
Other languages
Japanese (ja)
Other versions
JPS6278209A (en
Inventor
Teruhiko Sugimori
Kenichi Sakunaga
Naoyuki Fukahori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP21613485A priority Critical patent/JPS6278209A/en
Publication of JPS6278209A publication Critical patent/JPS6278209A/en
Publication of JPH0133566B2 publication Critical patent/JPH0133566B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、非水和型アクリロニトリル系重合体
を溶融紡糸することによりアクリロニトリル系合
成繊維の新規な製法に関する。 従来の技術 アクリロニトリルが70重量%以上共重合された
アクリロニトリル系重合体は非熱可塑性重合体で
あるため、溶融紡糸法による繊維への賦形はでき
ず、その繊維化はジメチルホルムアミド、ジメチ
ルアセトアミド、ジメチルスルホキシド、硝酸、
チオシアン酸水溶液、塩化亜鉛水溶液等の溶媒を
用いた湿式紡糸法で行われている。そのため、紡
糸速度は300m/分以下と、ポリエステル、ナイ
ロン等の溶融紡糸法による紡糸速度3000m/分以
上と比べ著しい低速紡糸を余儀なくされている。
また紡糸工程で使用した溶剤の回収、得られた繊
維の乾燥等に多量のエネルギーを必要とするた
め、湿式紡糸法によるアクリル繊維の製造費を低
減することは困難である。 従来より、アクリロニトリル系重合体の溶融紡
糸法の技術開発が進められており、例えばアクリ
ロニトリル系重合体は水和せしめると熱可塑性を
示す性質を有するため、水和アクリロニトリル系
重合体を溶融防止する方法が特公昭59−38243号、
特公昭59−29525号、特公昭59−47724号公報等に
提案されている。しかし、これらの溶融紡糸法で
は、ノズルより吐出された糸条から水が急速に逃
散する過程で糸構造中にボイドが生じ易く、均一
な性能を有する繊維を得にくいという難点があ
る。一方、アクリロニトリル50〜92重量%と他の
単量体50〜8重量%より成る共重合体で、還元粘
度0.5〜1.2のものを、150〜250℃の温度で溶融紡
糸して繊維化する方法が特公昭52−2007号、特開
昭48−43479号公報等に示されている。 本発明が解決しようとしている問題点 しかし、これらの方法に用いられているアクリ
ロニトリル系重合体はアクリロニトリル/メチル
アクリレート=75/25(重量比)なる組成を中心
としたものであるか、あるいはアクリロニトリ
ル/スチレン=65/35(重量比)なるものであり、
これらのアクリロニトリル系重合体を溶融紡糸し
て得た繊維は、見掛上の引張強度は高いものの、
繊維として用いるには伸度が高すぎるという性質
があり、湿式紡糸法により得られた繊維と同じ性
能を備えるアクリロニトリル系繊維を溶融紡糸法
により得るには至つていない。 問題点を解決するための手段 本発明者らは、優れた性能を備えたアクリロニ
トリル系繊維を溶融紡糸法で製造することを目的
として検討した結果、溶融紡糸して得た未延伸糸
の広角X線回折像における2θ=17゜の半価幅β値
が2.0以下となるように、原料アクリロニトリル
系重合体及び溶融紡糸条件を特定することによ
り、その目的を達成しうることを見出し本発明を
完成した。 本発明は、還元粘度ηredが0.2〜1.0でかつガラ
ス転移温度が77〜110℃であるアクリロニトリル
83〜92重量%と他の共重合可能なコモノマー17〜
8重量%との共重合体を200〜235℃の温度で捲取
速度1000m/分以上で紡糸し、広角X線回折像に
おける2θ=17゜の半価幅β値が2.0以下である未延
伸糸となし、次いで延伸することを特徴とする、
アクリロニトリル系成繊維の製法である。 本発明に用いられるアクリロニトリル系共重合
体はアクリロニトリル83〜92重量%と他の共重合
可能な単量体17〜8重量%からなるものである。
アクリロニトリルの共重合量が83重量%未満のア
クリロニトリル系重合体はその溶融特性は良好で
あるが、溶融紡糸による繊維軸方向への重合体の
配向性が不足し、X線回折像2θ=17゜における半
価幅β値が2.0以下の未延伸糸とすることができ
ず、このような半価幅β値が大きな未延伸アクリ
ロニトリル系繊維は延伸しても十分に繊維軸方向
に重合体が配向結晶化したものすなわち延伸系の
広角X線回折像2θ=17゜における半価幅β値が2.0
以下の繊維とするとが困難で、繊維性能の良好な
アクリロニトリル系合成繊維とすることができな
い。一方アクリロニトリルの共重合量が92重量%
より多いアクリロニトリル系重合体は、200〜235
℃で加熱した場合の溶融特性が不足し、そのノズ
ルよりの紡出性が低下し、繊維への賦形性が十分
でない。さらに高温にかける際にはアクリロニト
リル系重合体の着色及び熱分解が促進されるのみ
で溶融紡糸挙動の改善は認められない。 アクリロニトリルと共重合可能な他の単量体と
しては、アクリロニトリルと8〜17重量%の割合
で共重合させることにより、得られるアクリロニ
トリル系重合体のガラス転移温度を77〜110℃と
なし得るものであり、例えばメチルアクリレー
ト、エチルアクリレート、n−プロピルアクリレ
ート、n−ブチルアクリレート、n−オクチルメ
タクリレート、n−ヘキシルメタクリレート、ビ
ニリデンクロライドなどが挙げられる。さらに得
られるアクリロニトリル系重合体のガラス転移温
度を77〜110℃に保つ割合、特に5重量%以下の
割合で繊維に優れた染色性を与えうる成分である
ビニルスルホン酸、スチレンスルホン酸、アリル
スルホン酸、メタリルスルホン酸、スルホアルキ
ルアクリレート、スルホンアルキルメタクリレー
ト、スルホアルキルメタクリルアミド及びこれら
のアルカリ金属塩、アンモニウム塩、アミン塩等
を用いることもできる。この場合もアクリロニト
リル以外の単量体の合計量は8〜17重量%にする
ことが必要である。 アクリロニトリル共重合体のガラス転移温度が
77℃未満のものは200〜235℃での紡糸温度で、ノ
ズルからの紡出時に溶融共重合体に効果的な剪断
力をかけることができず、X線回折像2θ=17゜に
おける半価値β値が2.0以下の未延伸糸とするこ
とができない。一方ガラス転移温度が110℃より
高いものは200〜235℃での紡糸温度で良好な溶融
特性を示さないため、繊維賦形性の良好なアクリ
ロニトリル系重合体とはならない。 本発明に用いられるアクリロニトリル共重合体
の還元粘度(アクリロニトリル系重合体0.5gを
ジメチルホルムアミド100mlに溶解し25℃で測定)
は0.2〜1.0の範囲にあることが必要である。還元
粘度が0.2以下のアクリロニトリル系重合体は、
200〜235℃での溶融流動性が高すぎるため、良好
な繊維性能を備えたアクリロニトリル系合成繊維
とすることが困難である。一方還元粘度が1.0を
超えるアクリロニトリル系重合体は紡糸温度での
溶融賦形性が低下する。 アクリロニトリル系重合体の還元粘度は、重合
反応の際に分子量調節剤の添加量を増減すること
により調節することができる。分子量調節剤とし
ては例えばn−ラウリルメルカプタン、n−オク
チルメルカプタン等が用いられる。 図面は特定組成及び還元粘度を有するアクリロ
ニトリル系重合体とその溶融紡糸特性及び溶融紡
糸によつて得られた延伸糸の広角X線回折像2θ=
17゜における半価幅が2.0となる領域との関係を示
すグラフである。図中の◎印はメルトインデツク
ス(以下MI)値10以上、〇印はMI値5以上、×
印はMI値3以下、××印はMI値0の点を示す。
なおMI値はアクリロニトリル系重合体を230℃に
加熱し、直径2mm、長さ8mmのノズルより荷重5
Kgをかけて押出した場合、10分間に吐出されるア
クリロニトリル系重合体の重量(g)を意味す
る。図中の曲線ADより左下側は溶融領域であつ
て、この領域のアクリロニトリル系重合体のMI
値は5以上であり、200〜235℃の紡糸温度で良好
な溶融紡糸性を示す。なおMI値が高すぎると、
200〜235℃に加熱したときのアクリロニトリル系
重合体の粘度が極端に低くなり、溶融紡糸操作性
がきわめて悪くなる傾向が認められる。したぐつ
て還元粘度0.2(直線BC)以上であり、MI値は
200以下、特に170以下であることが好ましい。直
線ABより右側の領域は結晶発現領域であつて、
この領域内の組成のアクリロニトリル系重合体を
200〜235℃で紡糸したのち延伸することにより、
広角X線回折像の2θ=17゜における半価幅β値が
2.0以下の繊維が得られる。この半価幅β値が2.0
以上の不延伸糸は、繊維構造中での結晶構造の形
成が不足しているため、強度が不足し、伸度が過
大となり、性能の良好な繊維となり得ない。また
直線CDより右側の領域にあるアクリロニトリル
系重合体は200〜230℃での溶融特性が著しく低下
し、熱分解及び熱着色を起こし易い。 本発明を実施するに際しては、前記の特性を備
えたアクリロニトリル系重合体を200〜235℃の温
度で紡糸する。紡糸温度がこれより高いとアクリ
ロニトリル系重合体の熱分解反応が起こり易い。
一方紡糸温度がこれより低いとアクリロニトリル
系重合体の溶融賦形性が低いとアクリロニトリル
系重合体の溶融賦形性が低下する。前記の特性を
備えたアクリロニトリル系重合体を200〜235℃の
温度で捲取速度1000m/分以上好ましくは2000
m/分以上で溶融紡糸することにより得られた未
延伸糸はは、広角X線回折像2θ=17゜における半
価幅β値が2.0以下であり、結晶性の高いもので
ある。未延伸糸の広角X線回折像2θ=17゜におけ
る半価幅β値が2.0よりも大きいものは、続いて
行う延伸において、いかなる延伸法を用いても延
伸糸の結晶性を高めることすなわち2θ=17゜にお
ける半価幅β値を2.0以下とすることはできず、
強度及び伸度にバランスのとれたアクリロニトリ
ル系合成繊維とすることはできない。 次いで得られた未延伸糸を延伸すると、本発明
のアクリロニトリル系合成繊維が得られる。 未延伸糸の延伸法としては沸水延伸法、スチー
ム延伸法、乾熱延伸法等を用いることができる。 発明の効果 本発明方法によれば、アクリロニトリル系重合
体を溶融紡糸して得られる未延伸糸は、広角X線
回折像2θ=17゜における半価幅β値が2.0以下とな
つているため、この未延伸糸を延伸することによ
つて、さらに結晶性及び重合体の繊維軸方向への
配向が高められ、強度2〜10g/d、伸度5〜30
%及び弾性率50〜200g/dであるバランスのと
れたアクリロニトリル系合成繊維が得られる。 下記実施例中の部は重量部を意味するる。 実施例 1 重合槽に脱イオン水1000部、乳化剤10部、過硫
酸カリウム5部及びラウリルメルカプタンを仕込
み、第1表に示す割合のアクリロニトリル
(AN)とメチルアクリレート(MA)との混合
物500部を重合槽に滴下しながら55℃で6時間重
合させた。得られたアクリロニトリル系重合体含
有ラテツクスを常法により凝固させ分離、洗浄し
たのち乾燥した。得られたアクリロニトリル系重
合体のガラス転移温度(Tg)及び還元粘度を第
1表に示す。 この重合体を230℃で、ノズル孔径0.3φ、L/
D=0.2、72ホールのノズルを用いて1500m/分
の紡糸速度で溶融紡糸し、得られた未延伸糸を一
度捲取り、230℃での紡糸性及び未延伸糸の広角
X線回折像2θ=17゜における半価幅β値を測定し
た。その結果を第1表に示す。次いで実験番号
1、4、6、7及び8の未延伸糸を第2表に示す
方法で延伸した。得られた延伸糸の特性を第2表
に示す。これより2θ=17゜における半価幅β値が
2.0以下のものでなければ良好な特性を有する繊
維とすることができないことが知られる。
The present invention relates to a novel method for producing acrylonitrile synthetic fibers by melt spinning a non-hydrated acrylonitrile polymer. Conventional technology Acrylonitrile polymers copolymerized with 70% by weight or more of acrylonitrile are non-thermoplastic polymers, so they cannot be shaped into fibers by melt spinning. dimethyl sulfoxide, nitric acid,
It is carried out by a wet spinning method using a solvent such as a thiocyanic acid aqueous solution or a zinc chloride aqueous solution. Therefore, the spinning speed is 300 m/min or less, which is significantly lower than the spinning speed of 3000 m/min or more by the melt spinning method for polyester, nylon, etc.
Further, since a large amount of energy is required for recovering the solvent used in the spinning process, drying the obtained fibers, etc., it is difficult to reduce the manufacturing cost of acrylic fibers using the wet spinning method. Technological development of melt spinning methods for acrylonitrile-based polymers has been progressing for some time. For example, since acrylonitrile-based polymers exhibit thermoplasticity when hydrated, methods for preventing melting of hydrated acrylonitrile-based polymers have been developed. is Special Publication No. 59-38243,
It has been proposed in Japanese Patent Publication No. 59-29525, Japanese Patent Publication No. 59-47724, etc. However, these melt spinning methods have the disadvantage that voids are likely to occur in the yarn structure during the process in which water rapidly escapes from the yarn discharged from the nozzle, making it difficult to obtain fibers with uniform performance. On the other hand, a method in which a copolymer consisting of 50 to 92% by weight of acrylonitrile and 50 to 8% by weight of other monomers with a reduced viscosity of 0.5 to 1.2 is melt-spun at a temperature of 150 to 250°C to form fibers. is shown in Japanese Patent Publication No. 52-2007, Japanese Unexamined Patent Publication No. 48-43479, etc. Problems to be Solved by the Invention However, the acrylonitrile polymers used in these methods mainly have a composition of acrylonitrile/methyl acrylate = 75/25 (weight ratio), or acrylonitrile/methyl acrylate = 75/25 (weight ratio). Styrene = 65/35 (weight ratio),
Although the fibers obtained by melt-spinning these acrylonitrile polymers have high apparent tensile strength,
The elongation of acrylonitrile fibers is too high to be used as fibers, and it has not yet been possible to obtain acrylonitrile fibers with the same performance as fibers obtained by wet spinning methods using melt spinning methods. Means for Solving the Problems As a result of studies aimed at producing acrylonitrile fibers with excellent performance using a melt-spinning method, the present inventors found that wide-angle X The present invention was completed by discovering that the objective could be achieved by specifying the raw material acrylonitrile polymer and the melt spinning conditions so that the half width β value at 2θ = 17° in the line diffraction image was 2.0 or less. did. The present invention provides acrylonitrile having a reduced viscosity ηred of 0.2 to 1.0 and a glass transition temperature of 77 to 110°C.
83~92% by weight and 17~ other copolymerizable comonomers
A copolymer with 8% by weight is spun at a temperature of 200 to 235°C at a winding speed of 1000 m/min or more, and the unstretched product has a half width β value of 2θ = 17° in a wide-angle X-ray diffraction image of 2.0 or less. It is characterized by being made into a yarn and then drawn.
This is a method for producing acrylonitrile-based fibers. The acrylonitrile copolymer used in the present invention consists of 83 to 92% by weight of acrylonitrile and 17 to 8% by weight of other copolymerizable monomers.
Acrylonitrile polymers with a copolymerized amount of acrylonitrile of less than 83% by weight have good melting properties, but the orientation of the polymer in the fiber axis direction during melt spinning is insufficient, and the X-ray diffraction image 2θ = 17° Undrawn yarns with a half width β value of 2.0 or less cannot be obtained, and such undrawn acrylonitrile fibers with a large half width β value cannot be drawn because the polymer is sufficiently oriented in the fiber axis direction. The wide-angle X-ray diffraction image of the crystallized product, that is, the stretched system, has a half-width β value of 2.0 at 2θ = 17°.
It is difficult to make the following fibers, and it is impossible to make acrylonitrile-based synthetic fibers with good fiber performance. On the other hand, the copolymerization amount of acrylonitrile is 92% by weight.
More acrylonitrile-based polymers are 200-235
When heated at ℃, the melting properties are insufficient, the spinnability from the nozzle is reduced, and the ability to form into fibers is insufficient. Furthermore, when the temperature is increased, the coloration and thermal decomposition of the acrylonitrile polymer are only promoted, and no improvement in melt spinning behavior is observed. Other monomers that can be copolymerized with acrylonitrile include those that can be copolymerized with acrylonitrile at a ratio of 8 to 17% by weight to make the resulting acrylonitrile polymer have a glass transition temperature of 77 to 110°C. Examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, n-octyl methacrylate, n-hexyl methacrylate, and vinylidene chloride. Furthermore, vinyl sulfonic acid, styrene sulfonic acid, and allyl sulfone, which are components that can give excellent dyeing properties to fibers, are used in proportions that maintain the glass transition temperature of the resulting acrylonitrile polymer at 77 to 110°C, especially in proportions of 5% by weight or less. Acids, methallyl sulfonic acid, sulfoalkyl acrylate, sulfonalkyl methacrylate, sulfoalkyl methacrylamide, and alkali metal salts, ammonium salts, amine salts, etc. thereof can also be used. In this case as well, the total amount of monomers other than acrylonitrile must be 8 to 17% by weight. The glass transition temperature of acrylonitrile copolymer is
If the spinning temperature is lower than 77℃, it is impossible to apply effective shearing force to the molten copolymer during spinning from the nozzle, and the half value at 2θ = 17℃ in the X-ray diffraction image Undrawn yarn with a β value of 2.0 or less cannot be used. On the other hand, an acrylonitrile polymer having a glass transition temperature higher than 110°C does not exhibit good melting properties at a spinning temperature of 200 to 235°C, and therefore does not provide an acrylonitrile polymer with good fiber shaping properties. Reduced viscosity of the acrylonitrile copolymer used in the present invention (measured at 25°C after dissolving 0.5 g of acrylonitrile polymer in 100 ml of dimethylformamide)
must be in the range of 0.2 to 1.0. Acrylonitrile polymers with reduced viscosity of 0.2 or less are
Since the melt fluidity at 200 to 235°C is too high, it is difficult to make an acrylonitrile-based synthetic fiber with good fiber performance. On the other hand, acrylonitrile polymers with a reduced viscosity exceeding 1.0 have poor melt formability at the spinning temperature. The reduced viscosity of the acrylonitrile polymer can be adjusted by increasing or decreasing the amount of the molecular weight regulator added during the polymerization reaction. As the molecular weight regulator, for example, n-lauryl mercaptan, n-octyl mercaptan, etc. are used. The drawing shows an acrylonitrile polymer having a specific composition and reduced viscosity, its melt spinning properties, and a wide-angle X-ray diffraction image 2θ of a drawn yarn obtained by melt spinning.
It is a graph showing the relationship with the region where the half width at 17° is 2.0. In the figure, ◎ indicates a melt index (MI) value of 10 or more, ○ indicates an MI value of 5 or more, ×
The mark indicates a point with an MI value of 3 or less, and the XX mark indicates a point with an MI value of 0.
The MI value is calculated by heating the acrylonitrile polymer to 230°C and applying a load of 5 through a nozzle with a diameter of 2 mm and a length of 8 mm.
It means the weight (g) of acrylonitrile-based polymer discharged in 10 minutes when extruded by applying Kg. The lower left side of the curve AD in the figure is the melting region, and the MI of the acrylonitrile polymer in this region is
The value is 5 or more, indicating good melt spinnability at a spinning temperature of 200 to 235°C. Furthermore, if the MI value is too high,
When heated to 200 to 235°C, the viscosity of the acrylonitrile polymer becomes extremely low, and melt spinning operability tends to become extremely poor. The reduced viscosity is then 0.2 (linear BC) or more, and the MI value is
It is preferably 200 or less, particularly 170 or less. The region to the right of the straight line AB is the crystal expression region,
Acrylonitrile polymers with compositions within this range
By spinning at 200-235℃ and then stretching,
The half-width β value at 2θ=17° of the wide-angle X-ray diffraction image is
Fibers below 2.0 are obtained. This half width β value is 2.0
Since the above-mentioned undrawn yarn lacks the formation of a crystal structure in the fiber structure, the strength is insufficient and the elongation is excessive, so that it cannot be a fiber with good performance. Furthermore, the acrylonitrile polymer located in the region to the right of the straight line CD has a significantly reduced melting characteristic at 200 to 230°C, and is likely to cause thermal decomposition and thermal coloration. In carrying out the present invention, an acrylonitrile polymer having the above characteristics is spun at a temperature of 200 to 235°C. If the spinning temperature is higher than this, a thermal decomposition reaction of the acrylonitrile polymer is likely to occur.
On the other hand, if the spinning temperature is lower than this, the melt formability of the acrylonitrile polymer will decrease. The acrylonitrile polymer having the above characteristics is rolled up at a temperature of 200 to 235°C at a speed of 1000 m/min or more, preferably 2000 m/min.
The undrawn yarn obtained by melt spinning at m/min or more has a half width β value of 2.0 or less at 2θ=17° in a wide-angle X-ray diffraction image, and is highly crystalline. A wide-angle X-ray diffraction image of an undrawn yarn whose half-width β value at 2θ=17° is larger than 2.0 means that the crystallinity of the drawn yarn is increased in the subsequent drawing, no matter what drawing method is used, that is, 2θ The half width β value at =17° cannot be less than 2.0,
Acrylonitrile synthetic fibers with well-balanced strength and elongation cannot be produced. Then, the obtained undrawn yarn is drawn to obtain the acrylonitrile synthetic fiber of the present invention. As the stretching method for the undrawn yarn, a boiling water stretching method, a steam stretching method, a dry heat stretching method, etc. can be used. Effects of the Invention According to the method of the present invention, the undrawn yarn obtained by melt-spinning an acrylonitrile polymer has a half width β value of 2.0 or less in a wide-angle X-ray diffraction image 2θ=17°. By stretching this undrawn yarn, the crystallinity and orientation of the polymer in the fiber axis direction are further increased, and the strength is 2 to 10 g/d and the elongation is 5 to 30 g/d.
% and elastic modulus of 50 to 200 g/d. Parts in the following examples mean parts by weight. Example 1 A polymerization tank was charged with 1000 parts of deionized water, 10 parts of an emulsifier, 5 parts of potassium persulfate, and lauryl mercaptan, and 500 parts of a mixture of acrylonitrile (AN) and methyl acrylate (MA) in the proportions shown in Table 1 was added. Polymerization was carried out at 55° C. for 6 hours while dropping the mixture into a polymerization tank. The obtained acrylonitrile polymer-containing latex was coagulated by a conventional method, separated, washed, and then dried. Table 1 shows the glass transition temperature (Tg) and reduced viscosity of the obtained acrylonitrile polymer. This polymer was heated at 230℃, nozzle hole diameter 0.3φ, L/
D = 0.2, melt-spun at a spinning speed of 1500 m/min using a 72-hole nozzle, and the resulting undrawn yarn was wound once to determine spinnability at 230°C and wide-angle X-ray diffraction image 2θ of the undrawn yarn. The half width β value at =17° was measured. The results are shown in Table 1. Next, the undrawn yarns of Experiment Nos. 1, 4, 6, 7, and 8 were drawn by the method shown in Table 2. The properties of the obtained drawn yarn are shown in Table 2. From this, the half width β value at 2θ=17° is
It is known that fibers with good properties cannot be obtained unless the coefficient is 2.0 or less.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図面はアクリロニトリル系重合体の組成及び還
元粘度と紡糸性及び結晶発現性の関係を示すグラ
フである。
The drawing is a graph showing the relationship between the composition and reduced viscosity of an acrylonitrile-based polymer, spinnability, and crystallinity.

Claims (1)

【特許請求の範囲】[Claims] 1 還元粘度ηredが0.2〜1.0でかつガラス転移温
度が77〜110℃であるアクリロニトリル83〜92重
量%と他の共重合可能なコモノマー17〜8重量%
との共重合体を200〜235℃の温度で捲取速度1000
m/分以上で紡糸し、広角X線回折像における2θ
=17゜の半価幅β値が2.0以下である未延伸糸とな
し、次いで延伸することを特徴とする、アクリロ
ニトリル系合成繊維の製法。
1 83-92% by weight of acrylonitrile having a reduced viscosity ηred of 0.2-1.0 and a glass transition temperature of 77-110°C and 17-8% by weight of other copolymerizable comonomers
Winding speed of 1000 at a temperature of 200 to 235℃
2θ in the wide-angle X-ray diffraction image after spinning at m/min or more.
A method for producing acrylonitrile-based synthetic fibers, characterized by forming an undrawn yarn having a half width β value of 2.0 or less at =17°, and then drawing it.
JP21613485A 1985-10-01 1985-10-01 Production of acrylonitrile synthetic yarn Granted JPS6278209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21613485A JPS6278209A (en) 1985-10-01 1985-10-01 Production of acrylonitrile synthetic yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21613485A JPS6278209A (en) 1985-10-01 1985-10-01 Production of acrylonitrile synthetic yarn

Publications (2)

Publication Number Publication Date
JPS6278209A JPS6278209A (en) 1987-04-10
JPH0133566B2 true JPH0133566B2 (en) 1989-07-13

Family

ID=16683796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21613485A Granted JPS6278209A (en) 1985-10-01 1985-10-01 Production of acrylonitrile synthetic yarn

Country Status (1)

Country Link
JP (1) JPS6278209A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037524A (en) * 1989-06-06 1991-01-14 Haruhiko Akiyama Heating transpiratory unit
US5304590A (en) * 1992-01-21 1994-04-19 Solcas Polymer, Inc. Acrylonitrile polymer compositions and articles and methods for their preparation
US5434205A (en) * 1992-01-21 1995-07-18 Solcas Polymer Limited Partnership Acrylonitrile polymer compositions and articles and methods for their preparation
SG73992A1 (en) * 1995-12-18 2000-07-18 Standard Oil Co Melt spun acrylonitrile olefinically unsaturated fibers and a process to make fibers
EP1223023A1 (en) * 2001-01-16 2002-07-17 Zahir Bashir Method of solventless processing PAN homopolymers or high acrylonitrile content PAN copolymers
JP4860168B2 (en) * 2005-04-01 2012-01-25 先生精機株式会社 Chamfering equipment
JP6802291B2 (en) * 2016-05-11 2020-12-16 フラウンホーファー−ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. Manufacturing method of multifilament yarn and multifilament yarn

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4955921A (en) * 1972-09-29 1974-05-30
JPS6285012A (en) * 1985-10-04 1987-04-18 Mitsubishi Rayon Co Ltd Production of acrylonitrile based synthetic fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4955921A (en) * 1972-09-29 1974-05-30
JPS6285012A (en) * 1985-10-04 1987-04-18 Mitsubishi Rayon Co Ltd Production of acrylonitrile based synthetic fiber

Also Published As

Publication number Publication date
JPS6278209A (en) 1987-04-10

Similar Documents

Publication Publication Date Title
EP0146084B1 (en) Ultra-high-tenacity polyvinyl alcohol fiber and process for producing same
JP4962667B1 (en) Method for producing polyacrylonitrile fiber and method for producing carbon fiber
Sen et al. High-performance acrylic fibers
JPH0133566B2 (en)
EP0255109A2 (en) Process for producing an acrylic fiber having high fiber characteristics
US3073669A (en) Method for producing shaped articles from polymers and copolymers of acrylonitrile
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JP4168542B2 (en) Acrylic fiber suitable for nonwoven fabric processing
JPH0718052B2 (en) Manufacturing method of high strength acrylic fiber
JP4480858B2 (en) Lightweight composite acrylic fiber and method for producing the same
JP2579360B2 (en) Acrylic fiber and its manufacturing method
JP2888496B2 (en) Method for producing high modulus polyvinyl alcohol fiber
JPS59192717A (en) Pilling-resistant acrylic conjugated fiber and its production
JPS6335820A (en) Production of polyacrylonitrile fiber having high tenacity
JPH03206114A (en) Ultrafine acrylic fiber
JPS6285012A (en) Production of acrylonitrile based synthetic fiber
Bajaj Acrylic fibres
JPH01111010A (en) Production of acrylic synthetic fiber
JPS641565B2 (en)
JPS63303111A (en) Production of flame-retardant acrylic fiber
JPS6018333B2 (en) Manufacturing method of heat-resistant acrylonitrile fiber
JPS61160416A (en) Production of acrylonitrile fiber
JPH04272213A (en) Acrylic yarn having pilling resistance and production thereof
JPH07229023A (en) Acrylic fiber
JPS62268812A (en) Production of acrylonitrile fiber