JPS61160416A - Production of acrylonitrile fiber - Google Patents

Production of acrylonitrile fiber

Info

Publication number
JPS61160416A
JPS61160416A JP28126284A JP28126284A JPS61160416A JP S61160416 A JPS61160416 A JP S61160416A JP 28126284 A JP28126284 A JP 28126284A JP 28126284 A JP28126284 A JP 28126284A JP S61160416 A JPS61160416 A JP S61160416A
Authority
JP
Japan
Prior art keywords
acrylonitrile
polymer
spinning
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28126284A
Other languages
Japanese (ja)
Inventor
Teruhiko Sugimori
輝彦 杉森
Kenichi Sakunaga
作永 憲一
Yoshinobu Shiraishi
白石 義信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP28126284A priority Critical patent/JPS61160416A/en
Publication of JPS61160416A publication Critical patent/JPS61160416A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled fiber at a high speed, without using water as a plasticizer of polymer, saving the labor of the adjustment of the spinning dope and the recovery of solvent, by melting an acrylonitrile polymer having a reduced viscosity of lower than a specific level at a specific temperature, and extruding and drawing the molten polymer. CONSTITUTION:An acrylonitrile polymer having a reduced viscosity of <=1.0, preferably 0.2-0.6 and composed of 80(wt)% acrylonitrile and <=20% copolymerizable unsaturated monomer [e.g. methyl (meth)acrylate] is melted at 150-300 deg.C, extruded through a nozzle, and drawn to obtain the objective fiber having a crystallinity of preferably >=30%. The spinning speed is preferably >=500m/min.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアクリロニトリル系重合体の溶融紡糸法、特に
水を重合体の可皇剤として用いることな(、高速度で溶
融紡糸する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for melt-spinning acrylonitrile-based polymers, particularly a method for melt-spinning at high speed without using water as a compensating agent for the polymer. It is.

〔従来の技術〕[Conventional technology]

アクリロニトリル系繊維は、古くより羊毛調の繊維とし
て利用されてきており、その製造方法としては、アクリ
ロニトリル系重合体を、ジメチルホルムアミド、ジメチ
ルアセトアミド。
Acrylonitrile fibers have been used as wool-like fibers for a long time, and the manufacturing method is to use acrylonitrile polymers, dimethylformamide, and dimethylacetamide.

ジメチルスルホキシド、γ−ブチロラクトン等の有機溶
剤や硝酸水溶液、ロダン塩水溶液、塩化亜鉛水溶液など
の無機系溶剤に溶解し、水系凝固浴を用いて湿式紡糸す
る方法、或いは溶剤としてジメチルホルムアミド、硝酸
を用い、乾式紡糸する方法、更には水をアクリロニトリ
ル系重合体の可塑剤として用い、溶融紡糸して繊維化す
る発明が特開昭59−163413号公報あるいは特公
昭59−38243号公報に記載されている。
A method of dissolving in an organic solvent such as dimethyl sulfoxide or γ-butyrolactone or an inorganic solvent such as an aqueous solution of nitric acid, an aqueous rhodan salt solution, or an aqueous solution of zinc chloride and wet spinning using an aqueous coagulation bath, or using dimethylformamide or nitric acid as the solvent. , a dry spinning method, and an invention in which water is used as a plasticizer for an acrylonitrile polymer and melt-spun to form fibers is described in JP-A-59-163413 or JP-B-59-38243. .

〔発明が解決しようとする問題点3 以上で述べた湿式紡糸法あるいは乾式紡糸法によるアク
リロニトリル系繊維の製造方法は、紡糸原液の調整、凝
固、脱溶剤、洗浄延伸とその工程も長く、かつ操作が煩
雑であり、エネルギーコストもかかり、何よりも高速紡
糸ができないという欠点を有している。このため乾式紡
糸法、湿式紡糸法とも経済性、操作性において大差がな
いのが現状である。新しい紡糸方法として特開昭59−
163413号公報には、アクリロニトリル系重合体1
00重量部に5〜40重量部の水と親水性重合体0.1
〜30重量部を混入し、水を揮散せしめないようにして
溶融し、紡糸口金より吐出後、製水中で延伸することに
より透明なアクリロニトリル系繊維を得ているが、溶融
物から水の揮散を防止するための押出機の工夫が必要で
あり、溶融物中の水のコントロールが困難すこと、紡糸
した繊維の延伸を熱水中で行う必要があり、これをおこ
たると、延伸中に水が揮散し白化してしまう。また、紡
糸後の繊維中に含まれる10重量%程度のポリエチレン
グリコールは繊維に不都合のないように水洗除去する必
要があるなど、未だアクリロニトリル系繊維の溶融紡糸
法としては不充分な技術である。
[Problem to be Solved by the Invention 3] The method for producing acrylonitrile fibers using the wet spinning method or dry spinning method described above requires long steps such as preparation of the spinning stock solution, coagulation, solvent removal, washing and stretching, and requires many operations. It is complicated, requires energy costs, and above all, has the disadvantage that high-speed spinning cannot be performed. For this reason, at present there is not much difference in economic efficiency and operability between the dry spinning method and the wet spinning method. As a new spinning method, JP-A-59-
163413, acrylonitrile polymer 1
00 parts by weight, 5 to 40 parts by weight of water and 0.1 parts by weight of hydrophilic polymer.
Transparent acrylonitrile fibers are obtained by mixing ~30 parts by weight, melting the fibers without volatilizing water, and ejecting them from a spinneret and drawing them in water. It is necessary to devise an extruder to prevent this, and it is difficult to control the water in the melt, and it is necessary to draw the spun fibers in hot water. It evaporates and turns white. In addition, about 10% by weight of polyethylene glycol contained in the spun fibers needs to be washed away with water to avoid any inconvenience to the fibers, so the technique is still insufficient as a melt-spinning method for acrylonitrile fibers.

溶融紡糸法の大きな特徴は高速紡糸を行えることである
が、湿式紡糸法によるアクリロニトリル系繊維の製造に
おける紡速は、通常30〜150 m7分の範囲にあり
、また最近の発明にあるアクリロニトリル系重合体に水
を配位せしめ溶融紡糸する方法での紡速もせいぜい50
0m/分止まりであり、たとえばポリエステルやナイロ
ン等の溶融紡糸法における紡速 500m/分以上に上
げることは不可能であるといわれている。
A major feature of the melt spinning method is the ability to perform high-speed spinning, but the spinning speed in the production of acrylonitrile fibers by wet spinning is usually in the range of 30 to 150 m7. The spinning speed in the method of melt spinning by coordinating water to the coalescence is at most 50%.
The spinning speed is limited to 0 m/min, and it is said that it is impossible to increase the spinning speed to 500 m/min or more, which is the speed in melt spinning of polyester, nylon, etc., for example.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明者らは可塑剤として水を用いることなく、
アクリロニトリル系重合体を溶融紡糸してアクリロニト
リル系繊維を製造する方法について鋭意検討した結果、
還元粘度が1.Q以下なるアクリロニトリル系重合体を
用いることにより、その目的を達成しうろことを見い出
し本発明を完成した。
Therefore, the present inventors did not use water as a plasticizer.
As a result of intensive research into a method for producing acrylonitrile fibers by melt-spinning acrylonitrile polymers, we found that
Reduced viscosity is 1. By using an acrylonitrile polymer having Q or less, the inventors have found that the object can be achieved and completed the present invention.

すなわち、本発明の要旨とするところは、アクリロニト
リル90重量%以上と共重合可能な不飽和単量体20重
量%以下から成り、還元粘度が1.0以下であるアクリ
ロニ) IJル系重合体を、150〜300℃に溶融し
てノズルから吐出し延伸して溶融紡糸法によりアクリロ
ニトリル系繊維を製造することにある。
That is, the gist of the present invention is to prepare an acrylonitrile-based polymer comprising 90% by weight or more of acrylonitrile and 20% by weight or less of an unsaturated monomer copolymerizable with the reduced viscosity of 1.0 or less. , melted at 150 to 300°C, discharged from a nozzle and stretched, and produced acrylonitrile fiber by a melt spinning method.

本発明を実施するに際して用いるアクリロニトリル系重
合体とは、アクリロニトリルが80重量%以上あること
が必要である。この量が80重量%未満では共重合成分
が多くなり繊維としての能力を発揮できなくなる。
The acrylonitrile polymer used in carrying out the present invention must contain 80% by weight or more of acrylonitrile. If this amount is less than 80% by weight, the amount of copolymerized components will increase and the fiber will not be able to exhibit its full potential.

アクリロニトリルと共重合せしめる他の不飽和単量体と
しては、アクリル酸、メタクリル酸。
Other unsaturated monomers that can be copolymerized with acrylonitrile include acrylic acid and methacrylic acid.

イタコン酸等の不飽和カルボン酸類およびこれらの塩類
、アクリル酸メチル、アクリル酸エチル、アクリル酸ブ
チル、アクリル酸オクチル。
Unsaturated carboxylic acids such as itaconic acid and their salts, methyl acrylate, ethyl acrylate, butyl acrylate, octyl acrylate.

アクリル酸メトキシエチル、アクリル酸フェニル、アク
リル酸シクロヘキシル等のアクリル酸エステル類、メタ
クリル酸メチル、メタクリル酸エチル、メタクリル酸ブ
チル、メタクリル酸オクチル、メタクリル酸メトキシエ
チル、メタクリル酸フェニル、メタクリル酸シクロヘキ
シル等のメタクリル酸エステル類、メチルビニルケトン
類、酢酸ビニル、プロピオン酸ビニル。
Acrylic acid esters such as methoxyethyl acrylate, phenyl acrylate, and cyclohexyl acrylate, methacrylates such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, methoxyethyl methacrylate, phenyl methacrylate, and cyclohexyl methacrylate. Acid esters, methyl vinyl ketones, vinyl acetate, vinyl propionate.

酪酸ヒニル、安息香酸ビニル等のビニルエステル類、メ
チルビニルエーテル、ビニルスルホン酸、p−スチレン
スルホン酸等のビニルスルホン酸類およびその塩類、塩
化ビニル、塩化ビニリデン、臭化ビニル等のハロゲン化
ビニルまたはハロゲン化ビニリデン類、ビニルピリジン
Vinyl esters such as vinyl butyrate and vinyl benzoate; vinyl sulfonic acids and their salts such as methyl vinyl ether, vinyl sulfonic acid and p-styrene sulfonic acid; vinyl halides or halides such as vinyl chloride, vinylidene chloride, and vinyl bromide. Vinylidenes, vinylpyridine.

ビニルイミダゾール、ジメチルアミノエチルメタクリレ
ート等の塩基性ビニル化合物類、アクロレイン、メタク
ロレイン等のビニル化合物を挙げることができる。
Examples include basic vinyl compounds such as vinyl imidazole and dimethylaminoethyl methacrylate, and vinyl compounds such as acrolein and methacrolein.

本発明で用いるアクリロニトリル系重合体は還元粘度が
1.0以下のものを用いることが必須条件であり、特に
0.2〜0.6の範囲のものを用いることが好ましい。
It is essential that the acrylonitrile polymer used in the present invention has a reduced viscosity of 1.0 or less, and it is particularly preferable to use one having a reduced viscosity of 0.2 to 0.6.

従来のアクリロニトリル系繊維の製造に用いられるアク
リロニトリル系重合体の還元粘度1.5〜2.5のもの
に比べ著しく低いものであり、150 ”C以上の温度
で極めて良好な溶融流動性を示し、孔径の小さいノズル
より容易に吐出することが可能である。また本発明で用
いるアクリロニトリル系重合体は良好な結晶性を示し、
ドラフトを加え、かつ延伸することにより配向せしめる
と3P/d 以上の強度を有する繊維にすることができ
る。
It has a reduced viscosity of 1.5 to 2.5, which is significantly lower than that of acrylonitrile polymers used in the production of conventional acrylonitrile fibers, and exhibits extremely good melt fluidity at temperatures of 150"C or higher. The acrylonitrile polymer used in the present invention exhibits good crystallinity, and can be easily discharged from a nozzle with a small hole diameter.
If the fiber is oriented by applying draft and drawing, it can be made into a fiber having a strength of 3 P/d or more.

このような特性を備えたアクリロニトリル系重合体は、
溶液重合法、懸濁重合法、乳化重合法等によって作るこ
とができるが、乳化重合法が得られるアクリロニトリル
系重合体の取り扱い性にすぐれている。乳化重合法を行
うに際して用いる乳化剤としては、脂肪族石鹸、アルキ
ル硫酸塩、ジアルキルスルホコハク酸塩、スルホン化エ
ステル、スルホン化アミド等のアニオン系界面活性剤、
ポリエチレングリコール、ポリプロピレングリコール等
のポリオールの脂肪酸エステル類、ンルピタン脂肪族エ
ステル類などのノニオン系界面活性剤などを用いること
ができる。分子量調整剤としては、プロピルメルカプタ
ン、ブチルメルカプタン、イソプロビルメルカグタン、
ブチルメルカプタン、ベンジルメルカプタン、オクチル
メルカプタン、ラウリルメルカプタン等のメルカプタン
類を用いる。
Acrylonitrile polymers with such properties are
Although it can be produced by solution polymerization, suspension polymerization, emulsion polymerization, etc., acrylonitrile polymers obtained by emulsion polymerization have excellent handling properties. Emulsifiers used in the emulsion polymerization method include anionic surfactants such as aliphatic soaps, alkyl sulfates, dialkyl sulfosuccinates, sulfonated esters, and sulfonated amides;
Fatty acid esters of polyols such as polyethylene glycol and polypropylene glycol, nonionic surfactants such as nlupitan aliphatic esters, and the like can be used. Molecular weight modifiers include propyl mercaptan, butyl mercaptan, isopropyl mercaptan,
Mercaptans such as butyl mercaptan, benzyl mercaptan, octyl mercaptan, and lauryl mercaptan are used.

これらの分子量調整剤は、単独で、あるいは必要に応じ
ては2種類以上を組み合わせて用いられる。また重合開
始剤としては、通常のラジカル重合に用いられる開始剤
であればなんでも使用可能であるが、たとえば過硫酸カ
リウム等の無機系開始剤、アゾビスイソブチロニトリル
These molecular weight regulators may be used alone or in combination of two or more as necessary. As the polymerization initiator, any initiator used in normal radical polymerization can be used, including inorganic initiators such as potassium persulfate, and azobisisobutyronitrile.

2.2′−アゾビス+2.4−ジメチルバレロニトリル
〕等のアゾ系開始剤あるいはクメンパーオキサイド、過
酸化ベンゾイル等の過酸化物が挙げられる。
Examples thereof include azo initiators such as 2.2'-azobis+2.4-dimethylvaleronitrile] and peroxides such as cumene peroxide and benzoyl peroxide.

以上のようにして乳化重合法により作られたアクリロニ
トリル系重合体は、未重合のアクリロニトリルもほとん
どなく、その溶融賦形性も良好であり、加熱溶融時にお
ける重合体の熱分解も極めて少なく、長時間の溶融紡糸
においてもほとんど熱着色は起こらない。
The acrylonitrile polymer produced by the emulsion polymerization method as described above contains almost no unpolymerized acrylonitrile, has good melt formability, has extremely low thermal decomposition during heating and melting, and has a long lifespan. Even during melt spinning for hours, almost no thermal coloring occurs.

上述の如き還元粘度を有するアクリロニトリル系重合体
を加熱溶融して繊維に賦形するには種々の方法が採用で
きるが、スクリュー型押出機を用いて加熱溶融せしめ紡
糸ノズルより吐出する方法が好ましい。アクリロニトリ
ル系重合体の加熱溶融は用いる重合体の組成により15
0℃〜300℃の範囲で行われる。重合体の加熱温度が
低すぎると溶融時の流動性が悪く紡糸性が低下し望まし
くない。一方、300℃より高温に加熱すると重合体の
分解が起こり、発泡しやすくなり好ましくない。紡糸速
度は 500m/分以上とすることが得られる繊維の結
晶性。
Various methods can be used to heat and melt the acrylonitrile polymer having the above-mentioned reduced viscosity and form it into fibers, but a method in which the acrylonitrile polymer is heated and melted using a screw extruder and then discharged from a spinning nozzle is preferred. The heating and melting of acrylonitrile polymers depends on the composition of the polymer used.
The temperature is 0°C to 300°C. If the heating temperature of the polymer is too low, fluidity during melting will be poor and spinnability will be reduced, which is not desirable. On the other hand, heating to a temperature higher than 300° C. causes decomposition of the polymer and tends to cause foaming, which is not preferable. The spinning speed should be 500 m/min or more to obtain crystalline fibers.

配向度等の繊維性能の点で良好であり好ましい。It is preferable because it is good in terms of fiber performance such as degree of orientation.

溶融紡糸法により得られる繊維の配向度2強度等を向上
させるため延伸を行うが、方法としては通常の溶融紡糸
法で用いられる熱ビン延伸法、熱ローラ延伸法あるいは
潜水等の熱ピ延伸法等種々の方法が採用できる。
Stretching is performed to improve the orientation degree 2 strength of the fibers obtained by the melt spinning method, and the methods include the hot bottle stretching method, hot roller stretching method, or hot pin stretching method such as diving, which is used in the usual melt spinning method. Various methods can be adopted.

以上の方法により得られる繊維は、繊度0.1〜50デ
ニ一ル等広範囲のものとすることが可能であり、強度も
3〜30 //d 、  ヤング率10〜100y/d
、  伸度10〜50%とすることができる。
The fibers obtained by the above method can have a wide range of fineness such as 0.1 to 50 denier, strength of 3 to 30 //d, and Young's modulus of 10 to 100 y/d.
, The elongation can be 10 to 50%.

本発明によって得られる繊維は、従来の方法によって得
られるアクリロニトリル系繊維にみられるボイドが含ま
れていないため極めて透明性に優れており、染色時の失
透現象も少なく、鮮明な染色物とすることができる。ま
た他の溶融賦形性重合体、例えばポリエステル、ポリア
ミド等との複合繊維化も可能である。
The fibers obtained by the present invention have extremely excellent transparency because they do not contain the voids found in acrylonitrile fibers obtained by conventional methods, and there is little devitrification phenomenon during dyeing, resulting in vivid dyed products. be able to. It is also possible to form composite fibers with other melt-formable polymers, such as polyester and polyamide.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳しく説明する。なお
、還元粘度ηred  および得られる繊維の結晶化度
は、次の方法で測定したものである。
Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that the reduced viscosity ηred and the crystallinity of the obtained fibers were measured by the following method.

・還元粘度;アクリロニトリル系重合体0.5ノをジメ
チルホルムアミドに溶解し、全量を100mとし、オス
トワルド粘度計で、25℃で測定したときの粘度値をも
って還元粘度とした。
-Reduced viscosity: 0.5 mm of acrylonitrile-based polymer was dissolved in dimethylformamide to make the total amount 100 m, and the viscosity value measured at 25°C with an Ostwald viscometer was defined as the reduced viscosity.

・繊維の結晶化度;X線としてCuKα(1,54X)
の特性X線を用い、かつ回転試料台を用いて散乱角2θ
=100〜35°の範囲で測定した、X線回折図におい
て20=17° および30’  付近に観測される結
晶部によるピーク面積の合計をAct 。
・Crystallinity of fiber; CuKα (1,54X) as X-ray
scattering angle 2θ using characteristic X-rays and a rotating sample stage.
Act is the sum of the peak areas due to crystal parts observed near 20=17° and 30′ in the X-ray diffraction diagram measured in the range of =100 to 35°.

非晶部によるハローの面積の合計をAAとし、Ac/ 
(AA+ AO) X 100 (%)をもって結晶化
度とする簡便法を用いた。
Let the total area of the halo due to the amorphous part be AA, and Ac/
A simple method was used in which (AA+AO) x 100 (%) was defined as the degree of crystallinity.

実施例1、比較例1 窒素導入管、冷却管および滴下ロートを備えた重合槽に
脱イオン水100部、アニオン系界面活性剤ジオクチル
スルホコハク酸ナトリウム(商品名、ペレックス0TP
)1部、過硫酸カリウム0.05部、アクリロニトリル
/アクリル酸メチル比が第1表に示した重量比の重合性
不飽和単量体17部および第1表に示したン、量のラウ
リルメルカプタンを仕込み、55”Cに加熱し重合を開
始し、30分後より仕込みと同じ組成の重合性不飽和単
量体混合物33重量部と第1表に示した名量のラウリル
メルカプタンを含む混合物を約1.5時間かけて滴下し
、終了後重合温度を80℃に上昇させ、1時間加熱し重
合を完了した。得られる重合スラリーを常法に従い凝固
、固化処理を行い、洗浄、60℃で乾燥を行い、白色、
粉末状の重合体を得た。重合率および重合体の還元粘度
を第1表に示す。
Example 1, Comparative Example 1 In a polymerization tank equipped with a nitrogen introduction tube, a cooling tube, and a dropping funnel, 100 parts of deionized water and anionic surfactant dioctyl sodium sulfosuccinate (trade name, Perex 0TP) were added.
), 1 part of potassium persulfate, 0.05 part of potassium persulfate, 17 parts of a polymerizable unsaturated monomer with the weight ratio of acrylonitrile/methyl acrylate shown in Table 1, and lauryl mercaptan in the amount shown in Table 1. was charged and heated to 55"C to start polymerization. After 30 minutes, a mixture containing 33 parts by weight of a polymerizable unsaturated monomer mixture having the same composition as the charge and the amount of lauryl mercaptan shown in Table 1 was added. It was added dropwise over about 1.5 hours, and after completion, the polymerization temperature was raised to 80°C, and the polymerization was completed by heating for 1 hour.The resulting polymer slurry was coagulated and solidified according to a conventional method, washed, and heated at 60°C Dry and turn white,
A powdered polymer was obtained. Table 1 shows the polymerization rate and reduced viscosity of the polymer.

以上の如(して得られたアクリロニトリル系重合体をス
クリュー型押出機を用いて加熱溶融せしめ、次いでノズ
ル温度230℃で吐出し、1000 m1分なる速度で
巻取□ることにより得た繊維の特性を第1表に示した。
The acrylonitrile polymer obtained in the manner described above was heated and melted using a screw extruder, then extruded at a nozzle temperature of 230°C, and wound up at a speed of 1000 ml per minute. The properties are shown in Table 1.

性の著しい向上が期待できる。また性能の点でも、従来
のアクリロニトリル系繊維に比べ、糸の緻密性9強度の
点で大きくすぐれており、単に衣料用繊維用途のみでな
く、広(工業用資材としての用途も期待できる。
A significant improvement in sexual performance can be expected. Furthermore, in terms of performance, it is significantly superior to conventional acrylonitrile fibers in terms of yarn density and strength, and is expected to be used not only as a clothing fiber but also as a wide range of industrial materials.

手続補正書 昭和60年 5月21f日Procedural amendment May 21st, 1985

Claims (1)

【特許請求の範囲】 1、アクリロニトリル80重量%以上と共重合可能な不
飽和単量体20重量%以下から成り、還元粘度が1.0
以下であるアクリロニトリル系重合体を、150〜30
0℃に溶融してノズルから吐出し延伸することを特徴と
する溶融紡糸法によるアクリロニトリル系繊維の製造方
法。 2、得られる繊維の結晶化度が30%以上であることを
特徴とする特許請求の範囲第1項記載の製造方法。 3、紡糸速度が500m/分以上であることを特徴とす
る特許請求の範囲第1項又は第2項記載の製造方法。 4、熱ピン延伸法、加熱ローラ延伸法もしくは熱水延伸
法により2倍以上延伸し配向せしめることを特徴とする
特許請求の範囲第1項、第2項又は第3項記載の製造方
法。
[Claims] 1. Consists of 80% by weight or more of acrylonitrile and 20% by weight or less of an unsaturated monomer copolymerizable, and has a reduced viscosity of 1.0.
The following acrylonitrile polymer is used at 150 to 30
A method for producing acrylonitrile fiber using a melt spinning method, which comprises melting the fiber at 0° C., discharging it from a nozzle, and stretching it. 2. The manufacturing method according to claim 1, wherein the crystallinity of the obtained fiber is 30% or more. 3. The manufacturing method according to claim 1 or 2, wherein the spinning speed is 500 m/min or more. 4. The manufacturing method according to claim 1, 2, or 3, characterized in that the film is stretched and oriented by a factor of 2 or more by a hot pin stretching method, a hot roller stretching method, or a hot water stretching method.
JP28126284A 1984-12-27 1984-12-27 Production of acrylonitrile fiber Pending JPS61160416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28126284A JPS61160416A (en) 1984-12-27 1984-12-27 Production of acrylonitrile fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28126284A JPS61160416A (en) 1984-12-27 1984-12-27 Production of acrylonitrile fiber

Publications (1)

Publication Number Publication Date
JPS61160416A true JPS61160416A (en) 1986-07-21

Family

ID=17636622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28126284A Pending JPS61160416A (en) 1984-12-27 1984-12-27 Production of acrylonitrile fiber

Country Status (1)

Country Link
JP (1) JPS61160416A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780498A1 (en) * 1995-12-18 1997-06-25 The Standard Oil Company Melt spun acrylonitrile olefinically unsaturated fibers and a process to make fibers
CN100359055C (en) * 2006-05-26 2008-01-02 天津工业大学 Polyacrylonitrile temperature-regulating fiber, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780498A1 (en) * 1995-12-18 1997-06-25 The Standard Oil Company Melt spun acrylonitrile olefinically unsaturated fibers and a process to make fibers
US6114034A (en) * 1995-12-18 2000-09-05 The Standard Oil Company Melt spun acrylonitrile olefinically unsaturated fibers and a process to make fibers
CN100359055C (en) * 2006-05-26 2008-01-02 天津工业大学 Polyacrylonitrile temperature-regulating fiber, and its manufacturing method

Similar Documents

Publication Publication Date Title
US2404717A (en) Preparation of solutions
US4902452A (en) Process for producing an acrylic fiber having high fiber characteristics
JPS61160416A (en) Production of acrylonitrile fiber
NL7920200A (en) IMPROVED METHOD FOR MELTING SPINNING ACRYLONITRILE POLYMER HYDRATES
JPS6278209A (en) Production of acrylonitrile synthetic yarn
WO1991016478A1 (en) Reversibly discolorable molding and method of manufacturing the same
JP2566871B2 (en) Vinylidene fluoride resin composition fiber and method for producing the same
US2847389A (en) Spinning solution comprising ternary polymers of acrylonitrile dissolved in concentrated aqueous salt solutions
JPS6233817A (en) Production of acrylic fiber having high tenacity and modulus
JPH10280228A (en) Production of spinning dope and production of fiber
JPH01111010A (en) Production of acrylic synthetic fiber
JPS61167013A (en) Acrylonitrile fiber
JPS6285012A (en) Production of acrylonitrile based synthetic fiber
KR100209204B1 (en) The manufacture method of acrylronitril section fiber
US2520150A (en) Compositions comprising an acrylonitrile polymerization product and an oxo-oxazolidine
EP0180975A1 (en) Process for producing acrylonitrile polymer
US3474163A (en) Process of spinning filaments of vinylidene cyanide
EP0201908A2 (en) Acrylonitrile spinning solution and process for producing fibers therewith
JP2002013029A (en) Lightweight conjugate acrylic fiber and method for producing the same
JPS6169814A (en) Acrylonitrile polymer
JPS6022116B2 (en) Dyeability improver consisting of acrylonitrile polymer aqueous emulsion
JPH03206114A (en) Ultrafine acrylic fiber
JPS616307A (en) Polyvinylidene fluoride monofilament
JPS62299510A (en) Acrylic fiber having high physical property and production thereof
JPH0615723B2 (en) High strength acrylic fiber and manufacturing method thereof