JPS6262909A - Production of acrylonitrile based fiber - Google Patents

Production of acrylonitrile based fiber

Info

Publication number
JPS6262909A
JPS6262909A JP20292385A JP20292385A JPS6262909A JP S6262909 A JPS6262909 A JP S6262909A JP 20292385 A JP20292385 A JP 20292385A JP 20292385 A JP20292385 A JP 20292385A JP S6262909 A JPS6262909 A JP S6262909A
Authority
JP
Japan
Prior art keywords
copolymer
acrylonitrile
polymer
spinning
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20292385A
Other languages
Japanese (ja)
Inventor
Teruhiko Sugimori
輝彦 杉森
Fumio Suzuki
文男 鈴木
Yoshinobu Shiraishi
白石 義信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP20292385A priority Critical patent/JPS6262909A/en
Publication of JPS6262909A publication Critical patent/JPS6262909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To remarkably increase the spinning speed and obtain the titled fibers, by copolymerizing acrylonitrile with another polymerizable monomer in the presence of a specific emulsifying agent to form a copolymer having a specific reduced viscosity, heat-treating the copolymer to evaporate and remove the emulsifying agent and melt spinning the resultant copolymer. CONSTITUTION:40-95wt% acrylonitrile is emulsion copolymerized with 5-60wt% another copolymerizable monomer, e.g. methyl acrylate, in the presence of an emusifying agent normally evaporating at a temperature above the melting temperature of the resultant copolymer, particularly >=180 deg.C, e.g. dioctyl sodium sulfosuccinate, to give a copolymer having 0.2-1.0 reduced viscosity, which is then washed with water, dehydrated and heat-treated, preferably under reduced pressure at a temperature above the melting temperature of the above-mentioned copolymer to evaporate the emulsifying agent and reduce the amount of the residual emulsifying agent to preferably <=1,000ppm. The resultant copolymer is then melt spun under conditions of, e.g. 150-250 deg.C at 800-5,000m/min spinning speed to afford the aimed fibers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、衣料用あるいは炭素繊維用プレカーサーとし
て使用されているアクリロニトリル系繊維t、溶融紡糸
法にて製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to acrylonitrile fiber t used for clothing or as a precursor for carbon fibers, and a method for producing it by a melt spinning method.

〔従来の技術〕[Conventional technology]

アクリロニトリル系重合体は、ポリアミドやポリエステ
ル等の熱可塑性重合体と異なり、加熱処理を施すとニト
リル基の環化反応が起こり不融化する几め、溶融紡糸法
による繊維賦形は従来エク困難なものとされてき友。こ
の友めアクリロニトリル系繊維の製造方法としては、従
来エフジメチルホルムアミド、ジメチルアセトアミド、
ジメチルスルホキシド、γ−ブチロラクトン、ロダン塩
水溶液あるいは硝#1等のポリアクリロニトリルの良溶
媒に溶解したもの全紡糸原液とした湿式紡糸法や乾式紡
糸法が採用されている。しかし、こ汎らの紡糸方法によ
る繊維製造法では、紡糸工程において、系中ニジ溶剤全
除去することが必須費件となっているtめ紡糸速度はた
かだか300m/分とするのが上限であジ、溶融紡糸全
行なうポリアミド繊維やボリエステル繊維の紡速100
0?FI/分以上に比べて極め1低速であり、生理性が
悪い要因の一つになっている。
Unlike thermoplastic polymers such as polyamide and polyester, acrylonitrile-based polymers undergo a cyclization reaction of the nitrile group when heat-treated, making them infusible, making it difficult to form fibers using melt-spinning methods. A friend who has been considered a friend. Conventional methods for producing this Tomome acrylonitrile fiber include ef-dimethylformamide, dimethylacetamide,
A wet spinning method and a dry spinning method are employed in which the entire spinning stock solution is a solution of dimethyl sulfoxide, γ-butyrolactone, a rhodan salt aqueous solution, or polyacrylonitrile dissolved in a good solvent such as Nitrate #1. However, in these fiber manufacturing methods using these spinning methods, it is essential to completely remove the solvent from the system during the spinning process, and the spinning speed is limited to a maximum of 300 m/min. 1. Spinning speed 100 for polyamide fibers and polyester fibers that are completely melt-spun.
0? This is extremely slow compared to FI/min or higher, and is one of the reasons for poor physiological performance.

この工うな現状においてアクリロニトリル系重合体tm
融紡糸することにより繊維化する方法の検討も進められ
ており、例えば特公昭55−501061号公報、特公
昭59−47723号公報、特開昭59−13m515
号公報等に開示さnているようなアクリロニトリル系重
合体の紡糸法の開発がなさnている。これらの方法はい
ずれもアクリロニ) IJル糸重重合体可能な限り少量
の水を配位せしめ、水を可塑剤として用い、紡糸ノズル
より加熱、加圧下で吐出し、線維化するものである。し
かし、加熱、加圧帯域の加圧条件、調湿条件を厳しく規
制しても、吐出さn皮繊維状アクリロニトリル系重合体
成形物中に水の揮散によるボイドの発生を防ぐことがで
きず、乾式紡糸法や湿式紡糸法により製造され皮繊維に
比べて損色のない繊維とする技術にいまだ開発されるに
到っていない。
In this difficult current situation, acrylonitrile polymer tm
Studies are also underway on methods of producing fibers by melt-spinning, such as those disclosed in Japanese Patent Publication No. 55-501061, Japanese Patent Publication No. 47723-1982, and Japanese Patent Publication No. 59-13m515.
A spinning method for an acrylonitrile polymer as disclosed in the above publication has not yet been developed. In both of these methods, as little water as possible is coordinated with the acrylonitrile yarn polymer, water is used as a plasticizer, and the material is discharged from a spinning nozzle under heating and pressure to form fibers. However, even if the heating and pressurizing conditions in the pressurizing zone and humidity control conditions are strictly regulated, it is not possible to prevent the formation of voids due to water volatilization in the extruded fibrous acrylonitrile polymer molded product. A technology has not yet been developed to produce fibers that are produced by dry spinning or wet spinning and have no color loss compared to leather fibers.

−万、アクリロニトリル系重合体全浴融賦形してフィル
ム状に成形し、ガスバリヤ−フィルム全作る技術の開発
もなされているか、フィルムの厚味斑か200〜300
%の割合で発生し、繊維径が20μ以下のアクリロニ)
 IJJル繊維の製造にフィルム賦型技術全転用するこ
とは全く不可能な状態にある。
- Has a technology been developed to make a gas barrier film by melting an acrylonitrile polymer in a full bath and forming it into a film?
% and the fiber diameter is less than 20μ)
It is completely impossible to fully apply film forming technology to the production of IJJ fibers.

〔発明か解決しようとする問題点〕[The problem that the invention attempts to solve]

本発明省らは”上述した如き、溶融紡糸法によるアクリ
ロニトリル系繊維の製造法の現状に鑑み、水などの可塑
剤全使用しない溶融紡糸法によるアクリル系繊維の製法
に対して、鋭意検討し友結果、本発明を完成するに至っ
た。
In view of the current state of the manufacturing method of acrylonitrile fibers using the melt-spinning method as described above, the Ministry of the Invention has earnestly studied the method of manufacturing acrylic fibers using the melt-spinning method that does not use any plasticizers such as water. As a result, the present invention was completed.

〔問題点全解決する几めの手段〕[Elaborate means to solve all problems]

本発明の要旨とするところはアクリロニトリル40〜9
5重量%と、他の共重合可能な不飽和単量体5〜60重
量%とを当該重合体の浴融温度以上で加熱処理すること
により蒸散する乳化剤の存在下で乳化重合を行ない、得
られる還元粘度02〜10のアクIJ Qニトリル糸重
合体全該重合体の浴融温度以上で加熱処理してアクリロ
ニトリル系重合体に含まnる乳化剤上蒸散処理した後、
該重合体の溶融温度以上で溶融紡糸してアクリロニトリ
ル系繊維を製造することにある。
The gist of the present invention is that acrylonitrile 40-9
5% by weight and 5 to 60% by weight of another copolymerizable unsaturated monomer at a temperature higher than the bath melting temperature of the polymer to conduct emulsion polymerization in the presence of an emulsifier that evaporates. The entire Acrylic IJQ nitrile yarn polymer with a reduced viscosity of 02 to 10 is heated at a temperature higher than the bath melting temperature of the polymer, and then evaporated with an emulsifier contained in the acrylonitrile polymer.
The purpose is to produce acrylonitrile fibers by melt spinning at a temperature higher than the melting temperature of the polymer.

本発明で用いるアクリロニトリル系重合体中にはアクリ
ロニトリルが40〜95重量%の割合で共重合さnてい
ることが必要である。重合体中の共重合成分が40重量
%未満では優れ九繊維性能金有するm雑音製造すること
ができない。アクリロニトリルと共重合せしめる他の共
重合可能な不飽和単址体としては、メチルメタクリレー
ト、エチルメタクリレート、ブチルメタクリレート、ヘ
キシルメタクリレート、メチルアクリレート、エチルア
クリレート、ブチル了クリレート、プロピルアクリレー
トなどのアクリル酸、メタクリル酸のエステル類、塩化
ビニル、臭化ビニル、塩化ビニリデン等のI・ロダン化
ビニル類、メタクリル酸、アクリル酸、イタコン酸、ク
ロトン酸、ビニルスルホン酸等の酸類お工びそ扛らの塩
類、あるいはマレイン酸イミド、フェニルマレイミド、
アクリルアミド、メタクリルアミド、スチレン、α−メ
チルスチレンなどを挙げることができる。
It is necessary that acrylonitrile be copolymerized in the acrylonitrile polymer used in the present invention in a proportion of 40 to 95% by weight. If the copolymerization component in the polymer is less than 40% by weight, it is impossible to produce noise with excellent fiber performance. Other copolymerizable unsaturated monomers that can be copolymerized with acrylonitrile include acrylic acids and methacrylic acids such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, methyl acrylate, ethyl acrylate, butyl methacrylate, and propyl acrylate. esters, vinyl chloride, vinyl bromide, vinylidene chloride, etc., vinyl rhodanides, acids such as methacrylic acid, acrylic acid, itaconic acid, crotonic acid, vinyl sulfonic acid, etc., or maleic acid. acid imide, phenylmaleimide,
Acrylamide, methacrylamide, styrene, α-methylstyrene, etc. can be mentioned.

本発明を実施するに際して用いるアクリロニトリル系重
合体の還元粘度に、アクリロニトリル系重合体α59i
ジメチルホルムアミド10〇−に溶解し、25℃で測定
し九個(ηs plo )であり、本発明においてはc
L2〜1.0の範囲にあることが必要である。重合体粘
度がα2未満の場合には浴融賦形性が良好でないばかり
でなく、得らnる繊維の強度、結節強度か十分なもので
なく、繊維としての利用価値は小さい。一方還元粘度が
1.0を越えると溶融紡糸法が悪く好ましくない。
The reduced viscosity of the acrylonitrile polymer used in carrying out the present invention is
When dissolved in dimethylformamide 100- and measured at 25°C, it was 9 (ηs plo ), and in the present invention, c
It is necessary to be in the range of L2 to 1.0. When the polymer viscosity is less than α2, not only the bath melting property is not good, but also the strength and knot strength of the obtained fibers are not sufficient, and the utility value as a fiber is small. On the other hand, if the reduced viscosity exceeds 1.0, the melt spinning process will be poor and undesirable.

還元粘度がCL2〜1.0の範囲の重合体は160〜2
50℃に加熱すると水などの可塑剤がなくとも容易に浴
融し、かつ不都合な環化反応をき几すことなく繊維化で
き、しかも得らnる繊維は強度2〜10 ’//d、伸
度10〜40チのものとすることができる。
Polymers with reduced viscosity in the range of CL2 to 1.0 are 160 to 2.
When heated to 50°C, it can be easily bath-melted without a plasticizer such as water, and can be made into fibers without causing an undesirable cyclization reaction, and the resulting fibers have a strength of 2 to 10'//d. , and an elongation of 10 to 40 inches.

本発明の還元粘度α2〜1.0のアクリロニトリル系重
合体は、通常の乳化重合に工9得られ、使用する乳化剤
は、ノニオン糸、アニオン系、カチオン糸等種々のもの
が使用可能である。しかし得ら扛るアクリロニトリル系
重合体全160℃以上、特に200〜250℃の温度範
囲で溶融紡糸するに際して、重合体中に残存する乳化剤
が蒸散あるいは熱分解すると発泡しやすぐ、溶融紡糸安
定性が低下するばかりでなく、得らnる繊維の物理的、
化学的性質が低下し、筐友fl&維の美観がそこなわれ
好ましくない。そこで本発明で用いる乳化剤は、得らn
る重合体の溶融温度以上の温度、特に180℃以上の温
度で熱処理することにより、蒸散する乳化剤全選定する
ことが必要である。
The acrylonitrile polymer of the present invention having a reduced viscosity of α2 to 1.0 can be obtained by ordinary emulsion polymerization, and various emulsifiers such as nonionic, anionic, and cationic threads can be used. However, when the obtained acrylonitrile polymer is melt-spun at a temperature of 160°C or higher, especially in the temperature range of 200 to 250°C, the emulsifier remaining in the polymer evaporates or thermally decomposes and foams easily, resulting in poor melt-spinning stability. Not only is the physical property of the obtained fiber reduced,
The chemical properties are deteriorated, and the aesthetic appearance of Kyotomo Fl&W is spoiled, which is undesirable. Therefore, the emulsifier used in the present invention is
It is necessary to select all emulsifiers that evaporate by heat treatment at a temperature higher than the melting temperature of the polymer used, particularly at a temperature higher than 180°C.

具体的には、N−アミルアミノ酸類、ジアルキルスルホ
コハク酸塩類、アルキルリン酸塩類、アルキルベンゼン
スルホンrR塩類などのアニオン界面活性剤、ソルビタ
ン脂肪酸エステル類、グリセリン脂肪酸エステル類など
のノニオン界面活性剤、あるいはアルキルトリメチルア
ンモニウムクロライド、アルキルジメチルアミン酢酸ベ
ダインなどのカチオン界面活性剤、両性界面活性剤など
を挙げることができる。
Specifically, anionic surfactants such as N-amyl amino acids, dialkyl sulfosuccinates, alkyl phosphates, alkylbenzenesulfone rR salts, nonionic surfactants such as sorbitan fatty acid esters, glycerin fatty acid esters, or alkyl Examples include cationic surfactants such as trimethylammonium chloride and alkyldimethylamine acetate bedine, and amphoteric surfactants.

乳化重合で得られたアクリロニトリル系重合体は、凝固
処理を行なうことにより重合糸エフ分離し、十分に水洗
、脱水しt後、重合体中に含まnる残存に化剤を可能な
限り蒸散せしめることが必要である。重合体から残存乳
化剤を除去するには乾燥機音用いて、好ましくは減圧下
で加熱処理する方法、脱気機構を備えた押出機で処理す
る方法などが採用できる。
The acrylonitrile polymer obtained by emulsion polymerization is subjected to coagulation treatment to separate the polymer fibers, thoroughly washed with water and dehydrated, and then the residual polymer contained in the polymer is evaporated as much as possible. It is necessary. To remove the residual emulsifier from the polymer, a method of heat treatment using the sound of a dryer, preferably under reduced pressure, a method of treatment using an extruder equipped with a degassing mechanism, etc. can be adopted.

ここで言う蒸散処理とは、アクリロニトリル系重合体上
加熱溶融し、紡糸孔ニジ紡糸塔内へ吐出せしめ、糸状物
を形成する際、糸状物より乳化剤の蒸散が認められず、
糸切n等の紡糸性低下の認められない程度の処理をいう
。具体的には残存乳化剤の量が、重合体重ff1K対し
て、1000 ppm以下であることが必要である。残
存乳化剤量が11000pp′(l−越えると発泡が著
しくなり、糸切nが多発し、紡糸安定性が低下する。
The transpiration treatment referred to here means that when an acrylonitrile polymer is heated and melted and discharged into a spinning tower with a spinning hole to form a filament, no evaporation of the emulsifier is observed from the filament.
This refers to treatments such as thread cutting that do not cause a decrease in spinnability. Specifically, the amount of residual emulsifier needs to be 1000 ppm or less based on the polymer weight ff1K. If the amount of residual emulsifier exceeds 11,000 pp' (l-), foaming becomes significant, thread breakage occurs frequently, and spinning stability decreases.

このようにして残存乳化剤の蒸散処理を終了したアクリ
ロニトリル系重合体を、粉末状であるいはペレット状に
予備成形した後、押出し機に供給し、ノズル孔より吐出
し、延伸、熱セットを施すことにエフ本発明の目的とす
るアクリロニトリル系繊維とするCとができる◎浴融紡
糸時の重合体の吐出速度は20〜100?/l/分であ
ることが好ましく、延伸法としては熱水延伸、スチーム
延伸、熱板延伸、熱ビン延伸等が採用できる。また紡糸
温度は用いるアクリロニトリル系重合体の性質に応じて
変化するが、150〜250℃の温度範囲が適当であり
、IvJ運も800〜5000m/分 とすることがで
き、従来のアクリル繊維の紡糸速度30〜200m/分
に比べ著しく高速紡糸を可能としている。
The acrylonitrile polymer, which has undergone the evaporation treatment of the residual emulsifier in this way, is preformed into powder or pellet form, then supplied to an extruder, discharged from the nozzle hole, and subjected to stretching and heat setting. F. Can produce the acrylonitrile fiber that is the object of the present invention. ◎ The discharge rate of the polymer during bath melt spinning is 20 to 100? /l/min, and hot water stretching, steam stretching, hot plate stretching, hot bottle stretching, etc. can be adopted as the stretching method. The spinning temperature varies depending on the properties of the acrylonitrile polymer used, but a temperature range of 150 to 250°C is appropriate, and the IvJ speed can be 800 to 5000 m/min, making it possible to spin conventional acrylic fibers. This enables significantly higher speed spinning than speeds of 30 to 200 m/min.

また、湿式紡糸法や乾式紡糸法により得ら扛るアクリロ
ニトリル系繊維の場合には繊維中に形成さtl、たボイ
ドを焼きつぶす友めのアニール工程か必要であるが、本
発明における浴融紡糸法を用いるとアニール工程を用い
なくとも、十分な性能を有する繊維を作り得るという大
きな利点を備えている。
In addition, in the case of acrylonitrile fibers obtained by wet spinning or dry spinning, an additional annealing process is required to burn out voids formed in the fibers, but bath melt spinning in the present invention The use of this method has the great advantage that fibers with sufficient performance can be produced without using an annealing process.

〔実施例〕〔Example〕

以下、実施例により本発明をより詳細に説明する。なお
、本文中U部」とあるのは重量部を示す。
Hereinafter, the present invention will be explained in more detail with reference to Examples. In addition, "U part" in the text indicates parts by weight.

破断強度及び破断伸度はテンシロン■型引張試験機金用
いて紙長20m+、引張速度20 rpas/分、測定
雰囲気20℃、65チRHで測定した。
The breaking strength and breaking elongation were measured using a Tensilon type tensile tester at a paper length of 20 m+, a tensile speed of 20 rpas/min, and a measurement atmosphere of 20° C. and 65° RH.

重合体の還元粘度は前述の方法により測定した。The reduced viscosity of the polymer was measured by the method described above.

実施例1 撹拌機及び還流冷却管付き反応容器に蒸留水300部、
ジオクチルスルコハク酸ソーダ3部、過5M、酸カリウ
ム015部、アクリロニトリル42.5部、アクリル酸
メチル7.5部及びラウリルメルカプタン1部を仕込み
、容器内を窒素置換した後、攪拌下で容器内を65℃に
昇温し来会全開始した。温度調節を行ないながら15分
後にアクリロニトリル85部、アクリル酸メチル15部
及びラウリルメルカプタン2部′f:1時間にわたって
添加し、添加終了後2時間継続攪拌し重合を終了した@ 得らfl友エマルジョン全冷却後、塩化アルミニウムを
用いて塩析し、濾過、洗浄、乾燥して・重合体粉末を得
た。重合体の還元粘度は[174で残存乳化剤iは30
00 ppm″′Cあった。
Example 1 300 parts of distilled water was placed in a reaction vessel equipped with a stirrer and a reflux condenser,
3 parts of sodium dioctyl sulfuccinate, 5M peroxide, 015 parts of potassium acid, 42.5 parts of acrylonitrile, 7.5 parts of methyl acrylate, and 1 part of lauryl mercaptan were charged, and after purging the inside of the container with nitrogen, the inside of the container was stirred. The temperature was raised to 65°C and the entire visit began. After 15 minutes while controlling the temperature, 85 parts of acrylonitrile, 15 parts of methyl acrylate, and 2 parts of lauryl mercaptan'f were added over 1 hour, and after the addition was complete, stirring was continued for 2 hours to complete the polymerization. After cooling, the mixture was salted out using aluminum chloride, filtered, washed, and dried to obtain a polymer powder. The reduced viscosity of the polymer is [174 and the residual emulsifier i is 30
00 ppm'''C.

次いでこの重合体上ベント付2軸押出機に供給し、23
0℃の溶融温度にて乳化剤全蒸散させなから賦型ペレッ
ト化し友。ベレットの残存乳化剤tは1o o o p
pm以下であった。
Next, this polymer was fed to a twin-screw extruder with a vent on top, and 23
The emulsifier is completely evaporated at a melting temperature of 0°C and then molded into pellets. The residual emulsifier t of the pellet is 1 o o o p
It was below pm.

得らf″L友ペレットをスクリュー型溶融押出機に供給
し、ダイス孔径α3smφ、ダイス孔数72、L/D=
2のダイスエり紡糸温度240℃、巻取速度1500m
/分で紡糸し53デニールの未延伸糸奮得几。しかる後
、該未延伸糸を130℃に加熱し友熱板を用いて10倍
延伸し延伸糸を得た。得らn几延伸糸はボイドがない成
形外観良好なものであった。この延伸糸の物性を第1表
に示す。
The obtained f″L pellets were fed to a screw-type melt extruder, and the die hole diameter was α3smφ, the number of die holes was 72, and L/D=
2. Die sew spinning temperature 240℃, winding speed 1500m
/min to obtain undrawn yarn of 53 denier. Thereafter, the undrawn yarn was heated to 130° C. and stretched 10 times using a thermothermal plate to obtain a drawn yarn. The obtained n-thickness drawn yarn had no voids and had a good molded appearance. The physical properties of this drawn yarn are shown in Table 1.

第1表 比較例1 実施例1によって得られた重合体粉末全乳化剤蒸散処理
することなくスクリュー型溶融押出機に供給し、実施例
1と同様に未延伸糸を得ることを試み九が乳化剤の発泡
の定め紡糸中糸切れが発生し、紡糸安定性は不良であっ
た。また得られ友延伸糸も多数のボイド全肩し満足な物
性t=Nするものではなかった。
Table 1 Comparative Example 1 The entire polymer powder obtained in Example 1 was fed to a screw-type melt extruder without evaporating the emulsifier, and an undrawn yarn was obtained in the same manner as in Example 1. During foaming, yarn breakage occurred during spinning, and the spinning stability was poor. Further, the obtained double-drawn yarn also had many voids and did not have satisfactory physical properties t=N.

〔本発明の効果〕[Effects of the present invention]

本発明を用いることにニジ、従来より困難とさn″′C
きたアクリロニトリル系重合体の溶融紡糸が可能となっ
た。これにエリ紡糸速度が著しぐ速くなり、生産性が高
くなるばかりか、紡糸工程において浴剤金柑いることが
なくなり、装置的にも経済的にも非常に有利となる。ま
t、従来の湿式あるいは乾式紡糸法において不可欠な脱
溶剤の工程を経ないため、得らnる糸はボイドのない緻
密なものとなジ、かつ、その糸強度、伸度とも従来法の
ものと同程度のものが得られる。
It is more difficult to use the present invention than in the past.
Melt spinning of acrylonitrile-based polymers has become possible. In addition, the spinning speed becomes extremely high, which not only increases productivity, but also eliminates the use of bath additive kumquats in the spinning process, which is extremely advantageous both in terms of equipment and economy. Furthermore, since the solvent removal process, which is essential in conventional wet or dry spinning methods, is not carried out, the resulting yarn is void-free and dense, and its yarn strength and elongation are comparable to those of conventional methods. You can get something similar to that.

Claims (1)

【特許請求の範囲】 1、アクリロニトリル40〜95重量%と他の共重合可
能な重合性単量体5〜60重量%とを、加熱処理するこ
とにより蒸散する乳化剤の存在下で乳化重合して得られ
る還元粘度0.2〜1.0のアクリロニトリル系重合体
を、当該重合体の溶融温度以上の温度で熱処理すること
により重合体中に含まれる乳化剤を蒸散処理した後、当
該重合体の溶融温度以上の温度で溶融紡糸することを特
徴とするアクリロニトリル系繊維の製造方法。 2、加熱処理後の残存乳化剤の量が、1000ppm以
下であることを特徴とする特許請求の範囲第1項記載の
製造方法。
[Claims] 1. Emulsion polymerization of 40 to 95% by weight of acrylonitrile and 5 to 60% by weight of another copolymerizable monomer in the presence of an emulsifier that evaporates by heat treatment. The obtained acrylonitrile-based polymer having a reduced viscosity of 0.2 to 1.0 is heat-treated at a temperature higher than the melting temperature of the polymer to evaporate the emulsifier contained in the polymer, and then the polymer is melted. 1. A method for producing acrylonitrile fiber, the method comprising melt spinning at a temperature higher than that temperature. 2. The manufacturing method according to claim 1, wherein the amount of residual emulsifier after heat treatment is 1000 ppm or less.
JP20292385A 1985-09-13 1985-09-13 Production of acrylonitrile based fiber Pending JPS6262909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20292385A JPS6262909A (en) 1985-09-13 1985-09-13 Production of acrylonitrile based fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20292385A JPS6262909A (en) 1985-09-13 1985-09-13 Production of acrylonitrile based fiber

Publications (1)

Publication Number Publication Date
JPS6262909A true JPS6262909A (en) 1987-03-19

Family

ID=16465396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20292385A Pending JPS6262909A (en) 1985-09-13 1985-09-13 Production of acrylonitrile based fiber

Country Status (1)

Country Link
JP (1) JPS6262909A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921656A (en) * 1988-08-25 1990-05-01 Basf Aktiengesellschaft Formation of melt-spun acrylic fibers which are particularly suited for thermal conversion to high strength carbon fibers
US4933128A (en) * 1989-07-06 1990-06-12 Basf Aktiengesellschaft Formation of melt-spun acrylic fibers which are well suited for thermal conversion to high strength carbon fibers
US4935180A (en) * 1988-08-25 1990-06-19 Basf Aktiengesellschaft Formation of melt-spun acrylic fibers possessing a highly uniform internal structure which are particularly suited for thermal conversion to quality carbon fibers
US4981752A (en) * 1989-07-06 1991-01-01 Basf Aktiengesellschaft Formation of melt-spun acrylic fibers which are well suited for thermal conversion to high strength carbon fibers
US4981751A (en) * 1988-08-25 1991-01-01 Basf Aktiengesellschaft Melt-spun acrylic fibers which are particularly suited for thermal conversion to high strength carbon fibers
US5168004A (en) * 1988-08-25 1992-12-01 Basf Aktiengesellschaft Melt-spun acrylic fibers possessing a highly uniform internal structure which are particularly suited for thermal conversion to quality carbon fibers
JPH0592998U (en) * 1992-05-18 1993-12-17 日新ハイボルテージ株式会社 X-ray irradiation device
US5304590A (en) * 1992-01-21 1994-04-19 Solcas Polymer, Inc. Acrylonitrile polymer compositions and articles and methods for their preparation
US5434205A (en) * 1992-01-21 1995-07-18 Solcas Polymer Limited Partnership Acrylonitrile polymer compositions and articles and methods for their preparation
EP0780498A1 (en) * 1995-12-18 1997-06-25 The Standard Oil Company Melt spun acrylonitrile olefinically unsaturated fibers and a process to make fibers
JP2019523833A (en) * 2016-05-11 2019-08-29 フラウンホーファー−ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. Multifilament yarn manufacturing method and multifilament yarn

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921656A (en) * 1988-08-25 1990-05-01 Basf Aktiengesellschaft Formation of melt-spun acrylic fibers which are particularly suited for thermal conversion to high strength carbon fibers
US4935180A (en) * 1988-08-25 1990-06-19 Basf Aktiengesellschaft Formation of melt-spun acrylic fibers possessing a highly uniform internal structure which are particularly suited for thermal conversion to quality carbon fibers
US4981751A (en) * 1988-08-25 1991-01-01 Basf Aktiengesellschaft Melt-spun acrylic fibers which are particularly suited for thermal conversion to high strength carbon fibers
US5168004A (en) * 1988-08-25 1992-12-01 Basf Aktiengesellschaft Melt-spun acrylic fibers possessing a highly uniform internal structure which are particularly suited for thermal conversion to quality carbon fibers
US4933128A (en) * 1989-07-06 1990-06-12 Basf Aktiengesellschaft Formation of melt-spun acrylic fibers which are well suited for thermal conversion to high strength carbon fibers
US4981752A (en) * 1989-07-06 1991-01-01 Basf Aktiengesellschaft Formation of melt-spun acrylic fibers which are well suited for thermal conversion to high strength carbon fibers
US5589520A (en) * 1992-01-21 1996-12-31 Solcas Polymer, Limited Partnership Acrylonitrile polymer composition and articles and methods for their preparation
US5304590A (en) * 1992-01-21 1994-04-19 Solcas Polymer, Inc. Acrylonitrile polymer compositions and articles and methods for their preparation
US5434205A (en) * 1992-01-21 1995-07-18 Solcas Polymer Limited Partnership Acrylonitrile polymer compositions and articles and methods for their preparation
JPH0592998U (en) * 1992-05-18 1993-12-17 日新ハイボルテージ株式会社 X-ray irradiation device
EP0780498A1 (en) * 1995-12-18 1997-06-25 The Standard Oil Company Melt spun acrylonitrile olefinically unsaturated fibers and a process to make fibers
US6114034A (en) * 1995-12-18 2000-09-05 The Standard Oil Company Melt spun acrylonitrile olefinically unsaturated fibers and a process to make fibers
JP2019523833A (en) * 2016-05-11 2019-08-29 フラウンホーファー−ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. Multifilament yarn manufacturing method and multifilament yarn
US11649567B2 (en) 2016-05-11 2023-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a multifilament yarn

Similar Documents

Publication Publication Date Title
JPS6262909A (en) Production of acrylonitrile based fiber
US2716586A (en) Wet spinning of acrylonitrile polymers
US4409289A (en) Cellulose-acrylonitrile polymer solutions, articles, and methods of making same
US20210284774A1 (en) A polymer for the production of carbon fibers and carbon fibers made therefrom
US2743994A (en) Method of producing shaped articles from polymeric materials
US4452601A (en) Process for the thermal stabilization of acrylic fibers and films
JPS6233817A (en) Production of acrylic fiber having high tenacity and modulus
US2879242A (en) Spinning solvent for acrylic fibers
JP4480858B2 (en) Lightweight composite acrylic fiber and method for producing the same
JPH11200140A (en) Production of acrylic fiber precursor
US3399260A (en) Production of acrylonitrile polymer fibers
US3376253A (en) Flame retarding acrylonitrile polymer compositions
JPH0874122A (en) Production of meta-aromatic polyamide fiber
JPS6317929B2 (en)
JPS5929681B2 (en) Acrylonitrile cage
JPH0157165B2 (en)
US2591670A (en) Production of filaments from acrylonitrile-2-methallyl alcohol polymer
JPS62268810A (en) Production of acrylonitrile fiber
JPH01111010A (en) Production of acrylic synthetic fiber
JPS62268813A (en) Production of acrylonitrile fiber
JPS62184112A (en) Production of high-tenacity high-modulus polyethylene fiber
JPS61119710A (en) Production of acrylic fiber having high tenacity and modules
JPH07229023A (en) Acrylic fiber
JPS6094613A (en) Production of high-strength and high-modulus fiber
JPS61167013A (en) Acrylonitrile fiber