JPS6278209A - Production of acrylonitrile synthetic yarn - Google Patents
Production of acrylonitrile synthetic yarnInfo
- Publication number
- JPS6278209A JPS6278209A JP21613485A JP21613485A JPS6278209A JP S6278209 A JPS6278209 A JP S6278209A JP 21613485 A JP21613485 A JP 21613485A JP 21613485 A JP21613485 A JP 21613485A JP S6278209 A JPS6278209 A JP S6278209A
- Authority
- JP
- Japan
- Prior art keywords
- acrylonitrile
- spinning
- polymer
- yarn
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、非水和型アクリロニトリル系重合体を溶融つ
紡糸することによるアクリロニトリル系合成繊維の新規
な製法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing acrylonitrile-based synthetic fibers by melt-spinning a non-hydrated acrylonitrile-based polymer.
従来の技術
アクリロニトリルが70重量%以上共重合されたアクリ
ロニトリル系重合体は非熱可塑性重合体であるため、溶
融紡糸法による繊維への賦形はできず、その繊維化はジ
メチルホルムアミド、ジメチルアセトアミド、ジメチル
スルホキシド、硝酸、チオシアン酸水溶液、塩化亜鉛水
溶液等の溶媒を用いた湿式紡糸法で行われている。その
ため、紡糸速度は、600 m 7分以下と、ポリエス
テル、ナイロン等の溶融紡糸法による紡糸速度3000
m/分以上と比べ著しい低速紡糸を余儀なくされている
。また紡糸工程で使用した溶剤の回収、得られた繊維の
乾燥等に多量のエネルギーを必要とするため、湿式紡糸
法によるアクリル繊維の製造費を低減することは困難で
ある。Conventional technology Acrylonitrile polymers copolymerized with 70% by weight or more of acrylonitrile are non-thermoplastic polymers, so they cannot be shaped into fibers by melt spinning, and the fibers can be formed using dimethylformamide, dimethylacetamide, It is carried out by a wet spinning method using a solvent such as dimethyl sulfoxide, nitric acid, aqueous thiocyanate solution, or aqueous zinc chloride solution. Therefore, the spinning speed is 600 m 7 minutes or less, and the spinning speed is 3000 m by melt spinning method for polyester, nylon, etc.
It is necessary to perform spinning at a significantly lower speed than m/min. Further, since a large amount of energy is required for recovering the solvent used in the spinning process, drying the obtained fibers, etc., it is difficult to reduce the manufacturing cost of acrylic fibers using the wet spinning method.
従来より、アクリロニトリル系重合体の溶融紡糸法の技
術開発が進められており、例えばアクリロニトリル系重
合体は水和せしめると熱可塑性を示す性質を有するため
、水和アクリロニトリル系重合体を溶融防止する方法が
特公昭59−38243号、特公昭59−29525号
、特公昭59−47724号公報等に提案されている。Technological development of melt spinning methods for acrylonitrile-based polymers has been progressing for some time. For example, since acrylonitrile-based polymers exhibit thermoplasticity when hydrated, methods for preventing melting of hydrated acrylonitrile-based polymers have been developed. has been proposed in Japanese Patent Publication No. 59-38243, Japanese Patent Publication No. 59-29525, Japanese Patent Publication No. 47724-1984, etc.
しかし、これらの溶融紡糸法では、ノズルより吐出され
た糸条から水が急速に逃散する過程で糸構造中にボイド
が生じ易く、均一な性能を有する繊維を得にくいという
難点がある。However, these melt spinning methods have the disadvantage that voids are likely to occur in the yarn structure during the process in which water rapidly escapes from the yarn discharged from the nozzle, making it difficult to obtain fibers with uniform performance.
一方、アクリロニトリル50〜92重量%と他の単量体
50〜8重量%より成る共重合体で、還元粘度O,S〜
1.2のものを、150〜250℃の温度で溶融紡糸し
て繊維化する方法が特公昭52−2007号、特開昭4
8−43479号公報等に示されている。On the other hand, it is a copolymer consisting of 50-92% by weight of acrylonitrile and 50-8% by weight of other monomers, and has a reduced viscosity of O, S ~
A method of melt-spinning 1.2 at a temperature of 150 to 250°C to form fibers is disclosed in Japanese Patent Publication Nos. 52-2007 and 4)
It is shown in Publication No. 8-43479 and the like.
本発明が解決しようとしている問題点
しかし、これらの方法に用いられているアクリロニトリ
ル系重合体はアクリロニトリル/メチルアクリレート−
75/25(重量比)なる組成を中心としたものである
か、あるいはアクリロニトリル/スチレン=65/35
(重量比)なるものであり、これらのアクリロニトリ
ル系重合体を溶融紡糸して得た繊維は、見掛上の引張強
度は高いものの、繊維として用いるには伸度が高すぎる
という性質があり、湿式紡糸法により得られた繊維と同
じ性能を備えたアクリロニトリル系繊維を溶融紡糸法に
より得るには至っていない。Problems to be Solved by the Invention However, the acrylonitrile-based polymer used in these methods is acrylonitrile/methyl acrylate-
The composition is mainly 75/25 (weight ratio), or acrylonitrile/styrene = 65/35
(weight ratio), and although the fibers obtained by melt-spinning these acrylonitrile polymers have high apparent tensile strength, they have a property that their elongation is too high to be used as fibers. Acrylonitrile fibers with the same performance as fibers obtained by wet spinning have not yet been obtained by melt spinning.
問題点を解決するための手段
本発明者らは、優れた性能を備えたアクリロニトリル系
繊維を溶融紡糸法で製造することを目的として検討した
結果、溶融紡糸して得た未延伸糸の広角X線回折像にお
ける2θ=17°の半価幅β値が2.0以下となるよう
に、原料アクリロニ) IJル系重合体及び溶融紡糸条
件を特定することにより、その目的を達成しうろことを
見出し本発明を完成した。 ゛
本発明は、還元粘度ηredが0.2〜1.0でかつガ
ラス転移温度が77〜110℃であるアクリロニトリル
86〜92重°量%と他の共重合可能なコモノマー17
〜8重量%との共重合体を200〜265℃の温度で紡
糸し、広角X線回折像における2θ=17°の半価幅β
値が2.0以下である未延伸糸となし、次いで延伸する
ことを特徴とする、アクリロニトリル系合成繊維の製法
である。Means for Solving the Problems The present inventors conducted studies with the aim of producing acrylonitrile fibers with excellent performance using a melt-spinning method, and found that wide-angle X By specifying the raw material acrylonitrile (IJ) polymer and melt-spinning conditions so that the half-width β value at 2θ = 17° in the line diffraction image is 2.0 or less, it is possible to achieve this objective. Heading The invention has been completed.゛The present invention uses 86 to 92% by weight of acrylonitrile having a reduced viscosity ηred of 0.2 to 1.0 and a glass transition temperature of 77 to 110°C and other copolymerizable comonomers 17
~8% by weight of the copolymer was spun at a temperature of 200 to 265°C, and the half-value width β of 2θ = 17° in the wide-angle X-ray diffraction image was obtained.
This is a method for producing acrylonitrile synthetic fiber, which is characterized by forming an undrawn yarn having a value of 2.0 or less, and then drawing it.
本発明に用いられるアクリロニトリル系共重合体はアク
リロニトリル83〜92重量%と他5の共重合可能な単
量゛体17〜8重量%からなるものである。アクリロニ
トリルの共重合量が83重素置未満のアクリロニトリル
系重合体はその溶融特性は良好であるが、溶融紡糸によ
る繊維軸方向への重合体の配向性が不足し、X線回折像
2θ=17°における半価幅β値が2.0以下の未延伸
糸とすることができず、このような半価幅β値が大きな
未延伸アクリロニトリル系繊維は延伸しても十分に繊維
軸方向に重合体が配向結晶化したものすなわち延伸糸の
広角X線回折像2θ=17°における半価幅β値が2.
0以下の繊維とすることが困難で、繊維性能の良好なア
クリロニトリル系合成繊維とすることができない。一方
アクリロニトリルの共重合量が92重量%より多いアク
リロニトリル系重合体は、200〜265℃で加熱した
場合の溶融特性が不足し、そのノズルよりの紡出性が低
下し、繊維への賦形性が十分でない。さらに高温をかけ
る際にはアクリロニトリル系重合体の着色及び熱分解が
促進されるのみで溶融紡糸挙動の改善は認められない。The acrylonitrile copolymer used in the present invention consists of 83-92% by weight of acrylonitrile and 17-8% by weight of five other copolymerizable monomers. Acrylonitrile polymers in which the copolymerized amount of acrylonitrile is less than 83 molecules have good melting properties, but the orientation of the polymer in the fiber axis direction during melt spinning is insufficient, and the X-ray diffraction image 2θ = 17 It is impossible to make an undrawn yarn with a half width β value of 2.0 or less at A wide-angle X-ray diffraction image of a drawn yarn in which the coalescence is oriented and crystallized has a half width β value of 2.0 at 2θ=17°.
It is difficult to obtain fibers with a particle size of 0 or less, and it is not possible to obtain acrylonitrile-based synthetic fibers with good fiber performance. On the other hand, acrylonitrile-based polymers with a copolymerized amount of acrylonitrile of more than 92% by weight lack melting properties when heated at 200 to 265°C, resulting in decreased spinnability from the nozzle and poor shaping into fibers. is not enough. Further, when high temperatures are applied, only the coloring and thermal decomposition of the acrylonitrile polymer are promoted, and no improvement in melt spinning behavior is observed.
アクリロニトリルと共重合可能な他の単量体としては、
アクリロニトリルと8〜17重量%の割合で共重合させ
ることにより、得られるアクリロニトリル系重合体のガ
ラス転移温度を77〜110℃となし得るものであり、
例えばメチルアクリレート、エチルアクリレート、n
−プロピルアクリレート、n−ブチルアクリレート、n
−オクチルメタクリレート、n−へキシルメタクリレー
ト、ビニリデンクロライドなどが挙げられる。さらに得
られるアクリロニトリル系重合体のガラス転移温度を7
7〜110°Cに保つ割合、特に5重量%以下の割合で
繊維に優れた染色性を与えうる成分であるビニルスルホ
ン酸、スチレンスルホン酸、アリルスルホン酸、メタリ
ルスルホン酸、スルホアルキルアクリレート、スルホア
ルキルメタクIJL’−4,スルホアルキルメタクリル
アミド及びこれらのアルカリ金属塩、アンモニウム塩、
アミン塩等を用いることもできる。この場合もアクリロ
ニトリル以外の単量体の合計量は8〜17重量%にする
ことが必要である。Other monomers that can be copolymerized with acrylonitrile include:
By copolymerizing with acrylonitrile at a ratio of 8 to 17% by weight, the resulting acrylonitrile polymer can have a glass transition temperature of 77 to 110°C,
For example, methyl acrylate, ethyl acrylate, n
-propyl acrylate, n-butyl acrylate, n
-octyl methacrylate, n-hexyl methacrylate, vinylidene chloride and the like. Furthermore, the glass transition temperature of the acrylonitrile polymer obtained is 7
Vinyl sulfonic acid, styrene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, sulfoalkyl acrylate, which are components that can give excellent dyeing properties to fibers at a proportion maintained at 7 to 110 ° C, especially at a proportion of 5% by weight or less, sulfoalkylmethacrylamide and their alkali metal salts, ammonium salts,
Amine salts and the like can also be used. In this case as well, the total amount of monomers other than acrylonitrile must be 8 to 17% by weight.
アクリロニトリル共重合体のガラス転移温度が77°C
未満のものは200〜265℃での紡糸温度で、ノズル
からの紡出時に溶融共重合体に効果的な剪断力をかける
ことができず、X線回折像2θ=17°における半価幅
β値が2.0以下の未延伸糸とすることができない。一
方ガラス転移温度が110℃より高いものは200〜2
65℃での紡糸温度で良好な溶融特性を示さないため、
繊維賦形性の良好なアクリロニトリル系重合体とはなら
ない。The glass transition temperature of acrylonitrile copolymer is 77°C
If the spinning temperature is less than 200 to 265°C, effective shearing force cannot be applied to the molten copolymer during spinning from the nozzle, and the half width β at 2θ = 17° in the X-ray diffraction image It cannot be an undrawn yarn with a value of 2.0 or less. On the other hand, those whose glass transition temperature is higher than 110℃ are 200~2
Because it does not exhibit good melting properties at a spinning temperature of 65°C,
This does not result in an acrylonitrile polymer with good fiber shaping properties.
本発明に用いられるアクリロニトリル共重合体の還元粘
度(アクリロニトリル系重合体0.5Fをジメチルホル
ムアミドIDDmlに溶解し25℃で測定)は0.2〜
1.0の範囲にあることが必要である。還元粘度が0.
2以下のアクリロニトリル系重合体は、200〜235
℃での溶融流動性が高すぎるため、良好な繊維性能を備
えたアクリロニトリル系合成繊維とすることが困難であ
る。一方還元粘度が1.0を越えるアクリロニトリル系
重合体は紡糸温度での溶融賦形性が低下する。The reduced viscosity of the acrylonitrile copolymer used in the present invention (measured at 25°C after dissolving 0.5 F of the acrylonitrile polymer in dimethylformamide IDD ml) is 0.2 to
It needs to be in the range of 1.0. Reduced viscosity is 0.
2 or less acrylonitrile polymer is 200 to 235
Since the melt flowability at ℃ is too high, it is difficult to make an acrylonitrile-based synthetic fiber with good fiber performance. On the other hand, an acrylonitrile polymer having a reduced viscosity of more than 1.0 has poor melt formability at the spinning temperature.
アクリロニ) IJル系重合体の還元粘度は、重合反応
の際に分子量調節剤の添加量を増減することにより調節
することができる。分子量調節剤としては例えばn−ラ
ウリルメルカプタン、n−オクチルメルカプタン等が用
いられる。The reduced viscosity of the acrylonitrile-based polymer can be adjusted by increasing or decreasing the amount of the molecular weight regulator added during the polymerization reaction. As the molecular weight regulator, for example, n-lauryl mercaptan, n-octyl mercaptan, etc. are used.
図面は特定組成及び還元粘度を有するアクリロニ) I
Jル系重合体とその溶融紡糸特性及び溶融紡糸によって
得られた延伸糸の広角X線回折像2θ=17°における
半価幅が2.0となる領域との関係を示すグラフである
。図中の◎印はメルトインデックス(以下M工)値10
以上、○印はMIβ値以上、X印はMIβ値以下、××
印はMIβ値0点を示す。なおMI値はアクリロニトリ
ル系重合体を230℃に加熱し、直径2■、長さf3t
rar、のノズルより荷重5 kIIをかけて押出した
場合、10分間に吐出されるアクリロニトリル系重合体
の重量(9)を意味する。図中の曲線りより左下側は溶
融領域であって、この領域のアクリロニ) IJル系重
合体のMI値は5以上であり、200〜235℃の紡糸
温度で良好な溶融紡糸性を示す。なおMI値が高すぎる
と、200〜235℃に加熱したときのアクリロニトリ
ル系重合体の粘度が極端に低くなり、溶融紡糸操作性が
きわめて悪くなる傾向が認められる。したがって還元粘
度0.2(直線BC)以上であり、MI値は200以下
、特に170以下であることが好ましい。直線ABより
右側の領域は結晶発現領域であって、この領域内の組成
のアクリロニトリル系重合体を200〜235℃で紡糸
したのち延伸することにより、広角X線回折像の20=
17°における半価幅β値が2.0以下の繊維が得られ
る。この半価幅β値が2.0以上の延伸糸は、繊維構造
中での結晶構造の形成が不足しているため、強度が不足
し、伸度が過大となり、性能の良好な繊維となり得ない
。また直線CDより右側の領域にあるアクリロニトリル
系重合体は200〜260°Cでの溶融特性が著しく低
下し、熱分解及び熱着色を起こし易い。The drawing shows acrylonitrile with a specific composition and reduced viscosity) I
1 is a graph showing the relationship between a J-type polymer, its melt-spinning properties, and the region where the half-width at 2θ=17° is 2.0 in a wide-angle X-ray diffraction image of a drawn yarn obtained by melt-spinning. The ◎ mark in the diagram indicates the melt index (hereinafter referred to as M) value 10
Above, ○ mark is above MIβ value, X mark is below MIβ value, ××
The mark indicates MIβ value 0 point. The MI value is calculated by heating the acrylonitrile polymer to 230℃, diameter 2cm, length f3t.
It means the weight (9) of the acrylonitrile-based polymer discharged in 10 minutes when extruded from a nozzle of rar with a load of 5 kII. The lower left side of the curve in the figure is the melting region, and the MI value of the acrylonitrile-based polymer in this region is 5 or more, and exhibits good melt spinnability at a spinning temperature of 200 to 235°C. Note that if the MI value is too high, the viscosity of the acrylonitrile polymer when heated to 200 to 235°C tends to be extremely low, and the melt spinning operability tends to be extremely poor. Therefore, it is preferable that the reduced viscosity is 0.2 (linear BC) or more and the MI value is 200 or less, particularly 170 or less. The region to the right of the straight line AB is a crystal development region, and by spinning an acrylonitrile polymer having a composition within this region at 200 to 235°C and then stretching it, the wide-angle X-ray diffraction image shows 20=
A fiber having a half width β value at 17° of 2.0 or less is obtained. A drawn yarn with a half width β value of 2.0 or more lacks the formation of a crystal structure in the fiber structure, resulting in insufficient strength and excessive elongation, resulting in a fiber with good performance. do not have. Furthermore, the acrylonitrile polymer located in the region to the right of the straight line CD has a markedly reduced melting characteristic at 200 to 260°C, and is likely to cause thermal decomposition and thermal coloring.
本発明を実施するに際しては、前記の特性を備えたアク
リロニトリル系重合体を200〜235℃の温度で紡糸
する。紡糸温度がこれより高いとアクリロニトリル系重
合体の熱分解反応が起こり易い。一方紡糸温度がこれよ
り低いとアクリロニ) IJル系重合体の溶融賦形性が
低いとアクリロニトリル系重合体の溶融賦形性が低下す
る。前記の特性を備えたアクリロニトリル系重合体を2
00〜235℃の温度で溶融紡糸することにより得られ
た未延伸糸は、広角X線回折像2θ=17°における半
価幅β値が2.0以下であり、結晶性の高いものである
。未延伸糸の広角X線回折像2θ=17°における半価
幅β値が2.0よりも大きいものは、続いて行う延伸に
おいて、いかなる延伸法を用いても延伸糸の結晶性を高
めることすなわち2θ=17°における半価幅β値を2
.0以下とすることはできず、強度及び伸度にバランス
のとれたアクリロニトリル不合成繊維とすることはでき
ない。In carrying out the present invention, an acrylonitrile polymer having the above characteristics is spun at a temperature of 200 to 235°C. If the spinning temperature is higher than this, a thermal decomposition reaction of the acrylonitrile polymer is likely to occur. On the other hand, if the spinning temperature is lower than this, the melt formability of the acrylonitrile type polymer is low, and the melt formability of the acrylonitrile type polymer is lowered. Two acrylonitrile polymers with the above properties
The undrawn yarn obtained by melt spinning at a temperature of 00 to 235°C has a half width β value of 2.0 or less in a wide-angle X-ray diffraction image 2θ = 17°, and is highly crystalline. . Wide-angle X-ray diffraction images of undrawn yarns If the half width β value at 2θ = 17° is larger than 2.0, the crystallinity of the drawn yarns can be increased in the subsequent drawing using any drawing method. In other words, the half width β value at 2θ=17° is 2
.. It cannot be less than 0, and it is not possible to obtain an acrylonitrile non-synthetic fiber with well-balanced strength and elongation.
次いで得られた未延伸糸を延伸すると、本発明のアクリ
ロニトリル系合成繊維が得られる。Then, the obtained undrawn yarn is drawn to obtain the acrylonitrile synthetic fiber of the present invention.
・未延伸糸の延伸法としては潜水延伸法、スチーム延伸
法、乾熱延伸法等を用いることができる。- As a method for stretching the undrawn yarn, a submersible stretching method, a steam stretching method, a dry heat stretching method, etc. can be used.
発明の効果
本発明方法によれば、アクリロニトリル系重合体を溶融
紡糸して得られる未延伸糸は、広角X線回折像2θ=1
7°における半価幅β値が2゜0以下となっているため
、この未延伸糸を延伸することによって、さらに結晶性
及び重合体の繊維軸方向への配向が高められ、強度2〜
1011/d、伸度5〜30%及び弾性率50〜200
9/dであるバランスのとれたアクリロニトリル系合成
繊維が得られる。Effects of the Invention According to the method of the present invention, an undrawn yarn obtained by melt-spinning an acrylonitrile polymer has a wide-angle X-ray diffraction image 2θ=1
Since the half width β value at 7° is 2°0 or less, by drawing this undrawn yarn, the crystallinity and orientation of the polymer in the fiber axis direction are further increased, and the strength is 2~2°.
1011/d, elongation 5-30% and elastic modulus 50-200
A well-balanced acrylonitrile synthetic fiber having a ratio of 9/d is obtained.
また本発明方法によれば、糸の捲取速度は1000 m
7分以上、特に2000m/分以上の高速紡糸も可能で
ある。Further, according to the method of the present invention, the yarn winding speed is 1000 m
High speed spinning of 7 minutes or more, especially 2000 m/min or more is also possible.
下記実施例中の部は重量部を意味する。Parts in the following examples mean parts by weight.
実施例1
重合槽に脱イオン水1000部、乳化剤10部、過硫酸
カリウム5部及びラウリルメルカプタンを仕込み、第1
表に示す割合のアクリロニトリル(AN )とメチルア
クリレート(MA )との混合物500部を重合槽に滴
下しながら55℃で6時間重合させた。得られたアクリ
ロニトリル系重合体含有ラテックスを常法により凝固さ
せ分離、洗浄したのち乾燥した。得られたアクリロニト
リル系重合体のガラス転移温度(Tg)及び還元粘度を
第1表に示す。Example 1 A polymerization tank was charged with 1000 parts of deionized water, 10 parts of emulsifier, 5 parts of potassium persulfate, and lauryl mercaptan.
500 parts of a mixture of acrylonitrile (AN) and methyl acrylate (MA) in the proportions shown in the table was added dropwise to the polymerization tank and polymerized at 55°C for 6 hours. The obtained latex containing an acrylonitrile polymer was coagulated by a conventional method, separated, washed, and then dried. Table 1 shows the glass transition temperature (Tg) and reduced viscosity of the obtained acrylonitrile polymer.
この重合体を230℃で、ノズル孔径0.3φ、L /
D = 0.2.72ホールのノズルを用いて150
0 m7分の紡糸速度で溶融紡糸し、得られた未延伸糸
を一度捲取り、230℃での紡糸性及び未延伸糸の広角
X線回折像2θ=17°における半価幅β値を測定した
。その結果を第1表に示す。次いで実験番号1.4.6
.7及び8の未延伸糸を第2表に示す方法で延伸した。This polymer was heated to 230℃, nozzle hole diameter 0.3φ, L/
D = 150 using a 0.2.72-hole nozzle
Melt spinning was carried out at a spinning speed of 0 m7 minutes, the resulting undrawn yarn was wound up once, and the spinnability at 230°C and the wide-angle X-ray diffraction image of the undrawn yarn were measured for the half-width β value at 2θ = 17°. did. The results are shown in Table 1. Then experiment number 1.4.6
.. The undrawn yarns of Nos. 7 and 8 were drawn by the method shown in Table 2.
得られた延伸糸の特性を第2表に示す。これより20=
17°における半価幅β値が2.0以下のものでなけれ
ば良好な特性を有する繊維とすることができないことが
知られる。The properties of the obtained drawn yarn are shown in Table 2. From this 20=
It is known that a fiber with good properties cannot be obtained unless the half width β value at 17° is 2.0 or less.
図面はアクリロニトリル系重合体の組成及び還元粘度と
紡糸性及び結晶発現性の関係を示すグラフである。The drawing is a graph showing the relationship between the composition and reduced viscosity of an acrylonitrile-based polymer, spinnability, and crystallinity.
Claims (1)
度が77〜110℃であるアクリロニトリル83〜92
重量%と他の共重合可能なコモノマー17〜8重量%と
の共重合体を200〜235℃の温度で紡糸し、広角X
線回折像における2θ=17°の半価幅β値が2.0以
下である未延伸糸となし、次いで延伸することを特徴と
する、アクリロニトリル系合成繊維の製法。Acrylonitrile 83-92 having a reduced viscosity ηred of 0.2-1.0 and a glass transition temperature of 77-110°C
A copolymer of 17% to 8% by weight of other copolymerizable comonomers was spun at a temperature of 200 to 235°C, and a wide-angle
A method for producing an acrylonitrile-based synthetic fiber, which comprises forming an undrawn yarn having a half width β value of 2θ=17° in a line diffraction image of 2.0 or less, and then stretching the fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21613485A JPS6278209A (en) | 1985-10-01 | 1985-10-01 | Production of acrylonitrile synthetic yarn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21613485A JPS6278209A (en) | 1985-10-01 | 1985-10-01 | Production of acrylonitrile synthetic yarn |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6278209A true JPS6278209A (en) | 1987-04-10 |
JPH0133566B2 JPH0133566B2 (en) | 1989-07-13 |
Family
ID=16683796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21613485A Granted JPS6278209A (en) | 1985-10-01 | 1985-10-01 | Production of acrylonitrile synthetic yarn |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6278209A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH037524A (en) * | 1989-06-06 | 1991-01-14 | Haruhiko Akiyama | Heating transpiratory unit |
US5304590A (en) * | 1992-01-21 | 1994-04-19 | Solcas Polymer, Inc. | Acrylonitrile polymer compositions and articles and methods for their preparation |
US5434205A (en) * | 1992-01-21 | 1995-07-18 | Solcas Polymer Limited Partnership | Acrylonitrile polymer compositions and articles and methods for their preparation |
EP0780498A1 (en) * | 1995-12-18 | 1997-06-25 | The Standard Oil Company | Melt spun acrylonitrile olefinically unsaturated fibers and a process to make fibers |
EP1223023A1 (en) * | 2001-01-16 | 2002-07-17 | Zahir Bashir | Method of solventless processing PAN homopolymers or high acrylonitrile content PAN copolymers |
JP2006281387A (en) * | 2005-04-01 | 2006-10-19 | Senjo Seiki Kk | Working device |
JP2019523833A (en) * | 2016-05-11 | 2019-08-29 | フラウンホーファー−ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. | Multifilament yarn manufacturing method and multifilament yarn |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4955921A (en) * | 1972-09-29 | 1974-05-30 | ||
JPS6285012A (en) * | 1985-10-04 | 1987-04-18 | Mitsubishi Rayon Co Ltd | Production of acrylonitrile based synthetic fiber |
-
1985
- 1985-10-01 JP JP21613485A patent/JPS6278209A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4955921A (en) * | 1972-09-29 | 1974-05-30 | ||
JPS6285012A (en) * | 1985-10-04 | 1987-04-18 | Mitsubishi Rayon Co Ltd | Production of acrylonitrile based synthetic fiber |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH037524A (en) * | 1989-06-06 | 1991-01-14 | Haruhiko Akiyama | Heating transpiratory unit |
US5304590A (en) * | 1992-01-21 | 1994-04-19 | Solcas Polymer, Inc. | Acrylonitrile polymer compositions and articles and methods for their preparation |
US5434205A (en) * | 1992-01-21 | 1995-07-18 | Solcas Polymer Limited Partnership | Acrylonitrile polymer compositions and articles and methods for their preparation |
US5589520A (en) * | 1992-01-21 | 1996-12-31 | Solcas Polymer, Limited Partnership | Acrylonitrile polymer composition and articles and methods for their preparation |
EP0780498A1 (en) * | 1995-12-18 | 1997-06-25 | The Standard Oil Company | Melt spun acrylonitrile olefinically unsaturated fibers and a process to make fibers |
US6114034A (en) * | 1995-12-18 | 2000-09-05 | The Standard Oil Company | Melt spun acrylonitrile olefinically unsaturated fibers and a process to make fibers |
EP1223023A1 (en) * | 2001-01-16 | 2002-07-17 | Zahir Bashir | Method of solventless processing PAN homopolymers or high acrylonitrile content PAN copolymers |
JP2006281387A (en) * | 2005-04-01 | 2006-10-19 | Senjo Seiki Kk | Working device |
JP2019523833A (en) * | 2016-05-11 | 2019-08-29 | フラウンホーファー−ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. | Multifilament yarn manufacturing method and multifilament yarn |
US11649567B2 (en) | 2016-05-11 | 2023-05-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing a multifilament yarn |
Also Published As
Publication number | Publication date |
---|---|
JPH0133566B2 (en) | 1989-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI421385B (en) | Method producing polyacrylonitrile fiber and method for producing carbon fiber | |
Sen et al. | High-performance acrylic fibers | |
US4902452A (en) | Process for producing an acrylic fiber having high fiber characteristics | |
JPS6278209A (en) | Production of acrylonitrile synthetic yarn | |
US3073669A (en) | Method for producing shaped articles from polymers and copolymers of acrylonitrile | |
JPH0611927B2 (en) | High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same | |
JPS6314094B2 (en) | ||
JPS6021905A (en) | Acrylic fiber having high strength and elastic modulus and its manufacture | |
JP2002302828A (en) | Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same | |
EP0213772B1 (en) | Method for the production of acrylic fibers with high physical properties | |
US2644803A (en) | Spinning solutions comprising an acrylonitrile-allyl alcohol copolymer | |
CA1053834A (en) | Modacrylic filaments with improved coloristic properties | |
US4952453A (en) | Acrylic fibers with high physical properties | |
JPS6335820A (en) | Production of polyacrylonitrile fiber having high tenacity | |
US2712537A (en) | Polymerization products of pyrimidyl amides of beta-cyano-acrylic acids | |
JPS6285012A (en) | Production of acrylonitrile based synthetic fiber | |
JP3756886B2 (en) | High shrinkable acrylic fiber | |
JP2003535920A (en) | Modacrylic copolymer composition | |
JPS63303111A (en) | Production of flame-retardant acrylic fiber | |
JPS60181314A (en) | Manufacture of polyvinylidene fluoride monofilament having high knot strength | |
JP2579360B2 (en) | Acrylic fiber and its manufacturing method | |
JPH03206114A (en) | Ultrafine acrylic fiber | |
JPS61119710A (en) | Production of acrylic fiber having high tenacity and modules | |
JPS61160416A (en) | Production of acrylonitrile fiber | |
JPH01111010A (en) | Production of acrylic synthetic fiber |