JPH0132695B2 - - Google Patents
Info
- Publication number
- JPH0132695B2 JPH0132695B2 JP55060349A JP6034980A JPH0132695B2 JP H0132695 B2 JPH0132695 B2 JP H0132695B2 JP 55060349 A JP55060349 A JP 55060349A JP 6034980 A JP6034980 A JP 6034980A JP H0132695 B2 JPH0132695 B2 JP H0132695B2
- Authority
- JP
- Japan
- Prior art keywords
- output
- input
- circuit
- sum
- memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004364 calculation method Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 11
- 238000012544 monitoring process Methods 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computational Mathematics (AREA)
- Computing Systems (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Description
【発明の詳細な説明】
本発明は、デイジタル演算回路に関し、特に多
周波信号受信器に適する演算方式に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a digital arithmetic circuit, and particularly to an arithmetic method suitable for a multi-frequency signal receiver.
本発明の目的は、極めて広い入力条件に対し
て、その演算回路のハードウエアを小さくしなが
ら十分に精度の高い演算結果が得られる演算方式
を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide an arithmetic method that can obtain sufficiently accurate arithmetic results under extremely wide input conditions while reducing the hardware of the arithmetic circuit.
入力条件とは、一例としてダイナミツクレンジ
であり、この他にも、極性、周波数、信号の形態
あるいは速度その他の条件をいう。 The input condition is, for example, the dynamic range, and also includes polarity, frequency, signal form, speed, and other conditions.
一般に、ある一つの演算方式には、その方式に
適した入力の条件があり、入力がその条件の範囲
を越える場合には、別の方式を適用した方が好ま
しい。このような場合には、いくつかの相異なる
演算方式の回路を並列に接続しておき、その時の
入力がどの演算回路で演算するのが適しているか
を判断する入力監視回路を備え、これで入力を監
視し、適当な選択を行えば、極めて広い入力条件
に対して、十分な特性を得るようにすることがで
きる。 Generally, a certain calculation method has input conditions suitable for that method, and if the input exceeds the range of the conditions, it is preferable to apply another method. In such cases, several circuits with different arithmetic methods are connected in parallel, and an input monitoring circuit is installed to determine which arithmetic circuit is suitable for calculating the input at that time. By monitoring the input and making appropriate choices, it is possible to obtain sufficient characteristics for a very wide range of input conditions.
また、デイジタル演算回路の全ての演算を一つ
の演算回路で行おうとすると、その演算回路は厖
大なハードウエアを必要とする。このため、その
演算回路を異なる近似条件の複数のものとして、
入力条件に応じて、その入力条件の近似に適合す
る演算回路の出力を選択すれば、ハードウエアを
小さくして、必要な演算精度の演算を行うことが
可能となる。 Furthermore, if all the operations of the digital arithmetic circuit were to be performed by one arithmetic circuit, that arithmetic circuit would require an enormous amount of hardware. For this reason, the arithmetic circuit is made up of multiple circuits with different approximation conditions.
Depending on the input conditions, by selecting the output of the arithmetic circuit that approximates the input conditions, it is possible to reduce the hardware and perform calculations with the required accuracy.
例えば、離散的フーリエ変換技術を用いた多周
波信号受信器における直交成分の自乗和の平方根
の演算をその入力をアドレスとしてそのアドレス
の値に対応する自乗和の平方根をROM(リー
ド・オンリ・メモリ)の出力として演算しようと
すると厖大なROMの容量を必要とする。 For example, when calculating the square root of the sum of squares of orthogonal components in a multifrequency signal receiver using discrete Fourier transform technology, the input is an address, and the square root of the sum of squares corresponding to the value of that address is calculated using a ROM (read-only memory). ) requires a huge amount of ROM capacity.
入力が16ビツトである二つの入力の自乗和の平
方根をROMの出力で得ようとすると、その入力
は32ビツトとなるから、
232=4294967296ワード×16ビツト
が必要となり、到底ROMのみでその演算回路を
実現することはできない。 If we try to obtain the square root of the sum of the squares of two 16-bit inputs using the ROM output, the input will be 32 bits, so we will need 2 32 = 4294967296 words x 16 bits, and there is no way we can do that with just the ROM. It is not possible to realize an arithmetic circuit.
このため、直交成分の絶対値を加算する加算器
の出力と、加算器の入力の一部をアドレスとして
そのアドレスの値に対応する自乗和の平方根を出
力とするROMの出力とをそのROMに書かれた
出力に対応する入力がそのアドレスに入力されて
いるか否かを判定する入力レベル監視回路の出力
によつて選択するようにすれば、ROMの容量を
小さくして、必要な精度の演算を行うことができ
る。 For this reason, the output of an adder that adds the absolute values of orthogonal components, and the output of a ROM that uses a part of the input of the adder as an address and outputs the square root of the sum of squares corresponding to the value of that address, are stored in that ROM. If the selection is made based on the output of an input level monitoring circuit that determines whether the input corresponding to the written output is input to that address, the ROM capacity can be reduced and calculations with the necessary precision can be achieved. It can be performed.
すなわち、入力レベルが高く直交成分までの演
算精度が高くなる場合には、近似精度が多少劣る
が広いダイナミツクレンジに適した絶対値和方式
をとり、入力レベルが低く直交成分までの演算精
度が低くしかならない場合には、近似精度に優れ
るROMによる自乗和の平方根を読出す演算方式
をとるようにすれば、演算回路のハードウエアを
小さくして、あらゆる入力条件に対し十分な特性
を得ることができる。 In other words, when the input level is high and the calculation accuracy up to orthogonal components is high, the absolute value sum method is used, which has somewhat inferior approximation accuracy but is suitable for a wide dynamic range, and when the input level is low and the calculation accuracy up to orthogonal components is high, If the value is only low, by using a calculation method that reads the square root of the sum of squares using a ROM with excellent approximate accuracy, the hardware of the calculation circuit can be made smaller and sufficient characteristics can be obtained for all input conditions. Can be done.
本発明は、上述した目的を達成するために、離
散的フーリエ変換技術を用いた多周波信号受信器
に用いられる演算方式において、
直交成分を示す2つの入力データに対して絶対
値和の演算を行なうデイジタル加算器と、
前記2つのデータの各々の一部をアドレスとし
てこれら一部の入力データに対して予め記憶され
ている自乗和の平方根の演算結果を出力するメモ
リと、
前記デイジタル加算器の出力と前記メモリの出
力とを選択して出力する出力選択回路と、
前記2つの入力データのレベルを監視し、高レ
ベル入力のときは前記デイジタル加算器の出力を
選択し低レベル入力のときは前記メモリの出力に
対応するビツト群に関して前記メモリの出力を選
択するよう前記出力選択回路を制御する入力監視
回路と、
を備えたことを特徴とする。 In order to achieve the above-mentioned object, the present invention performs a calculation of the sum of absolute values for two input data showing orthogonal components in a calculation method used in a multi-frequency signal receiver using discrete Fourier transform technology. a memory that outputs the square root calculation result of the sum of squares stored in advance for the partial input data using a portion of each of the two data as an address; an output selection circuit that selects and outputs the output and the output of the memory; and an output selection circuit that monitors the levels of the two input data, selects the output of the digital adder when the input is a high level, and selects the output of the digital adder when the input is a low level. The present invention is characterized by comprising an input monitoring circuit that controls the output selection circuit to select the output of the memory with respect to a group of bits corresponding to the output of the memory.
次に図面を参照して本発明の実施例について説
明する。 Next, embodiments of the present invention will be described with reference to the drawings.
第1図は離散的フーリエ変換技術を用いた多周
波信号受信器の構成を示すブロツク図である。 FIG. 1 is a block diagram showing the configuration of a multifrequency signal receiver using discrete Fourier transform technology.
受信器の入力1は、ウインド関数発生器2で発
生するウインド関数と乗算器3で乗ぜられ、受信
すべき信号周波数ごとの離散的フーリエ変換回路
4へ入力される。この回路4への入力は直交関数
発生器5,6で発生される、離散的フーリエ変換
の核である直交関数と乗算器7,8でそれぞれ乗
ぜられ、この結果は積分器9,10で一定期間そ
れぞれ積分される。その後、絶対値回路11,1
2により離散的フーリエ変換の直交成分の絶対値
を取る。その出力は各々演算回路13に入力さ
れ、上述の直交成分の自乗和の平方根の演算結果
が出力される。出力論理回路14は、各回路4の
出力の大小を判定し、例えば、出力が一定値を越
えた回路4を判定し、あるいは各回路4の出力の
大小を比較して、受信周波数結果を端子15に出
力する。 The input 1 of the receiver is multiplied by a wind function generated by a wind function generator 2 in a multiplier 3, and input to a discrete Fourier transform circuit 4 for each signal frequency to be received. The input to this circuit 4 is multiplied by an orthogonal function, which is the core of the discrete Fourier transform, generated by orthogonal function generators 5 and 6, respectively, by multipliers 7 and 8, and the result is kept constant by integrators 9 and 10. Each period is integrated. After that, the absolute value circuit 11,1
2 to take the absolute value of the orthogonal component of the discrete Fourier transform. The outputs are respectively input to the arithmetic circuit 13, and the arithmetic result of the square root of the sum of squares of the orthogonal components described above is output. The output logic circuit 14 determines the magnitude of the output of each circuit 4, for example, determines the circuit 4 whose output exceeds a certain value, or compares the magnitude of the output of each circuit 4, and outputs the reception frequency result to a terminal. Output to 15.
第2図は、本発明の一実施例を示すブロツク図
であり、本実施例は上述した第1図の離散的フー
リエ変換回路4の演算回路13に適用できる。二
つの入力端子I1,I2には、それぞれ複数ビツトの
直交成分の絶対値が入力され、第一の演算回路
P1に入力される。この演算回路P1は、通常知ら
れている算術論理演算ユニツトまたは加算器で入
力I1とI2の値の加算結果を出力し、これが出力選
択回路Sに供給される。第二の演算回路P2は
ROMである。入力I1,I2をそれぞれ数ビツトず
つに分割し、そのうちの中位の信号101と11
1のみがこのROMのアドレスとして入力され
る。このROMは、入力の上位ビツト群102お
よび112と下位ビツト群100および110の
値が全て零であるとして計算された入力I1とI2の
自乗和の平方根の値数ビツトが蓄積され、その出
力は出力選択回路Sに接続されている。入力監視
回路Vは入力I1とI2の上位ビツト群102と11
2を入力し、102と112の値が共に零である
か否かを判定する入力レベル監視回路で、その出
力は出力選択回路Sの制御入力に接続される。 FIG. 2 is a block diagram showing one embodiment of the present invention, and this embodiment can be applied to the arithmetic circuit 13 of the discrete Fourier transform circuit 4 of FIG. 1 described above. The absolute values of orthogonal components of multiple bits are input to the two input terminals I 1 and I 2 respectively, and the first arithmetic circuit
Input into P 1 . This arithmetic circuit P1 is a commonly known arithmetic and logic unit or adder and outputs the result of addition of the values of inputs I1 and I2 , which is supplied to an output selection circuit S. The second arithmetic circuit P2 is
It is ROM. The inputs I 1 and I 2 are each divided into several bits, and the middle signals 101 and 11 are
Only 1 is input as the address of this ROM. This ROM stores the number bits of the square root of the sum of the squares of the inputs I1 and I2 , which are calculated assuming that the values of the upper bit groups 102 and 112 and the lower bit groups 100 and 110 of the input are all zero. The output is connected to an output selection circuit S. The input monitoring circuit V detects the upper bit groups 102 and 11 of inputs I1 and I2 .
2 and determines whether the values of 102 and 112 are both zero, and its output is connected to the control input of the output selection circuit S.
出力選択回路Sは、通常は演算回路P1の出力
を出力端子Oに出力するが、入力監視回路Vの出
力が、入力I1,I2について102と112の値が
ともに零であると判定した場合のみ、演算回路
P2の出力に対応するビツト群だけを、演算回路
P2の出力から選択し、他のビツト群は演算回路
P1の出力を出力端子Oに出力する。 The output selection circuit S normally outputs the output of the arithmetic circuit P 1 to the output terminal O, but the output of the input monitoring circuit V determines that the values of 102 and 112 for inputs I 1 and I 2 are both zero. Only if the calculation circuit
Only the bit group corresponding to the output of P2 is sent to the arithmetic circuit.
Select from the output of P 2 , and the other bit groups are used by the arithmetic circuit.
Output the output of P1 to output terminal O.
この例で、入力が16ビツトの場合を考えると、
ROMによる第二の演算回路P2で入力のすべての
ダイナミツクレンジに対する演算を行わせるため
には、入力I1,I2とも16ビツトであるから、32ビ
ツトの入力となり、ROMの容量として、前述の
ように、
232=4294967296ワード×16ビツト
の容量が必要となり容易に実現できない。 In this example, if the input is 16 bits,
In order for the second arithmetic circuit P2 using ROM to perform arithmetic operations on all the dynamic ranges of the inputs, the inputs I1 and I2 are both 16 bits, so the input is 32 bits, and the capacity of the ROM is As mentioned above, a capacity of 2 32 = 4294967296 words x 16 bits is required, which cannot be easily realized.
第2図において、102,112が8ビツト、
101,111が8ビツト、100,110が0
ビツトとすると、第二の演算回路P2は、16ビツ
トの入力すなわち、
216=65536ワード×9ビツト
の容量でよく、実現可能な容量となる。 In Figure 2, 102 and 112 are 8 bits,
101, 111 are 8 bits, 100, 110 are 0
In terms of bits, the second arithmetic circuit P2 has a 16-bit input, that is, a capacity of 2 16 =65536 words x 9 bits, which is a feasible capacity.
そして、絶対値和方式による第一の演算回路
P1は入力が16ビツトでも16ビツトの加算器1個
で自乗和の平方を必要な精度で近似計算を行うこ
とができ、複雑な論理演算回路もしくは大容量の
ROMを必要としない。 And the first calculation circuit using the absolute value sum method
Even if the input is 16 bits, the P 1 can approximate the sum of squares with the required accuracy using a single 16-bit adder, and can be used in complex logical operation circuits or large capacity
Does not require ROM.
すなわち、xとyとの自乗和の平方根zは、
z=√2+2
であり、xをzcosαとおくと
y=√2−2=z√1−2=zsinα
であり、xとyの絶対値和
|x|+|y|=|zcosα|+|zsinα|
=2z{|sinα|cosπ/4
+|cosα|sinπ/4}
であるため、0≦α≦π/2の範囲で
|x|+|y|=√2zsin(α+π/4)
が成立ち、同様にαがπ/2〜2πでも成立する
から、
z≦|x|+|y|≦√2z
となり、1〜√2倍の範囲の誤差があるが、自乗
和の平方根に近似することができる。 In other words, the square root z of the sum of squares of x and y is z=√ 2 + 2 , and if x is zcosα, then y=√ 2 − 2 = z√1− 2 = zsinα, and the sum of the squares of x and y is Absolute value sum | x|+|y|=√2zsin(α+π/4) holds, and it also holds true when α is π/2 to 2π, so z≦|x|+|y|≦√2z, and 1 to √2 Although there is an error in the double range, it can be approximated as the square root of the sum of squares.
このため、入力レベルが高い場合には加算器で
近似値を求めると、簡単な演算回路で入力条件に
応じた演算ができ、大容量ROMを用いる必要が
ない。 Therefore, when the input level is high, by calculating an approximate value using an adder, a simple calculation circuit can perform calculations according to the input conditions, and there is no need to use a large-capacity ROM.
以上説明したように、本発明によれば一つの演
算方式ではそのハードウエア構成が厖大なものと
なるのを小さいハードウエア構成で実現可能な演
算方式を提供できる。 As explained above, according to the present invention, it is possible to provide an arithmetic method that can be realized with a small hardware configuration, whereas the hardware configuration of one arithmetic method would be enormous.
また、一つの演算方式では得られなかつた特性
を得る効果がある。特に、従来技術では実現困難
であつた演算方式もその方式に適した入力条件の
ときだけ出力が選択されるので、その条件のとき
だけ正しい出力が得られるように、ハード構成を
簡単化でき、容易に実現可能となる効果がある。 Furthermore, there is an effect of obtaining characteristics that cannot be obtained with a single calculation method. In particular, even with calculation methods that were difficult to implement with conventional technology, the output is selected only when the input conditions are suitable for that method, so the hardware configuration can be simplified so that the correct output can be obtained only under those conditions. This has the effect of being easily realized.
第1図は離散的フーリエ変換技術を用いた一般
的な多周波信号受信器を示すブロツク図、第2図
は本発明の一実施例を示すブロツク図である。
I1,I2……入力端子、P1,P2……演算回路、V
……入力監視回路、S……出力選択回路、O……
出力端子。
FIG. 1 is a block diagram showing a general multi-frequency signal receiver using discrete Fourier transform technology, and FIG. 2 is a block diagram showing an embodiment of the present invention. I 1 , I 2 ... Input terminal, P 1 , P 2 ... Arithmetic circuit, V
...Input monitoring circuit, S...Output selection circuit, O...
Output terminal.
Claims (1)
受信器に用いられる演算方式において、 直交成分を示す2つの入力データに対して絶対
値和の演算を行なうデイジタル加算器と、 前記2つのデータの各々の一部をアドレスとし
てこれら一部の入力データに対して予め記憶され
ている自乗和の平方根の演算結果を出力するメモ
リと、 前記デイジタル加算器の出力と前記メモリの出
力とを選択して出力する出力選択回路と、 前記2つの入力データのレベルを監視し、高レ
ベル入力のときは前記デイジタル加算器の出力を
選択し低レベル入力のときは前記メモリの出力に
対応するビツト群に関して前記メモリの出力を選
択するよう前記出力選択回路を制御する入力監視
回路と、 を備えたことを特徴とする可変演算方式。[Claims] 1. An arithmetic method used in a multi-frequency signal receiver using discrete Fourier transform technology, comprising: a digital adder that calculates the sum of absolute values of two input data representing orthogonal components; a memory that outputs the square root calculation result of the sum of squares stored in advance for the partial input data using a portion of each of the two data as an address; an output of the digital adder and an output of the memory; and an output selection circuit that monitors the levels of the two input data and selects the output of the digital adder when the input is a high level, and corresponds to the output of the memory when the input is a low level. an input monitoring circuit that controls the output selection circuit to select an output of the memory with respect to a group of bits.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6034980A JPS56156054A (en) | 1980-05-06 | 1980-05-06 | Variable arithmetic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6034980A JPS56156054A (en) | 1980-05-06 | 1980-05-06 | Variable arithmetic system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56156054A JPS56156054A (en) | 1981-12-02 |
JPH0132695B2 true JPH0132695B2 (en) | 1989-07-10 |
Family
ID=13139586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6034980A Granted JPS56156054A (en) | 1980-05-06 | 1980-05-06 | Variable arithmetic system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56156054A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5474350A (en) * | 1977-11-25 | 1979-06-14 | Toshiba Corp | Compressor circuit |
-
1980
- 1980-05-06 JP JP6034980A patent/JPS56156054A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5474350A (en) * | 1977-11-25 | 1979-06-14 | Toshiba Corp | Compressor circuit |
Also Published As
Publication number | Publication date |
---|---|
JPS56156054A (en) | 1981-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0454445B1 (en) | Waveform equalizer using a neural network | |
US4977607A (en) | Method of generating an RF signal modulated by a message signal and distorted by a predetermined fading profile for testing RF receivers, and apparatus for carrying out the method including a fading simulator | |
US4811268A (en) | Processing circuit capable of raising throughput of accumulation | |
CA2371240A1 (en) | Enhancing knowledge discovery from multiple data sets using multiple support vector machines | |
WO1984003159A1 (en) | Apparatus for generating scaled weighting coefficients for sampled data filters | |
US4185325A (en) | Recursive digital filter having coefficients equal to sums of few powers of few powers of two terms | |
JPH0522271B2 (en) | ||
JPH0724365B2 (en) | Digital sine wave generator | |
JPH0132695B2 (en) | ||
US4481601A (en) | Method and circuitry for approximating the magnitude of a vector | |
US4062014A (en) | Natural binary to logarithmic binary conversion device with means for range selection | |
US6240062B1 (en) | Fast fourier transform calculating apparatus and fast fourier transform calculating method | |
US4916646A (en) | System for signal to noise separation for electrochemical instruments | |
US4290111A (en) | Decibel addition circuit | |
US5025453A (en) | Method of measuring the signature of digital transmission equipment, and apparatus for implementing such a method | |
US5515457A (en) | Apparatus and method for interpolating sampled signals | |
CN113055323A (en) | Method and system for digital predistortion processing of communication system | |
JP2926657B2 (en) | Digital envelope generator | |
EP0806722A1 (en) | Method and apparatus for a multiply and accumulate circuit having a dynamic saturation range | |
CN110795864B (en) | IQ voltage calculation implementation method, electronic equipment and system | |
JPH0512325A (en) | Circuit analytic simulation system | |
Zhou et al. | Stability and error bounds for discrete time frequency weighted balanced truncation | |
JPS58103675A (en) | Detecting device for arrival bearing of detected radio wave | |
JPH09127196A (en) | Ic tester | |
JP2739345B2 (en) | Color correction method |