JPH0132631B2 - - Google Patents

Info

Publication number
JPH0132631B2
JPH0132631B2 JP55115572A JP11557280A JPH0132631B2 JP H0132631 B2 JPH0132631 B2 JP H0132631B2 JP 55115572 A JP55115572 A JP 55115572A JP 11557280 A JP11557280 A JP 11557280A JP H0132631 B2 JPH0132631 B2 JP H0132631B2
Authority
JP
Japan
Prior art keywords
partition plate
electrolyte
storage battery
battery
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55115572A
Other languages
Japanese (ja)
Other versions
JPS5738571A (en
Inventor
Akifumi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP11557280A priority Critical patent/JPS5738571A/en
Publication of JPS5738571A publication Critical patent/JPS5738571A/en
Publication of JPH0132631B2 publication Critical patent/JPH0132631B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 本発明は電解液の拡散機能を備えた蓄電池に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a storage battery having an electrolyte diffusion function.

鉛蓄電池を充電さすと、上部の電解液が良く使
用されるため、蓄電池下部には常に比重の高い硫
酸が残溜する。この上部と下部との比重値の差を
均一化するため均等充電が実施されてきている。
When a lead-acid battery is charged, the electrolyte at the top is often used, so sulfuric acid with a high specific gravity always remains at the bottom of the battery. Equal charging has been carried out to equalize the difference in specific gravity values between the upper and lower parts.

しかし最近の均等充電は電圧変動を小さくする
ため、あまり高い充電電圧を採用していない。こ
のためたとえ均等充電を実施しても上部と下部の
電解液比重の差はなかなか解消されない。又近年
電力を貯蔵する一つの方法として蓄電池が見なお
されてきている。これはエネルギー変換効率が高
く、又設備費用が安価なためである。しかし均等
充電により蓄電池を完全充電すると(Ah)効率
で15%(Wh)効率では20〜30%の電力の損失と
なる。よつてこれらの電力の損失を最少にする
と、ガツシングのない95〜100%充電となる。こ
の様な充電使用ではエネルギー変換による電力損
失は5%以内と非常に効率の良いエネルギー変換
装置となる。しかし蓄電池の上部と下部と比重差
はこの様な使用では拡大する一方で、エレメント
下部は酸化性の高い、比重の高い硫酸にさらされ
るため、極板の劣化は著しく早い。このため大型
電池などでは外部から圧縮空気を送入し、電解液
の比重の均一化をはかつている。しかしこの装置
は大がかりなもので、又コンプレツサーの操作等
が必要なため有人の蓄電池設備に限られていた。
However, recent equal charging methods do not use very high charging voltages in order to reduce voltage fluctuations. For this reason, even if equal charging is performed, the difference in the specific gravity of the electrolyte between the upper and lower parts is difficult to eliminate. Furthermore, in recent years, storage batteries have been reconsidered as a method of storing electricity. This is because the energy conversion efficiency is high and the equipment cost is low. However, if the storage battery is fully charged by equal charging, there will be a power loss of 20 to 30% at an efficiency of 15% (Wh) (Ah). Therefore, minimizing these power losses will result in 95-100% charging without gassing. When used for charging in this way, the power loss due to energy conversion is within 5%, resulting in a very efficient energy conversion device. However, while the difference in specific gravity between the upper and lower parts of the storage battery increases with such use, the lower part of the element is exposed to highly oxidizing and high specific gravity sulfuric acid, which causes the electrode plates to deteriorate extremely quickly. For this reason, in large batteries, etc., compressed air is introduced from the outside in order to equalize the specific gravity of the electrolyte. However, this device was large-scale and required the operation of a compressor, so it was limited to manned storage battery facilities.

本発明はこれらの欠点を解消したもので、蓄電
池自身の発生ガスを利用して電解液の拡散を行な
うことができるようにしたものであり、エレメン
トと蓋の仕切板を配置し、該仕切板の電槽内壁面
および極柱外周面に隣接する部分に上方向あるい
は上下方向に電解液と常時接触する垂直壁を設け
て蓄電池内部を上室と下室に区画し、前記仕切板
に該仕切板を貫通して蓄電池内底部近辺まで垂下
した電解液上昇筒と、前記仕切板の上下を連絡し
て仕切板上に立ち、常時は水滴が滞溜することに
より封止され、下室内の圧力が所定値に達した時
開封して下室内のガスを上室に放出する筒と、前
記仕切板の上下を連絡してエレメント上方部に垂
下させた筒の下端を底部が閉塞され上部が開口し
た筒内に挿入して形成した電解液流下通路を備え
たことを特徴とする蓄電池を提供するものであ
る。
The present invention solves these drawbacks by making it possible to diffuse the electrolyte using the gas generated by the storage battery itself, and by arranging a partition plate between the element and the lid. The interior of the storage battery is divided into an upper chamber and a lower chamber by providing a vertical wall that is in constant contact with the electrolyte in an upward or vertical direction adjacent to the inner wall surface of the battery case and the outer peripheral surface of the pole column, and the partition plate is provided with a vertical wall that is in constant contact with the electrolyte. The electrolyte rising tube that penetrates the plate and hangs down near the bottom of the storage battery is connected to the top and bottom of the partition plate, standing on the partition plate, and is normally sealed by water droplets accumulating, reducing the pressure in the lower chamber. a tube that is opened to release the gas in the lower chamber to the upper chamber when it reaches a predetermined value, and a tube that connects the upper and lower parts of the partition plate and hangs above the element, and the lower end of the tube is closed at the bottom and open at the top. The present invention provides a storage battery characterized by having an electrolyte flow passage formed by being inserted into a cylinder.

かかる本発明蓄電池によれば、蓄電池内で発生
したガスの圧力により蓄電池底部の電解液が蓄電
池内底部まで垂下した電解液上昇筒を通して仕切
板上に移動する。また、蓄電池のガス発生により
下室の内圧がさらに上昇し、この内圧により仕切
板上に立つた水封状態にある筒が開放すると、仕
切板上に移動した電解液は仕切板よりエレメント
上方部に垂下させた筒と該筒の下端を覆うコツプ
状の筒との間から下室内に移動する現象が生じ、
電解液の拡散を行なうことができる。
According to the storage battery of the present invention, the electrolyte at the bottom of the storage battery moves onto the partition plate through the electrolyte riser tube that hangs down to the bottom of the storage battery due to the pressure of the gas generated within the storage battery. In addition, the internal pressure in the lower chamber further increases due to gas generation in the storage battery, and when the water-sealed tube standing on the partition plate opens due to this internal pressure, the electrolyte that has moved onto the partition plate moves from the partition plate to the upper part of the element. A phenomenon occurs in which the tube moves into the lower chamber from between the tube hanging down and the pot-like tube that covers the bottom end of the tube.
Diffusion of the electrolyte can be performed.

以下、図面に示す一実施例を用いて本発明蓄電
池を具体的に説明する。
Hereinafter, the storage battery of the present invention will be specifically explained using an embodiment shown in the drawings.

第1図、第2図、第3図は本発明蓄電池の一実
施例の概略構造を示すもので、各図はそれぞれ異
なつた動作状態を示す。第1図、第2図、第3図
において、1は電槽、2は蓋、3はエレメント、
4は極性、5は電解液である。また6は蓄電池の
エレメント3と蓋2との間に配置された仕切板
で、該仕切板の電槽1内の内壁面および極柱4の
外周面に隣接する部分に電解液の上下移動を実質
的に阻止する垂直壁7が設けられている。この垂
直壁7と電槽1内壁および極柱4外周と隣接する
面はシール構造を取る必要はなく、狭隙が存在す
る状態にしておけばよい。なお、例えば電槽1内
壁面と垂直壁の面とを密接するようにすれば垂直
壁7のうちの下方向に立つ垂直壁は省略すること
もできる。このような仕切板6を設けると蓄電池
は実質上、仕切板6により上室と下室に区画され
た形となる。8は仕切板6に設けられた蓄電池内
底部近辺まで垂下した電解液上昇筒、9は同じく
仕切板6に設けられた仕切板6上に立つ筒で、筒
内に付着した水滴(電解液)の表面張力で弁を構
成するものであり、内径が小さいほど弁圧は大き
くなり、一般には5φ以内の細い筒で構成する。
10は同じく仕切板6に設けられたエレメント上
方部、例えばエレメント3の上端近辺まで垂下し
た筒である。前記筒8,9,10を介して仕切板
6の上方と下方は連絡している。また、上記筒1
0の下部は底部が閉塞され上端が開口したコツプ
状の筒11内に挿入され、いわゆるサイホンスト
ラツプを構成している。尚、電解液上昇筒8は電
槽1の内壁とエレメント3との間〓に挿入するよ
うにすればよい。12は蓋に設けられた排気口、
13は排気口12を覆う防爆フイルターである。
1, 2, and 3 schematically show the structure of an embodiment of the storage battery of the present invention, and each figure shows a different operating state. In Figures 1, 2, and 3, 1 is a battery case, 2 is a lid, 3 is an element,
4 is polarity and 5 is electrolyte. Reference numeral 6 denotes a partition plate disposed between the element 3 and the lid 2 of the storage battery, and the part of the partition plate adjacent to the inner wall surface of the battery case 1 and the outer circumferential surface of the pole column 4 controls the vertical movement of the electrolyte. A substantially blocking vertical wall 7 is provided. The vertical wall 7, the inner wall of the battery case 1, and the surface adjacent to the outer periphery of the pole pillar 4 do not need to have a sealing structure, but may be in a state where a narrow gap exists. Note that, for example, if the inner wall surface of the battery case 1 and the surface of the vertical wall are brought into close contact with each other, the vertical wall standing downward among the vertical walls 7 can be omitted. When such a partition plate 6 is provided, the storage battery is substantially divided into an upper chamber and a lower chamber by the partition plate 6. Reference numeral 8 denotes an electrolyte riser tube provided on the partition plate 6 that hangs down to the vicinity of the inner bottom of the storage battery, and 9 refers to a tube that stands on the partition plate 6, also provided on the partition plate 6, and water droplets (electrolyte) attached to the inside of the cylinder. The valve is constructed by the surface tension of , and the smaller the inner diameter, the greater the valve pressure, and is generally constructed from a thin cylinder with a diameter of 5φ or less.
Reference numeral 10 denotes a cylinder which is also provided on the partition plate 6 and hangs down to the upper part of the element, for example, to the vicinity of the upper end of the element 3. The upper and lower parts of the partition plate 6 are in communication with each other via the cylinders 8, 9, and 10. In addition, the above cylinder 1
The lower part of the 0 is inserted into a pot-shaped tube 11 whose bottom is closed and whose top is open, forming a so-called siphon strap. The electrolyte rising cylinder 8 may be inserted between the inner wall of the battery case 1 and the element 3. 12 is an exhaust port provided in the lid;
13 is an explosion-proof filter that covers the exhaust port 12.

かゝる構造の本発明実施例において、蓄電池内
に発生ガスがない場合、第1図に示すように、電
槽1内壁と仕切板6の垂直壁7との狭〓に存在す
る電解液5の液面と、仕切板6上の液面は同レベ
ルにある。この状態で自己放電のガスあるいは充
電によるガスが発生しても、その発生ガスはサイ
ホンストラツプの筒10が筒11でウオーターシ
ールされているため、筒10を通つて仕切板6の
上方へ移ることができず、一方、筒9は電解液の
水滴により封止されているため、筒9を通つて仕
切板6の上方へ容易に移ることができず、そのた
め仕切板6の下方に溜り、仕切板6下方の電池内
の圧力が上昇する。なお、筒状水封弁9の内径は
上方に行くに従つて小さくなるようにしておく
と、仕切板6の下方の電池内の圧力上昇とともに
筒状水封弁9の下端に付着した水滴は第2図に示
すように押し上げられるが、筒状水封弁9内に残
溜した水滴によつて構成された水頭は上方に行く
に従つて除々に大きくなる。これは水滴の量Vo
を一定とすると筒状水封弁9の内径lが小さくな
る程、水頭hは高くなり大きな弁作用を行なう。
このため仕切板6の下方の電池内の圧力が筒状水
封弁9内の水頭hを破る圧力、即ち、一定の圧力
以上になるまでは筒状水封弁9を通つて仕切板6
下方の電池内のガスが仕切板6の上方に移ること
はない。従つて筒状水封弁9の形状を適宜設計し
ておくことにより、仕切板6下方の電池内の圧力
を任意に設定することができる。また筒10のウ
オーターシールの圧力を大きくとつて、必ず筒状
水封弁9の水頭が破れて仕切板6下方の電池内の
ガスが仕切板6上方へ移るように、筒10,11
の形状も適宜設計しておく。さらに垂直壁7の高
さも筒9の開放圧力以下では電解液が上室内へ移
動しないように十分高く設計しておく。
In the embodiment of the present invention having such a structure, when there is no gas generated in the storage battery, as shown in FIG. The liquid level on the partition plate 6 is at the same level as the liquid level on the partition plate 6. Even if gas from self-discharge or gas from charging is generated in this state, the generated gas will not migrate above the partition plate 6 through the cylinder 10 because the cylinder 10 of the siphon strap is water-sealed by the cylinder 11. On the other hand, since the cylinder 9 is sealed with electrolyte water droplets, it cannot easily move through the cylinder 9 and above the partition plate 6, and therefore it accumulates below the partition plate 6, causing water droplets of the electrolyte to The pressure inside the battery below plate 6 increases. Note that if the inner diameter of the cylindrical water seal valve 9 is made smaller as it goes upward, water droplets that adhere to the lower end of the cylindrical water seal valve 9 will be reduced as the pressure inside the battery below the partition plate 6 increases. Although the water is pushed up as shown in FIG. 2, the water head formed by the water droplets remaining in the cylindrical water seal valve 9 gradually becomes larger as it goes upward. This is the amount of water droplets Vo
Assuming that is constant, the smaller the inner diameter l of the cylindrical water seal valve 9, the higher the water head h and the greater the valve action.
Therefore, until the pressure inside the battery below the partition plate 6 exceeds the pressure that breaks the water head h in the cylindrical water seal valve 9, that is, exceeds a certain pressure, the water passes through the cylindrical water seal valve 9 and passes through the partition plate 6.
Gas in the lower battery does not move above the partition plate 6. Therefore, by appropriately designing the shape of the cylindrical water seal valve 9, the pressure inside the battery below the partition plate 6 can be set arbitrarily. In addition, the pressure of the water seal of the cylinder 10 is increased to ensure that the water head of the cylindrical water seal valve 9 is ruptured and the gas in the battery below the partition plate 6 moves to the upper side of the partition plate 6.
The shape of is also designed appropriately. Further, the height of the vertical wall 7 is designed to be sufficiently high so that the electrolyte does not move into the upper chamber below the opening pressure of the cylinder 9.

上記のように仕切板6の下方にガスが溜つて、
仕切板6の下方の電池内の圧力が上昇すると、電
槽1内壁と垂直壁7との間〓の液面も前記圧力上
昇と共に上昇するが、垂直壁7は十分な高さを有
するため、垂直壁7の上端を越えて、仕切板6上
に電解液5が移動するようなことはない。よつて
下室内の圧力上昇により電解液5は電解液上昇筒
8を通つて仕切板6上に移動するしかないため、
仕切板6下方の内圧上昇と共に蓄電池下部の比重
の高い電解液5が筒8を通つて仕切板6上に移動
する。そして仕切板6上の水頭h′が除々に上昇し
ていくと、筒状水封弁9内の電解液(水滴)、サ
イホンストラツプの筒10と11の間の電解液も
同時に押し上げられる。このときの状態は第2図
に示すようになる。そしてさらに仕切板6下方の
電池内の圧力が上昇すると、筒状水封弁9内の水
頭hは前記圧力をささえきれなくなり、筒状水封
弁9内の電解液は上部に飛び出すと同時に、仕切
板6下方に蓄積されたガスは筒状水封弁9を通
り、仕切板6上方に入り、排気口12を通つて外
部に放出されるため、仕切板6下方の電池内の圧
力は低下し、その結果、仕切板6上に溜つた電解
液5はサイホンストラツプの筒10と筒11との
間を通つて仕切板6下方へ落下する。このときの
状態は第3図に示すようになる。そして仕切板6
下方の電池内の液面は上昇し、第1図に示すよう
な状態に戻り、再び前述したような動作を繰返し
行なう。
As mentioned above, gas accumulates below the partition plate 6,
When the pressure inside the battery below the partition plate 6 rises, the liquid level between the inner wall of the battery case 1 and the vertical wall 7 also rises with the rise in pressure, but since the vertical wall 7 has a sufficient height, The electrolytic solution 5 does not move beyond the upper end of the vertical wall 7 onto the partition plate 6. Therefore, due to the pressure increase in the lower chamber, the electrolytic solution 5 has no choice but to move onto the partition plate 6 through the electrolytic solution rising cylinder 8.
As the internal pressure below the partition plate 6 increases, the high specific gravity electrolytic solution 5 at the bottom of the storage battery moves through the tube 8 onto the partition plate 6. As the water head h' on the partition plate 6 gradually rises, the electrolytic solution (water droplets) inside the cylindrical water seal valve 9 and the electrolytic solution between the tubes 10 and 11 of the siphon strap are also pushed up at the same time. The state at this time is as shown in FIG. When the pressure inside the battery below the partition plate 6 further increases, the water head h in the cylindrical water seal valve 9 can no longer support the pressure, and the electrolyte in the cylindrical water seal valve 9 jumps out to the top. The gas accumulated below the partition plate 6 passes through the cylindrical water seal valve 9, enters the upper part of the partition plate 6, and is released to the outside through the exhaust port 12, so the pressure inside the battery below the partition plate 6 decreases. As a result, the electrolytic solution 5 accumulated on the partition plate 6 passes between the cylinders 10 and 11 of the siphon strap and falls below the partition plate 6. The state at this time is as shown in FIG. and partition plate 6
The liquid level in the lower battery rises, returning to the state shown in FIG. 1, and the above-described operation is repeated again.

このように本発明においては、蓄電池内で発生
したガスの圧力を利用して、蓄電池下部の比重の
高い電解液5を仕切板6上に移動し、そして仕切
板6上に移動した比重の高い電解液をエレメント
3上部の比重の軽い電解液中に落下させるように
動作するため、電解液5は拡散される。従つて、
従来のように電解液拡散のための大がかりな装置
は不要となる。また本発明の構造はあらゆる蓄電
池にも適用できるため、無人の蓄電池設備におい
ても蓄電池の電解液の拡散を自然に行なうことが
できる。さらに本発明によれば、電解液5の拡散
が自然に行なわれるため、蓄電池の寿命を大幅に
延すことができ、且つ電解液比重の均一化のため
の均等充電を不要にすることができ、充電器側の
負荷補償装置も不要にすることができ、蓄電池設
備全体の経費を大幅に削減できる。
In this way, in the present invention, the high specific gravity electrolyte 5 at the bottom of the storage battery is moved onto the partition plate 6 by using the pressure of the gas generated within the storage battery, and the high specific gravity electrolyte 5 that has been moved onto the partition plate 6 is The electrolytic solution 5 is dispersed because the electrolytic solution is caused to fall into the electrolytic solution with a light specific gravity above the element 3. Therefore,
There is no need for a large-scale device for electrolyte diffusion as in the past. Furthermore, since the structure of the present invention can be applied to any storage battery, the electrolyte of the storage battery can be naturally diffused even in unmanned storage battery equipment. Further, according to the present invention, since the electrolytic solution 5 is naturally diffused, the life of the storage battery can be greatly extended, and equal charging for equalizing the specific gravity of the electrolytic solution can be made unnecessary. Also, the load compensation device on the charger side can be eliminated, and the cost of the entire storage battery equipment can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明蓄電池の一実
施例の概略構造を示す縦断面図である。 1……電槽、2……蓋、3……エレメント、4
……極柱、5……電解液、6……仕切板、7……
垂直壁、8……電解液上昇筒、9,10,11…
…筒。
FIG. 1, FIG. 2, and FIG. 3 are vertical sectional views showing a schematic structure of an embodiment of the storage battery of the present invention. 1...Battery case, 2...Lid, 3...Element, 4
... Pole pillar, 5 ... Electrolyte, 6 ... Partition plate, 7 ...
Vertical wall, 8... Electrolyte rising tube, 9, 10, 11...
...tube.

Claims (1)

【特許請求の範囲】[Claims] 1 エレメントと蓋の間に仕切板6を配置し、該
仕切板の電槽内壁面および極柱外周面に隣接する
部分に上方向あるいは上下方向に電解液と常時接
触する垂直壁7を設けて蓄電池内部を上室し下室
に区画し、前記仕切板に該仕切板を貫通して蓄電
池内底部近辺まで垂下した電解液上昇筒8と、前
記仕切板の上下を連絡して仕切板上に立ち、常時
は水滴が滞溜することにより封止され、下室内の
圧力が所定値に達した時開封して下室内のガスを
上室に放出する筒9と、前記仕切板の上下を連絡
してエレメント上方部に垂下させた筒10の下端
を底部が閉塞され上部が開口した筒11内に挿入
して形成した電解液流下通路を備えたことを特徴
とする蓄電池。
1. A partition plate 6 is arranged between the element and the lid, and a vertical wall 7 is provided in a portion of the partition plate adjacent to the inner wall surface of the battery case and the outer circumferential surface of the pole column, which is in constant contact with the electrolyte in the upward or vertical direction. The interior of the storage battery is divided into an upper chamber and a lower chamber, and an electrolyte rising tube 8 that penetrates the partition plate and hangs down to near the bottom of the storage battery is connected to the top and bottom of the partition plate and is placed on the partition plate. The top and bottom of the partition plate are connected to a tube 9 which is normally sealed by water droplets accumulating and which is opened when the pressure in the lower chamber reaches a predetermined value to release the gas in the lower chamber to the upper chamber. A storage battery comprising an electrolyte flow passage formed by inserting the lower end of a cylinder 10 hanging above the element into a cylinder 11 whose bottom is closed and whose top is open.
JP11557280A 1980-08-21 1980-08-21 Storage battery Granted JPS5738571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11557280A JPS5738571A (en) 1980-08-21 1980-08-21 Storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11557280A JPS5738571A (en) 1980-08-21 1980-08-21 Storage battery

Publications (2)

Publication Number Publication Date
JPS5738571A JPS5738571A (en) 1982-03-03
JPH0132631B2 true JPH0132631B2 (en) 1989-07-07

Family

ID=14665879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11557280A Granted JPS5738571A (en) 1980-08-21 1980-08-21 Storage battery

Country Status (1)

Country Link
JP (1) JPS5738571A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212076A (en) * 1982-06-03 1983-12-09 Japan Storage Battery Co Ltd Charging method of lead storage battery
JPH079795B2 (en) * 1986-12-01 1995-02-01 東芝ライテック株式会社 Discharge lamp
JPH079796B2 (en) * 1987-03-28 1995-02-01 東芝ライテック株式会社 Discharge lamp
DE19744863A1 (en) * 1997-10-10 1999-04-15 Iq Battery Res & Dev Gmbh Liquid electrolyte battery with electrolyte circulation system, e.g. for cars

Also Published As

Publication number Publication date
JPS5738571A (en) 1982-03-03

Similar Documents

Publication Publication Date Title
GB447757A (en) Galvanic cell, particularly an electrical accumulator
CA1276973C (en) Method and arrangement for charging a sealed, secondary electrochemical power source
JPH11501146A (en) Maintenance-free lead-acid battery regulated by a leak-proof valve
JPH0132631B2 (en)
CN2239079Y (en) High-performance sealed plumbous acid storage battery with exhaust valve
US4945011A (en) Storage battery provided with electrolytic solution stirring device
JPH0222501B2 (en)
JPH0347250Y2 (en)
JPH0756811B2 (en) Sealed lead acid battery
JPS6039763A (en) Lead storage battery with eletrolyte circulating device
JPS62145655A (en) Sealed lead storage battery
CN106784520B (en) Lever type automatic limiting short-circuit-preventing supplementary liquid device for storage battery
CN116387641B (en) Energy storage device and electric equipment
DE58905200D1 (en) METHOD FOR CHARGING RECHARGEABLE BATTERIES.
JPH0279365A (en) Sealed storage battery
CN109148970A (en) A kind of pregnant solution type lead storage battery with liquid self circulation device
CN212033164U (en) Prevent lithium cell of leakage
JPS5821481Y2 (en) lead acid battery
KR830008417A (en) Sealed deep cycle lead-acid battery
CN213660482U (en) Bipolar lead-acid storage battery
JPH0458466A (en) Sealed lead-acid battery
JPS6039762A (en) Electrolyte circulating device
JPH0246662A (en) Sealed lead-acid battery
JPH041465B2 (en)
JPH0240858A (en) Storage battery with electrolyte stirring device