JPH0132300B2 - - Google Patents

Info

Publication number
JPH0132300B2
JPH0132300B2 JP56092646A JP9264681A JPH0132300B2 JP H0132300 B2 JPH0132300 B2 JP H0132300B2 JP 56092646 A JP56092646 A JP 56092646A JP 9264681 A JP9264681 A JP 9264681A JP H0132300 B2 JPH0132300 B2 JP H0132300B2
Authority
JP
Japan
Prior art keywords
titanium
aluminum
content
magnesium
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56092646A
Other languages
Japanese (ja)
Other versions
JPS57207152A (en
Inventor
Yoshihiro Koya
Toshiaki Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Kasei Naoetsu Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Naoetsu Industries Ltd filed Critical Kasei Naoetsu Industries Ltd
Priority to JP9264681A priority Critical patent/JPS57207152A/en
Publication of JPS57207152A publication Critical patent/JPS57207152A/en
Publication of JPH0132300B2 publication Critical patent/JPH0132300B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐圧性の良好な鋳造用アルミニウム合
金に関するものであり、特にアルミニウム−マグ
ネシウム系でかつ機械的性質および耐圧性の良好
な鋳造用合金に関するものである。 一般にAC7Aに代表されるアルミニウム−マグ
ネシウム系鋳造用合金は、アルミニウム−銅系や
アルミニウム−珪素系等の鋳造用合金に比較し
て、すぐれた耐蝕性、陽極酸化性および機械加工
性等を有している。しかし、このアルルニウム−
マグネシウム系鋳造用合金は、凝固温度範囲が広
く、かつ凝固収縮量が大きいので、鋳造時にガス
ポロシテイやミクロシユリンケージ等の鋳造欠陥
を生じて耐圧不良を起しやすい。特に複雑な形状
を有する鋳物では、内部および外面に鋳造欠陥を
生じやすく、鋳型の設計および鋳造が難しいとさ
れている。また、このアルミニウム−マグネシウ
ム系鋳造用合金は、溶体化および焼戻し処理を施
さなくても一般に適度の強度と良好な伸びを有す
るとされている。しかしそれも強度を要求される
部品には不十分であり、また冷却速度の遅い部分
での強度低下が著るしい。従つてこの合金は圧力
鍋、自動車用ホイール、機械部品など耐圧性およ
び機械的性質を要求される鋳物や、複雑な形状の
鋳物に対しては、その使用が制限されている。そ
こで3.0〜5.5%のマグネシウムを含有するアルミ
ニウム−マグネシウム合金にさらに0.10〜1.0%
のマンガン、0.001〜0.01%のベリリウム、0.15〜
0.60%のチタンおよびチタンに対し2〜20%の硼
素を含有させることにより、AC7Aで代表される
耐蝕性、陽極酸化性および機械加工性等にすぐれ
たアルミニウム−マグネシウム系合金を、これら
の諸性質を維持したままで耐圧性を改良すること
が提案されている。(特願昭55−75918特公昭62−
45303号公報参照)。 本発明者らはこの合金についてさらに検討した
結果、硼素の含有量を減らしてもその性能を維持
し得ることを見出し、本発明に到達した。従つて
本発明は、アルミニウム−マグネシウム系でかつ
耐圧性の良い鋳造用合金を提供することを目的と
するものである。 本発明に係る合金は、マグネシウム3.0〜5.5
%、マンガン0.10〜1.0%、ベリリウム0.001〜
0.01%、チタン0.15〜0.60%およびチタンに対し
て2%未満でかつ0.001%以上の硼素を含有し、
残余は実質的に不純物とアルミニウムとから成る
耐圧性の良好な鋳造用アルミニウム合金である
(本明細書において、%は特記しない限り重量%
である)。 本発明の合金において、マグネシウムは機械的
性質の向上に最も寄与の大きい成分であるが、そ
の含有量は3.0〜5.5%であることが必要である。
マグネシウムがこれよりも少いと機械的強度が小
さく、また、マグネシウムがこれよりも多いと伸
びが小さくなり、さらに鋳造性も低下する。 マンガンは鋳造性、機械的性質、耐応力腐蝕性
等の向上に寄与する。マンガン含有量は0.10〜
1.0%の範囲から選択し得るが、0.20〜0.60%の範
囲にあることが好ましい。 ベリリウムは合金を溶解する際のマグネシウム
の酸化を防止する作用がある。その含有量は
0.001〜0.01%の範囲にあればよいが、通常は
0.001〜0.004%で十分である。 チタンおよび硼素は結晶粒を微細化し、ガスポ
ロシテイ及びミクロシユリンケージを減少させ
る。そして冷却速度の比較的遅い場合には特に機
械的性質の向上に寄与する。チタン含有量は0.15
〜0.60%の範囲にあることが必要であり、含有量
が少なすぎると耐圧性および機械的性質のすぐれ
た鋳物を得ることはできない。 また、チタン含有量が多すぎると溶湯中でのチ
タン化合物の晶出により伸びが低下する。チタン
の好適な含有量は0.20〜0.50%である。 硼素はチタンに対して2%未満でかつ0.001%
以上の範囲で存在させる。硼素をチタンと共存さ
せることにより、チタン単独では得られない結晶
粒の細かさと良好な機械的性質を兼ね合せること
ができる。硼素の含有量が0.001%未満では硼素
の効果は発揮されない。 本発明に係る合金は以上のような組成を有して
おり、アルミニウム−マグネシウム系合金の良好
な諸性質を維持したままで耐圧性が改良されてい
るので、最近脚光をあびている圧力鍋、自動車用
ホイール、油圧ポンプ等の部品などの耐圧性およ
び機械的性質の要求される物品の鋳造に好適であ
る。また、本発明に係る合金はチタンに対する硼
素の比率が小さいので、溶湯を長時間保持しても
TiB2の沈降が少なく、鋳造作業が行ない易い。 次に実施例により本発明をさらに具体的に説明
するが、本発明はその要旨を越えない限り以下の
実施例に限定されるものではない。 実施例 750℃で脱ガス、脱滓処理を実施した表1に示
す組成の合金を用いて金型温度400〜450℃、鋳造
温度740℃で外径250m/m、高さ150m/mで一
端が閉鎖された円筒状の容器(肉厚6m/m)を
鋳造した。これを肉厚4m/mに切削加工後、3
〜5Kg/cm2の水圧で水漏れの有無を試験した。結
果を表2に示す。又同一の溶湯を用いて試験片甲
及び乙を鋳造した。試験片甲は400℃に予熱した
JIS舟金型に溶湯温度740℃で注入し鋳造した。試
験片乙は550℃に予熱したイソライトレング上に
同温度に予熱した肉厚25m/m、外径120m/m、
高さ25m/mの円筒状金型を置き、これに溶湯温
度740℃で溶湯を注入することにより鋳造した。
試験片甲からJIS4号引張試験片を切出し引張試験
に供した。結果を表2に示す。また試験片乙の下
端から15m/mの位置の横断面の結晶粒数を測定
した結果を表2に示す。
The present invention relates to an aluminum alloy for casting having good pressure resistance, and particularly to an aluminum-magnesium based casting alloy having good mechanical properties and pressure resistance. In general, aluminum-magnesium-based casting alloys, such as AC7A, have superior corrosion resistance, anodizing properties, and machinability compared to aluminum-copper-based and aluminum-silicon-based casting alloys. ing. However, this alurium-
Magnesium-based casting alloys have a wide solidification temperature range and a large amount of solidification shrinkage, so they tend to produce casting defects such as gas porosity and microsyringe during casting, resulting in poor pressure resistance. In particular, castings with complex shapes tend to have casting defects on their internal and external surfaces, making it difficult to design and cast molds. Further, this aluminum-magnesium based casting alloy is generally said to have appropriate strength and good elongation even without solution treatment and tempering treatment. However, this is insufficient for parts that require high strength, and the strength decreases significantly in areas where the cooling rate is slow. Therefore, the use of this alloy is limited to castings that require pressure resistance and mechanical properties, such as pressure cookers, automobile wheels, and machine parts, and castings with complex shapes. Therefore, an additional 0.10 to 1.0% is added to the aluminum-magnesium alloy containing 3.0 to 5.5% magnesium.
manganese, 0.001~0.01% beryllium, 0.15~
By containing 0.60% titanium and 2 to 20% boron to titanium, an aluminum-magnesium alloy with excellent corrosion resistance, anodizing property, machinability, etc., represented by AC7A, has these various properties. It has been proposed to improve pressure resistance while maintaining (Special application 1986-75918 Special public application 1986-
(See Publication No. 45303). As a result of further studies on this alloy, the present inventors found that the performance could be maintained even if the boron content was reduced, and the present invention was achieved. Therefore, an object of the present invention is to provide an aluminum-magnesium based casting alloy having good pressure resistance. The alloy according to the present invention has magnesium 3.0 to 5.5
%, manganese 0.10~1.0%, beryllium 0.001~
0.01%, titanium 0.15-0.60% and boron of less than 2% and 0.001% or more relative to titanium,
The remainder is a cast aluminum alloy with good pressure resistance consisting essentially of impurities and aluminum (in this specification, % is by weight unless otherwise specified).
). In the alloy of the present invention, magnesium is the component that contributes most to the improvement of mechanical properties, but its content must be 3.0 to 5.5%.
If the magnesium content is less than this, the mechanical strength will be low, and if the magnesium content is more than this, the elongation will be small and the castability will also be reduced. Manganese contributes to improving castability, mechanical properties, stress corrosion resistance, etc. Manganese content is 0.10~
It can be selected from the range of 1.0%, but preferably from 0.20 to 0.60%. Beryllium has the effect of preventing the oxidation of magnesium when melting the alloy. Its content is
It should be in the range of 0.001 to 0.01%, but usually
0.001-0.004% is sufficient. Titanium and boron refine grains and reduce gas porosity and microshrinkage. When the cooling rate is relatively slow, it particularly contributes to improving mechanical properties. Titanium content is 0.15
It is necessary that the content be in the range of ~0.60%; if the content is too low, a casting with excellent pressure resistance and mechanical properties cannot be obtained. Furthermore, if the titanium content is too high, elongation will decrease due to crystallization of titanium compounds in the molten metal. The preferred content of titanium is 0.20-0.50%. Boron is less than 2% and 0.001% of titanium
Exist within the above range. By coexisting boron with titanium, it is possible to achieve both fine grain size and good mechanical properties that cannot be obtained with titanium alone. If the boron content is less than 0.001%, the effect of boron is not exhibited. The alloy according to the present invention has the above composition and has improved pressure resistance while maintaining the good properties of aluminum-magnesium alloys, so it can be used in pressure cookers and automobiles, which have recently been in the spotlight. It is suitable for casting products that require pressure resistance and mechanical properties, such as parts for automobile wheels, hydraulic pumps, etc. In addition, since the alloy according to the present invention has a small ratio of boron to titanium, it is possible to hold the molten metal for a long time.
There is little sedimentation of TiB 2 , making casting work easier. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Example Using an alloy with the composition shown in Table 1 that was degassed and de-slaged at 750°C, the mold temperature was 400 to 450°C, the casting temperature was 740°C, the outer diameter was 250 m/m, the height was 150 m/m, and one end was molded. A closed cylindrical container (wall thickness 6 m/m) was cast. After cutting this to a wall thickness of 4m/m, 3
The presence or absence of water leakage was tested at a water pressure of ~5 Kg/cm 2 . The results are shown in Table 2. Test pieces A and B were also cast using the same molten metal. The test piece was preheated to 400℃
The molten metal was poured into a JIS boat mold at a temperature of 740℃ and cast. Test piece B was placed on an isolite length preheated to 550℃, with a wall thickness of 25m/m and an outer diameter of 120m/m.
A cylindrical mold with a height of 25 m/m was placed, and molten metal was poured into the mold at a temperature of 740°C to perform casting.
A JIS No. 4 tensile test piece was cut out from the test piece A and subjected to a tensile test. The results are shown in Table 2. In addition, Table 2 shows the results of measuring the number of crystal grains in the cross section at a position 15 m/m from the lower end of test piece A.

【表】【table】

【表】 *) ×;不良 ○;良好
表1および表2から、本発明に係る合金は比較
合金に比較し機械的性質にすぐれるとともに、結
晶粒の良好な微細化により耐圧性のすぐれている
ことが明らかである。
[Table] *) ×: Poor ○: Good From Tables 1 and 2, the alloy according to the present invention has superior mechanical properties compared to comparative alloys, and has excellent pressure resistance due to good grain refinement. It is clear that there are

Claims (1)

【特許請求の範囲】 1 マグネシウム3.0〜5.5%、マンガン0.10〜1.0
%、ベリリウム0.001〜0.01%、チタン0.15〜0.60
%、およびチタンに対して2%未満でかつ0.001
%以上の硼素を含有し、残余は実質的に不純物と
アルミニウムとから成る耐圧性の良好な鋳造用ア
ルミニウム合金。 2 マンガン含有量が0.20〜0.60%であることを
特徴とする特許請求の範囲第1項記載のアルミニ
ウム合金。 3 ベリリウム含有量が0.001〜0.004%であるこ
とを特徴とする特許請求の範囲第1項または第2
項記載のアルミニウム合金。 4 チタン含有量が0.20〜0.50%であることを特
徴とする特許請求の範囲第1項ないし第3項のい
ずれかに記載のアルミニウム合金。
[Claims] 1. Magnesium 3.0-5.5%, manganese 0.10-1.0
%, beryllium 0.001-0.01%, titanium 0.15-0.60
%, and less than 2% and 0.001 for titanium
An aluminum alloy for casting having good pressure resistance and containing % or more of boron, with the remainder consisting essentially of impurities and aluminum. 2. The aluminum alloy according to claim 1, wherein the manganese content is 0.20 to 0.60%. 3. Claim 1 or 2, characterized in that the beryllium content is 0.001 to 0.004%.
Aluminum alloys as described in section. 4. The aluminum alloy according to any one of claims 1 to 3, characterized in that the titanium content is 0.20 to 0.50%.
JP9264681A 1981-06-16 1981-06-16 Aluminum alloy for casting with high pressure resistance Granted JPS57207152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9264681A JPS57207152A (en) 1981-06-16 1981-06-16 Aluminum alloy for casting with high pressure resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9264681A JPS57207152A (en) 1981-06-16 1981-06-16 Aluminum alloy for casting with high pressure resistance

Publications (2)

Publication Number Publication Date
JPS57207152A JPS57207152A (en) 1982-12-18
JPH0132300B2 true JPH0132300B2 (en) 1989-06-30

Family

ID=14060212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9264681A Granted JPS57207152A (en) 1981-06-16 1981-06-16 Aluminum alloy for casting with high pressure resistance

Country Status (1)

Country Link
JP (1) JPS57207152A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0618303B1 (en) * 1993-03-26 1997-06-11 Hitachi Metals, Ltd. Airtight aluminum alloy casting and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967807A (en) * 1972-11-06 1974-07-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967807A (en) * 1972-11-06 1974-07-01

Also Published As

Publication number Publication date
JPS57207152A (en) 1982-12-18

Similar Documents

Publication Publication Date Title
BRPI0603394B1 (en) HEAT RESISTANT ALUMINUM ALLOY
RU2453622C2 (en) Aluminium alloy and use of same in methods of die casting
JP2005264301A (en) Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
EP0107334A1 (en) Improvements in or relating to aluminium alloys
JPH0718364A (en) Heat resistant magnesium alloy
JP2001220639A (en) Aluminum alloy for casting
US3993476A (en) Aluminum alloy
JP7096690B2 (en) Aluminum alloys for die casting and aluminum alloy castings
US2420293A (en) Magnesium base alloys
JPH0132300B2 (en)
JP6900199B2 (en) Manufacturing method of aluminum alloy for casting, aluminum alloy casting products and aluminum alloy casting products
JPH0456098B2 (en)
JPH09296245A (en) Aluminum alloy for casting
JP7217091B2 (en) Methods and alloys for coating-free low-pressure permanent molds
JPS6245303B2 (en)
US2226594A (en) Aluminum alloy
US1946069A (en) Magnesium base die casting alloys
US2280176A (en) Aluminum alloy
JPS63270442A (en) Magnesium alloy die cast product and its production
US3744997A (en) Metallurgical grain refinement process
JPS61136652A (en) Aluminum alloy for casting
US2280172A (en) Aluminum alloy
JPH10158771A (en) Aluminum alloy for casting, excellent in pressure resistance
US2280173A (en) Aluminum alloy
JPH0565573B2 (en)