JPS6245303B2 - - Google Patents

Info

Publication number
JPS6245303B2
JPS6245303B2 JP55075918A JP7591880A JPS6245303B2 JP S6245303 B2 JPS6245303 B2 JP S6245303B2 JP 55075918 A JP55075918 A JP 55075918A JP 7591880 A JP7591880 A JP 7591880A JP S6245303 B2 JPS6245303 B2 JP S6245303B2
Authority
JP
Japan
Prior art keywords
titanium
aluminum
magnesium
content
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55075918A
Other languages
Japanese (ja)
Other versions
JPS572858A (en
Inventor
Nobukatsu Betsumya
Hideo Myata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYOKA KEIKINZOKU KOGYO KK
Original Assignee
RYOKA KEIKINZOKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RYOKA KEIKINZOKU KOGYO KK filed Critical RYOKA KEIKINZOKU KOGYO KK
Priority to JP7591880A priority Critical patent/JPS572858A/en
Publication of JPS572858A publication Critical patent/JPS572858A/en
Publication of JPS6245303B2 publication Critical patent/JPS6245303B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐圧性のよい鋳造用アルミニウム合金
に関するものであり、特にアルミニウム―マグネ
シウム系でかつ耐圧性のよい鋳造用合金に関する
ものである。 一般にAC7Aに代表されるアルミニウム―マグ
ネシウム系鋳造用合金は、アルミニウム―銅系や
アルミニウム―珪素系等の鋳造用アルミニウム合
金に比較して、すぐれた耐蝕性、陽極酸化性およ
び機械加工性等を有している。しかし、このアル
ミニウム―マグネシウム系鋳造用合金は、凝固温
度範囲が広く、かつ凝固収縮量が大きいので、鋳
造時にガスポロシテイやミクロシユリンケージ等
の鋳造欠陥を生じて耐圧不良を起しやすい。特に
複雑な形状を有する鋳物では、ホツトスポツト等
の凝固の遅れる箇所に前述の鋳造欠陥を生じ易い
ので、指向性凝固を厳密に図らねばならず、鋳型
の設計を難しくしている。 従つてアルミニウム―マグネシウム系鋳造用合
金は、圧力鍋、自動車用ホイール、機械部品等の
耐圧性を要求される鋳物や複雑な形状を有する鋳
物に対しては、その使用が制限されている。 本発明は、アルミニウム―マグネシウム系でか
つ耐圧性の良い鋳造用合金を提供することを目的
とするものである。 本発明に係る合金は、マグネシウム3.0〜5.5
%、マンガン0.10〜1.0%、ベリリウム0.001〜
0.01%、チタン0.15〜0.60%およびチタンに対し
2〜20%の硼素を含有し、残余は実質的に不純物
とアルミニウムとから成る鋳造用アルミニウム合
金である(本明細書において、%は特記しない限
り重量%である)。 本発明についてさらに詳細に説明すると、本発
明に係る合金は、AC7Aで代表される耐蝕性、陽
極酸化性および機械加工性等にすぐれたアルミニ
ウム―マグネシウム系合金を、これらの諸性質を
維持したままで耐圧性の点において改良したもの
である。 本発明の合金において、マグネシウムは機械的
性質の向上に寄与するが、その含有量は3.0〜5.5
%であることが必要である。マグネシウムがこれ
よりも少いと機械的強度が小さく、また、マグネ
シウムがこれよりも多いと伸びが小さくなり、さ
らに鋳造性も低下する。 マンガンは鋳造性、機械的性質、耐応力腐蝕性
等の向上に寄与する。マンガン含有量は0.10〜
1.0%の範囲から選択し得るが、0.20〜0.60%の範
囲にあることが好ましい。 ベリリウムは合金を溶解する際のマグネシウム
の酸化を防止する作用がある。その含有量は
0.001〜0.01%の範囲にあればよいが、通常は
0.001〜0.004%で十分である。 チタンおよび硼素は結晶粒を微細化し、ガスポ
ロシテイ及びミクロシユリンケージを減少させ
る。チタン含有量は0.15〜0.60%の範囲にあるこ
とが必要であり、含有量が少なすぎると耐圧性の
すぐれた鋳物を得ることはできない。また、チタ
ン含有量が多すぎると溶湯中でのTiB2の沈降が
著るしくなり、鋳造作業上問題がある。チタンの
好適な含有量は0.20〜0.50%である。硼素はチタ
ンに対し2〜20%の範囲で存在させる。硼素はチ
タンの結晶粒微細化作用をさらに向上させるが、
チタンに対し20%より多く含有させると、その作
用はかえつて減退する。 本発明に係る鋳造用合金は、アルミニウム―マ
グネシウム合金の良好な諸性質を維持したままで
耐圧性が改良されているので、最近、脚光をあび
ている圧力鍋、自動車用ホイール、油圧ポンプ等
の部品などの耐圧性の要求される物品の鋳造に好
適である。 次に実施例により本発明をさらに具体的に説明
するが、本発明はその要旨を超えない限り、以下
の実施例に限定されるものではない。 実施例 1 750℃で脱ガス、脱滓処理を実施した表―1に
示す組成の合金を用いて、金型温度400〜450℃、
鋳造温度740℃で外径250mm、高さ150mmで一端が
閉鎖された円筒状の容器(肉厚6mm)を鋳造し
た。これを肉厚4mmに切削加工後、3〜5Kg/cm2
の水圧で水漏れの有無を試験した。結果を表―1
に示す。 また、上記の円筒から50mm×50mmの試料片を切
り出し、下記の条件で陽極酸化を行なつたとこ
ろ、いずれの試験片もすぐれた陽極酸化皮膜を生
じた。 電解浴 3%シユウ酸水溶液 電流密度 直流3A/dm2、交流6A/dm2
の交直重畳。 浴 温 25℃±2℃ 陽極酸化時間 10分間 本発明に係る合金のミクロ組織には約0.1mmの
アルミニウム―チタン系晶出物が認められるが、
陽極酸化皮膜はアルミニウム―チタン系晶出物の
認められないチタン含有量0.03%の合金のそれと
同等であつた。従つてアルミニウム―チタン系晶
出物は陽極酸化に悪影響を及ぼさないことが判明
した。
The present invention relates to an aluminum alloy for casting having good pressure resistance, and particularly to an aluminum-magnesium based casting alloy having good pressure resistance. In general, aluminum-magnesium-based casting alloys, such as AC7A, have superior corrosion resistance, anodizing properties, and machinability compared to aluminum-copper-based and aluminum-silicon-based casting aluminum alloys. are doing. However, since this aluminum-magnesium based casting alloy has a wide solidification temperature range and a large amount of solidification shrinkage, it tends to cause casting defects such as gas porosity and microshrinkage during casting, resulting in poor pressure resistance. Particularly in castings with complex shapes, the aforementioned casting defects are likely to occur at locations where solidification is delayed, such as hot spots, so directional solidification must be strictly achieved, making mold design difficult. Therefore, the use of aluminum-magnesium based casting alloys is limited to castings that require pressure resistance, such as pressure cookers, automobile wheels, and mechanical parts, and castings that have complex shapes. An object of the present invention is to provide an aluminum-magnesium based casting alloy with good pressure resistance. The alloy according to the present invention has magnesium 3.0 to 5.5
%, manganese 0.10~1.0%, beryllium 0.001~
It is a cast aluminum alloy containing 0.01% titanium, 0.15% to 0.60% titanium, and 2% to 20% boron relative to titanium, with the remainder consisting essentially of impurities and aluminum (in this specification, % indicates unless otherwise specified). % by weight). To explain the present invention in more detail, the alloy according to the present invention is an aluminum-magnesium alloy represented by AC7A which has excellent corrosion resistance, anodizing property, machinability, etc., while maintaining these properties. This is an improved version in terms of pressure resistance. In the alloy of the present invention, magnesium contributes to improving mechanical properties, but its content is between 3.0 and 5.5
%. If the magnesium content is less than this, the mechanical strength will be low, and if the magnesium content is more than this, the elongation will be small and the castability will also be reduced. Manganese contributes to improving castability, mechanical properties, stress corrosion resistance, etc. Manganese content is 0.10~
It can be selected from the range of 1.0%, but preferably from 0.20 to 0.60%. Beryllium has the effect of preventing the oxidation of magnesium when melting the alloy. Its content is
It should be in the range of 0.001 to 0.01%, but usually
0.001-0.004% is sufficient. Titanium and boron refine grains and reduce gas porosity and microshrinkage. The titanium content must be in the range of 0.15 to 0.60%; if the titanium content is too low, a casting with excellent pressure resistance cannot be obtained. Furthermore, if the titanium content is too high, TiB 2 will significantly settle in the molten metal, causing problems in casting operations. The preferred content of titanium is 0.20-0.50%. Boron is present in an amount of 2 to 20% based on titanium. Boron further improves the grain refining effect of titanium, but
If the content exceeds 20% of titanium, its effect will be reduced. The casting alloy according to the present invention has improved pressure resistance while maintaining the good properties of aluminum-magnesium alloys, and has recently been in the spotlight for parts such as pressure cookers, automobile wheels, and hydraulic pumps. It is suitable for casting products that require pressure resistance such as. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. Example 1 Using an alloy with the composition shown in Table 1 that was degassed and de-slaged at 750°C, the mold temperature was 400-450°C,
A cylindrical container (6 mm wall thickness) with an outer diameter of 250 mm, a height of 150 mm, and one end closed was cast at a casting temperature of 740°C. After cutting this into a wall thickness of 4mm, it weighs 3~5Kg/cm 2
The presence or absence of water leakage was tested at the water pressure of . Table of results-1
Shown below. Further, when 50 mm x 50 mm sample pieces were cut out from the above cylinder and anodized under the following conditions, all test pieces produced excellent anodic oxide films. Electrolytic bath 3% oxalic acid aqueous solution Current density DC 3A/dm 2 , AC 6A/dm 2
Orthogonal superposition of Bath temperature: 25°C±2°C Anodizing time: 10 minutes Approximately 0.1 mm of aluminum-titanium crystallized material is observed in the microstructure of the alloy according to the present invention.
The anodic oxide film was equivalent to that of an alloy with a titanium content of 0.03%, in which no aluminum-titanium crystallized substances were observed. Therefore, it was found that the aluminum-titanium-based crystallized material had no adverse effect on anodic oxidation.

【表】【table】

【表】 実施例 2 マグネシウム4.9%、マンガン0.48%、ベリリ
ウム0.002%、チタン0.03〜0.5%、およびチタン
に対して4%の硼素を含み、残部は珪素0.04%、
鉄0.07%以外は実質的にアルミニウムである合金
溶湯を用いて、試験片甲及び乙を鋳造した。試験
片甲は、550℃に予熱したイソライトレンガ上
に、同温度に予熱した肉厚25mm、外径120mm、高
さ25mmの円筒状金型を置き、これに溶湯温度740
℃で溶湯を注入することにより鋳造した。試験片
乙は、550℃に予熱したJIS舟金型に同じく溶湯温
度740℃で溶湯を注入することにより鋳造した。 試験片甲の下端から15mmの位置の横断面の結晶
粒数を測定した結果を第1図に示す。 また、試験片乙から25×25×15mmの試料を切り
出し、その密度を測定した結果を第2図に示す。 第1図および第2図から、本発明に係る合金は
チタン含有量が増加するにつれて結晶粒が微細化
し、密度が増加している。従つて、本発明に係る
合金の耐圧性がすぐれているのは、ガスポロシテ
イおよびミクロシユリンケージの減少によるもの
と推定される。
[Table] Example 2 Contains 4.9% magnesium, 0.48% manganese, 0.002% beryllium, 0.03 to 0.5% titanium, and 4% boron relative to titanium, the balance being 0.04% silicon,
Test specimens A and B were cast using a molten alloy containing substantially aluminum except for 0.07% iron. For the test piece A, a cylindrical mold with a wall thickness of 25 mm, an outer diameter of 120 mm, and a height of 25 mm, which had been preheated to the same temperature, was placed on an isolite brick preheated to 550°C, and the molten metal was heated to a temperature of 740°C.
It was cast by pouring the molten metal at ℃. Test piece B was cast by pouring molten metal at a temperature of 740°C into a JIS boat mold preheated to 550°C. Figure 1 shows the results of measuring the number of crystal grains in a cross section at a position 15 mm from the lower end of the test piece shell. In addition, a 25 x 25 x 15 mm sample was cut out from the test piece O, and its density was measured. The results are shown in Figure 2. From FIGS. 1 and 2, as the titanium content increases, the crystal grains of the alloy according to the present invention become finer and the density increases. Therefore, it is presumed that the superior pressure resistance of the alloy according to the present invention is due to the reduction in gas porosity and microshrinkage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルミニウム―マグネシウム系合金の
チタン含有量と結晶粒数との関係の1例を示す図
である。第2図は同じくアルミニウム―マグネシ
ウム系合金のチタン含有量と密度との関係の1例
を示す図である。
FIG. 1 is a diagram showing an example of the relationship between the titanium content and the number of crystal grains in an aluminum-magnesium alloy. FIG. 2 is a diagram showing an example of the relationship between titanium content and density of an aluminum-magnesium alloy.

Claims (1)

【特許請求の範囲】 1 マグネシウム3.0〜5.5%、マンガン0.10〜1.0
%、ベリリウム0.001〜0.01%、チタン0.15〜0.60
%およびチタンに対し2〜20%の硼素を含有し、
残余は実質的に不純物とアルミニウムとから成る
耐圧性のよい鋳造用アルミニウム合金。 2 マンガン含有量が0.20〜0.60%であることを
特徴とする特許請求の範囲第1項記載のアルミニ
ウム合金。 3 ベリリウム含有量が0.001〜0.004%であるこ
とを特徴とする特許請求の範囲第1項または第2
項記載のアルミニウム合金。 4 チタン含有量が0.20〜0.50%であることを特
徴とする特許請求の範囲第1項ないし第3項のい
ずれかに記載のアルミニウム合金。
[Claims] 1. Magnesium 3.0-5.5%, manganese 0.10-1.0
%, beryllium 0.001-0.01%, titanium 0.15-0.60
% and contains 2 to 20% boron to titanium,
The remainder is an aluminum alloy for casting with good pressure resistance, consisting essentially of impurities and aluminum. 2. The aluminum alloy according to claim 1, wherein the manganese content is 0.20 to 0.60%. 3. Claim 1 or 2, characterized in that the beryllium content is 0.001 to 0.004%.
Aluminum alloy as described in Section 1. 4. The aluminum alloy according to any one of claims 1 to 3, characterized in that the titanium content is 0.20 to 0.50%.
JP7591880A 1980-06-05 1980-06-05 Aluminum alloy for casting with high pressure resistance Granted JPS572858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7591880A JPS572858A (en) 1980-06-05 1980-06-05 Aluminum alloy for casting with high pressure resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7591880A JPS572858A (en) 1980-06-05 1980-06-05 Aluminum alloy for casting with high pressure resistance

Publications (2)

Publication Number Publication Date
JPS572858A JPS572858A (en) 1982-01-08
JPS6245303B2 true JPS6245303B2 (en) 1987-09-25

Family

ID=13590171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7591880A Granted JPS572858A (en) 1980-06-05 1980-06-05 Aluminum alloy for casting with high pressure resistance

Country Status (1)

Country Link
JP (1) JPS572858A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2640993B2 (en) * 1990-06-11 1997-08-13 スカイアルミニウム株式会社 Aluminum alloy rolled plate for superplastic forming
EP0618303B1 (en) * 1993-03-26 1997-06-11 Hitachi Metals, Ltd. Airtight aluminum alloy casting and its manufacturing method
EP0892077A1 (en) * 1997-07-18 1999-01-20 Aluminum Company Of America Cast aluminium alloy and components produced thereof
CN101537486B (en) * 2009-04-30 2013-06-05 哈尔滨工业大学 Method for preventing 5XXX aluminum alloy cast ingot from surface ruffle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503738A (en) * 1967-09-15 1970-03-31 Hugh S Cooper Metallurgical process for the preparation of aluminum-boron alloys

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503738A (en) * 1967-09-15 1970-03-31 Hugh S Cooper Metallurgical process for the preparation of aluminum-boron alloys

Also Published As

Publication number Publication date
JPS572858A (en) 1982-01-08

Similar Documents

Publication Publication Date Title
CN111690844B (en) Eutectic Al-Fe-Mn-Si-Mg die casting alloy and preparation method and application thereof
WO2021185209A1 (en) High-strength, high-corrosion resistance ternary magnesium alloy and preparation method therefor
CN110983120A (en) 300 MPa-grade high-strength plastic non-heat-treatment self-strengthening die-casting aluminum alloy and manufacturing method thereof
US20190161834A1 (en) High-strength aluminum alloy for die casting having excellent corrosion resistance and thermal conductivity, method for producing the same, and method for producing aluminum alloy casting using the same
CN113862523A (en) Al-Mn series die-casting alloy and preparation method and application thereof
US11807928B2 (en) Copper-based casting products and processes
JPS6245303B2 (en)
US3392015A (en) Aluminum-base alloy for use at elevated temperatures
JPS5810455B2 (en) Aluminum alloy for rolling
JP6900199B2 (en) Manufacturing method of aluminum alloy for casting, aluminum alloy casting products and aluminum alloy casting products
KR810002049B1 (en) Non-erosion aluminium alloy for die-casting
CA3135702C (en) Aluminium casting alloy
US1946069A (en) Magnesium base die casting alloys
JP2019005758A (en) Die-cast product, method for producing the same, and die casting machine
JPH0132300B2 (en)
JPS5830381B2 (en) Bright corrosion resistant Al alloy for die casting
US3993474A (en) Fluid mold casting slag
JPS61136652A (en) Aluminum alloy for casting
JPS594496B2 (en) Aluminum alloy for casting
JPS621463B2 (en)
KR102353612B1 (en) Magnesium alloy, magnesium alloy plate using thereof, and method for manufacturing of magnesium alloy plate
AU2022333523A1 (en) Improved aluminium based casting alloy
JPH10158771A (en) Aluminum alloy for casting, excellent in pressure resistance
Hino et al. Effect of Surface Treatment on Glossiness of Al–Mg–Zn Alloy Casting
EP4124668A1 (en) Cast alloy