JP7096690B2 - Aluminum alloys for die casting and aluminum alloy castings - Google Patents

Aluminum alloys for die casting and aluminum alloy castings Download PDF

Info

Publication number
JP7096690B2
JP7096690B2 JP2018063536A JP2018063536A JP7096690B2 JP 7096690 B2 JP7096690 B2 JP 7096690B2 JP 2018063536 A JP2018063536 A JP 2018063536A JP 2018063536 A JP2018063536 A JP 2018063536A JP 7096690 B2 JP7096690 B2 JP 7096690B2
Authority
JP
Japan
Prior art keywords
alloy
casting
present
aluminum alloy
die casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018063536A
Other languages
Japanese (ja)
Other versions
JP2019173111A (en
Inventor
加瑞馬 日比
靖 岩田
博 川原
盾 八百川
琢真 箕浦
隆 中道
勇 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2018063536A priority Critical patent/JP7096690B2/en
Publication of JP2019173111A publication Critical patent/JP2019173111A/en
Application granted granted Critical
Publication of JP7096690B2 publication Critical patent/JP7096690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、機械的特性に優れたダイカスト鋳造が得られるアルミニウム合金(単に「Al合金」という。)等に関する。 The present invention relates to an aluminum alloy (simply referred to as "Al alloy") or the like, which can be used for die casting with excellent mechanical properties.

近年、軽量化の要請からAl合金が多用されている。量産されるAl合金製品(部材)は、ダイカスト鋳造によって製造されることが多い。ダイカスト鋳造法によれば、切削加工等を大幅に削減しつつ、高精度な製品を短いサイクルタイムで製造することが可能となる。 In recent years, Al alloys have been widely used due to the demand for weight reduction. Al alloy products (members) mass-produced are often manufactured by die casting. According to the die casting method, it is possible to manufacture a highly accurate product in a short cycle time while significantly reducing cutting work and the like.

ダイカスト鋳造に用いられる代表的なAl合金として、Al-Si系合金(例えば、JIS ADC12)とAl-Mg系合金がある。Al-Si系合金は鋳造性に優れるが、その鋳物は延性が非常に低い。このため、高強度かつ高延性が要求される部材には、Al-Mg系合金が用いられる。このようなAl-Mg系合金に関する提案は多くなされており、例えば、下記の特許文献に関連した記載がある。 Typical Al alloys used for die casting include Al—Si based alloys (for example, JIS ADC12) and Al—Mg based alloys. Al—Si alloys have excellent castability, but their castings have very low ductility. Therefore, Al—Mg-based alloys are used for members that require high strength and high ductility. Many proposals have been made regarding such Al—Mg-based alloys, and for example, there are descriptions related to the following patent documents.

特開平9-268340号公報Japanese Unexamined Patent Publication No. 9-268340 特開平11-193434号公報Japanese Unexamined Patent Publication No. 11-193434 特開平11-293375号公報Japanese Unexamined Patent Publication No. 11-293375 特許4145242号公報Japanese Patent No. 4145242 特許4155509号公報Japanese Patent No. 4155509

特許文献4や特許文献5に示されているダイカスト鋳造用Al合金のように、強度および延性に優れるものもある。しかし、その他のAl合金は、未だ改善の余地が大きい。 Some of them are excellent in strength and ductility, such as Al alloys for die casting shown in Patent Document 4 and Patent Document 5. However, there is still a lot of room for improvement in other Al alloys.

本発明はこのような事情に鑑みて為されたものであり、強度と延性を高次元で両立できるダイカスト鋳造を得ることができる新たな組成のAl合金等を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an Al alloy having a new composition capable of obtaining a die-cast casting capable of achieving both strength and ductility at a high level.

本発明者はこの課題を解決すべく鋭意研究し結果、従来のAl合金とは異なる新たな組成からなるAl-Mg(-Mn)系合金により、高強度かつ高延性なダイカスト鋳造を得ることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research to solve this problem, the present inventor has decided to obtain high-strength and high-development die-casting by using an Al-Mg (-Mn) -based alloy having a new composition different from that of the conventional Al alloy. Successful. By developing this result, the present invention described below was completed.

《ダイカスト鋳造用アルミニウム合金》
(1)本発明は、全体を100質量%(単に「%」という。)として、下記の組成を満たすダイカスト鋳造に用いられるアルミニウム合金である。
Mg:3~6%、Mn:0.7~1.5%、Fe:0.2~0.6%、
Ti:0.1~0.3%、Zr:0.1~0.3%、残部:Alおよび不純物
《Aluminum alloy for die casting》
(1) The present invention is an aluminum alloy used for die casting, which satisfies the following composition with 100% by mass (simply referred to as "%") as a whole.
Mg: 3 to 6%, Mn: 0.7 to 1.5%, Fe: 0.2 to 0.6%,
Ti: 0.1-0.3%, Zr: 0.1-0.3%, balance: Al and impurities

(2)本発明のAl合金を用いれば、高強度で高延性なダイカスト鋳物(単に「鋳物」という。)を得ることができる。ちなみに、本発明のAl合金は、所定量のFeを含むため、ダイカスト鋳物時の耐焼付き性も向上させ得る。また、本発明のAl合金は、不純物レベルを超えるFeの含有を許容しているため、リサイクル材を原料として用いることも可能となる。 (2) By using the Al alloy of the present invention, a die-cast casting having high strength and high ductility (simply referred to as "casting") can be obtained. Incidentally, since the Al alloy of the present invention contains a predetermined amount of Fe, the seizure resistance at the time of die casting can be improved. Further, since the Al alloy of the present invention allows the content of Fe exceeding the impurity level, it is possible to use a recycled material as a raw material.

ところで本発明のAl合金により高強度で高延性な鋳物が得られる理由は、次のように考えられる。本発明のAl合金は、先ず、従来のダイカスト鋳造に用いられるAl合金とは異なり、TiとZrの両方を含んでいる。TiとZrは、共存により相乗的な作用を発揮し、鋳造組織の大幅な微細化に貢献し得る。このような優れた効果は、TiとZrのいずれか一方では十分に得られないことを本発明者は確認している。 By the way, the reason why a high-strength and high-ductility casting can be obtained by the Al alloy of the present invention is considered as follows. First, the Al alloy of the present invention contains both Ti and Zr, unlike the Al alloy used for conventional die casting. Ti and Zr exert a synergistic effect by coexistence and can contribute to a significant miniaturization of the cast structure. The present inventor has confirmed that such an excellent effect cannot be sufficiently obtained with either Ti or Zr.

次に、本発明のAl合金は、比較的多くのMnを含み、Mn化合物が多く晶出することにより、鋳物の強度を向上させている。但し、Mn化合物が粗大化すると、そのMn化合物が破壊起点となり、却って、鋳物の強度や延性が低下し得る。ここで本発明のAl合金は、所定量のFeを含ませることにより、Mn化合物の晶出時期を遅らせて(さらにいえば、Mn化合物の晶出時期をα-Alの晶出時期に近づけて)、その粗大化を抑制し、α-Alの周囲に微細なMn化合物を多く分散させることに成功している。その際、Al-Fe共晶の晶出量も抑制され、その粗大化も抑制される。 Next, the Al alloy of the present invention contains a relatively large amount of Mn, and a large amount of Mn compound is crystallized to improve the strength of the casting. However, when the Mn compound becomes coarse, the Mn compound becomes a fracture starting point, and on the contrary, the strength and ductility of the casting may decrease. Here, in the Al alloy of the present invention, the crystallization time of the Mn compound is delayed by containing a predetermined amount of Fe (more specifically, the crystallization time of the Mn compound is brought closer to the crystallization time of α-Al. ), It has succeeded in suppressing the coarsening thereof and dispersing a large amount of fine Mn compounds around α-Al. At that time, the amount of Al—Fe eutectic crystallization is also suppressed, and its coarsening is also suppressed.

こうして本発明のAl合金によれば、α-Alおよび各化合物相が共に微細な鋳造組織からなり、強度と延性が高次元で両立した鋳物が得られるようになった。 In this way, according to the Al alloy of the present invention, both α-Al and each compound phase have a fine cast structure, and a casting having both strength and ductility at a high level can be obtained.

《アルミニウム合金鋳物(ダイカスト鋳物)》
(1)本発明は、上述したAl合金からなるダイカスト鋳物としても把握できる。例えば、本発明は、上述したAl合金からなり、結晶粒サイズが0.15mm以下、0.1mm以下さらには0.05mm以下である鋳造組織を有するアルミニウム合金鋳物でもよい。
《Aluminum alloy casting (die casting)》
(1) The present invention can also be grasped as a die-cast casting made of the above-mentioned Al alloy. For example, the present invention may be an aluminum alloy casting made of the above-mentioned Al alloy and having a cast structure having a crystal grain size of 0.15 mm or less, 0.1 mm or less, and further 0.05 mm or less.

本明細書でいう結晶粒サイズは、測定用試料を鏡面研磨した後バーカー氏液中にて電解エッチング処理した後、光学顕微鏡で観察して、平均結晶粒径を、切片法を用いて測定することにより特定される。 The crystal grain size referred to in the present specification is measured by mirror polishing the measurement sample, subjecting it to electrolytic etching in Barker's solution, observing it with an optical microscope, and measuring the average crystal grain size using the section method. Identified by.

(2)本発明に係る鋳造組織は、Mn化合物相(Al-M系晶出物)とAl-Fe共晶相がα-Al結晶粒の周囲に、微細に晶出したものであると好ましい。 (2) In the cast structure according to the present invention, it is preferable that the Mn compound phase (Al—M-based crystallized product) and the Al—Fe eutectic phase are finely crystallized around the α—Al crystal grains. ..

また本発明の鋳物は、伸びが12%以上、13%以上さらには14%以上あると好ましい。また、その耐力(0.2%耐力)は140MPa以上、150MPa以上さらには160MPa以上であると好ましい。 Further, the casting of the present invention preferably has an elongation of 12% or more, 13% or more, and further preferably 14% or more. Further, the proof stress (0.2% proof stress) is preferably 140 MPa or more, 150 MPa or more, and more preferably 160 MPa or more.

《その他》
(1)本発明のAl合金は、ダイカスト鋳造に用いられる原料合金でも、その原料合金を用いて鋳造した鋳物でもよい。本明細書でいう不純物には、不可避不純物の他、コスト等の理由により除去困難な元素も含まれる。そのような不純物元素は、それぞれ0.1%以下さらには0.05%以下であると好ましい。
"others"
(1) The Al alloy of the present invention may be a raw material alloy used for die casting or a casting cast using the raw material alloy. Impurities referred to in the present specification include, in addition to unavoidable impurities, elements that are difficult to remove due to reasons such as cost. The amount of such impurity elements is preferably 0.1% or less, more preferably 0.05% or less, respectively.

(2)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。 (2) Unless otherwise specified, "x to y" in the present specification includes a lower limit value x and an upper limit value y. A range such as "a to b" may be newly established with any numerical value included in the various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

鋳造組織に及ぼすTiとZrの影響を示す組織写真である。It is a structure photograph which shows the influence of Ti and Zr on a cast structure. 鋳造組織に及ぼすFeの影響を示す組織写真である。It is a structure photograph which shows the influence of Fe on a cast structure. 晶出過程に及ぼすFeの影響を解析して求めたグラフである。It is a graph obtained by analyzing the influence of Fe on the crystallization process. 合金組成の異なるダイカスト鋳物の耐力と伸びを比較した棒グラフである。It is a bar graph comparing the yield strength and elongation of die castings having different alloy compositions.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明のAl合金のみならず、鋳物にも適宜該当する。製造方法に関する構成要素は、物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the present specification may be added to the components of the present invention described above. The contents described in the present specification appropriately apply not only to the Al alloy of the present invention but also to castings. A component related to a manufacturing method can also be a component related to a product. Which embodiment is the best depends on the target, required performance, and the like.

《Al合金》
本発明のAl合金は、Alの他に、Mg、Mn、Fe、TiおよびZrを必須の合金元素として含む。以下、合金元素と含有量について詳述する。なお、本明細書でいう合金組成は、特に断らない限り、Al合金全体に対する質量割合であり、単に「%」で示す。
《Al alloy》
The Al alloy of the present invention contains Mg, Mn, Fe, Ti and Zr as essential alloying elements in addition to Al. Hereinafter, the alloying elements and the contents will be described in detail. Unless otherwise specified, the alloy composition referred to in the present specification is a mass ratio with respect to the entire Al alloy, and is simply indicated by "%".

Mgは、Alのマトリックス中に固溶して、Al合金の機械的強度(引張強さ等)の向上に寄与する。またMgは、Al合金の延性や鋳造性にも影響を及ぼす。そこでMgは、3~6%、3.5~5.5%さらには4~5%含まれると好ましい。Mgが過少では、Al合金の強度が不十分となる。Mgが過多になると、晶出するMn化合物やFe化合物の粗大化により、Al合金の延性が低下し得る。 Mg dissolves in the Al matrix and contributes to the improvement of the mechanical strength (tensile strength, etc.) of the Al alloy. Mg also affects the ductility and castability of Al alloys. Therefore, it is preferable that Mg is contained in an amount of 3 to 6%, 3.5 to 5.5%, more preferably 4 to 5%. If the amount of Mg is too small, the strength of the Al alloy will be insufficient. If the amount of Mg is excessive, the ductility of the Al alloy may decrease due to the coarsening of the Mn compound or Fe compound that crystallizes.

Mnは、Alのマトリックス中に固溶する他、Alと化合物(AlMn等)を生成して、Al合金の強度を向上させる。またMnは、金型との耐焼き付き性も向上させ得る。そこでMnは、0.7~1.5%、0.8~1.3%さらには0.9~1.2%含まれると好ましい。Mnが過少では、Al合金の強度が不十分となり得る。Mnが過多になると、Mn化合物の粗大化により、Al合金の強度や延性が低下し得る。 Mn not only dissolves in the matrix of Al, but also forms a compound (Al 6 Mn, etc.) with Al to improve the strength of the Al alloy. Mn can also improve the seizure resistance with the mold. Therefore, Mn is preferably contained in an amount of 0.7 to 1.5%, 0.8 to 1.3%, more preferably 0.9 to 1.2%. If Mn is too small, the strength of the Al alloy may be insufficient. When Mn is excessive, the strength and ductility of the Al alloy may decrease due to the coarsening of the Mn compound.

Feは、Al合金の晶出過程に影響を及ぼし、Mn化合物等の微細化に寄与する。またFeは、金型との耐焼き付き性も向上させ得る。さらに本発明のAl合金では、Feの含有量が不純物レベルよりもかなり多い。このため、Feを含有し易いリサイクル材(再生Al合金等)を、本発明のAl合金自体またはその原料として用いることも可能である。そこでFeは、0.2~0.6%、0.25~0.55%さらには0.3~0.5%含まれると好ましい。Feが過少では上述した効果が乏しく、Feが過多になると、晶出物(Mn化合物、Fe化合物等)の粗大化によりAl合金の強度や延性が低下し得る。 Fe affects the crystallization process of Al alloy and contributes to the miniaturization of Mn compounds and the like. Fe can also improve the seizure resistance with the mold. Further, in the Al alloy of the present invention, the Fe content is considerably higher than the impurity level. Therefore, it is also possible to use a recycled material (recycled Al alloy or the like) that easily contains Fe as the Al alloy itself of the present invention or as a raw material thereof. Therefore, Fe is preferably contained in an amount of 0.2 to 0.6%, 0.25 to 0.55%, more preferably 0.3 to 0.5%. If Fe is too small, the above-mentioned effect is poor, and if Fe is too large, the strength and ductility of the Al alloy may decrease due to the coarsening of the crystallized products (Mn compound, Fe compound, etc.).

TiとZrは、初晶Al(α-Al)の核生成サイトとなり、鋳造組織全体の微細化に寄与する。そこでTiとZrは、それぞれ、0.1~0.3%(さらには0.3%未満)、0.14~0.25%さらには0.15~0.2%含まれると好ましい。TiとZrは、それらの一方が過少でも鋳造組織の微細化が不十分となる。TiまたはZrが過多では、粗大な化合物(AlTi等)が晶出して延性が低下し得る。なお、既述したように、本発明のAl合金では、TiとZrの共存により鋳造組織が大幅に微細化されるが、その合計量(Ti+Zr)は0.25~0.5%さらには0.29~0.4%であるとより好ましい。 Ti and Zr become nucleation sites for primary crystal Al (α-Al) and contribute to the miniaturization of the entire cast structure. Therefore, Ti and Zr are preferably contained in an amount of 0.1 to 0.3% (further less than 0.3%), 0.14 to 0.25%, and further 0.15 to 0.2%, respectively. If one of Ti and Zr is too small, the casting structure will be insufficiently miniaturized. If Ti or Zr is excessive, coarse compounds (Al 3 Ti, etc.) may crystallize and the ductility may decrease. As described above, in the Al alloy of the present invention, the cast structure is significantly miniaturized by the coexistence of Ti and Zr, but the total amount (Ti + Zr) is 0.25 to 0.5% and further 0. It is more preferably .29 to 0.4%.

《鋳造方法》
本発明のAl合金は、一般的な鋳造方法(砂型鋳造、金型鋳造等)に用いることもできるが、特にダイカスト鋳造に用いられると好ましい。本発明のAl合金により、高強度で高延性なダイカスト鋳物を得ることができる。
《Casting method》
The Al alloy of the present invention can be used in general casting methods (sand casting, mold casting, etc.), but is particularly preferably used for die casting. With the Al alloy of the present invention, a die-cast casting having high strength and high ductility can be obtained.

ダイカスト鋳造は、一般的に、セットされた金型のキャビティへ、プランジャ等でAl合金の溶湯を加圧しつつ供給した後(注湯工程)、急冷凝固(凝固工程)される。このようなダイカスト鋳造は、例えば、射出速度:0.1~5m/secさらには0.2~2m/sec、鋳造圧力:10~100MPaさらには20~80MPa、射出温度:Al合金の液相線温度+60~140℃さらには80~120℃としてなされると好ましい。冷却速度は、部位により異なるため一律には特定できないが、遅くとも、20℃/sec以上さらには50℃/sec以上であると好ましい。 In die casting, in general, the molten Al alloy is supplied to the cavity of the set mold while pressurizing it with a plunger or the like (pouring step), and then quenching and solidifying (solidification step). In such die casting, for example, the injection speed: 0.1 to 5 m / sec, further 0.2 to 2 m / sec, the casting pressure: 10 to 100 MPa, further 20 to 80 MPa, and the injection temperature: the liquidus line of the Al alloy. The temperature is preferably +60 to 140 ° C., more preferably 80 to 120 ° C. The cooling rate cannot be specified uniformly because it varies depending on the site, but it is preferably 20 ° C./sec or higher, and more preferably 50 ° C./sec or higher at the latest.

《用途》
本発明の鋳物は、高強度・高延性であるため、種々の製品や部材に用いられる。例えば、車両(自動車、二輪車)の骨格部分(ボディ、シャシ等)、サスペンションメンバー、ホイール、ジョイント、サスペンションタワー、ピラー等に本発明の鋳物は好適である。
《Use》
Since the casting of the present invention has high strength and high ductility, it is used for various products and members. For example, the casting of the present invention is suitable for the skeleton portion (body, chassis, etc.) of a vehicle (automobile, motorcycle), suspension member, wheel, joint, suspension tower, pillar, and the like.

組成の異なるAl合金からなる試料(ダイカスト鋳物)を製作し、各試料について、金属組織(鋳造組織)の観察または機械的特性の測定を行った。このような具体例に基づいて、本発明をさらに詳しく説明する。 Samples (die-cast castings) made of Al alloys having different compositions were produced, and the metallographic structure (casting structure) of each sample was observed or the mechanical properties were measured. The present invention will be described in more detail based on such a specific example.

[第1実施例/TiとZrの影響]
(1)製造
Al-4.5%Mg-1.0%Mn-0.5%Fe-x%Ti-y%Zrからなる多数の試料を製造した。各試料に係るTiとZrの含有量(x、y)は、表1にまとめて示した。なお、合金組成は、Al合金全体に対する質量割合(質量%)であり、単に「%」で示す。
[First Example / Effect of Ti and Zr]
(1) Production A large number of samples consisting of Al-4.5% Mg-1.0% Mn-0.5% Fe-x% Ti-y% Zr were produced. The Ti and Zr contents (x, y) related to each sample are summarized in Table 1. The alloy composition is a mass ratio (mass%) with respect to the entire Al alloy, and is simply indicated by "%".

各試料は次のようにして製造した。各合金組成に調製した溶湯(720℃)を、楔形状の金型(S55C製)に注湯し、凝固させた。この際、Ti、Zrを含む溶湯は、760℃に加熱した溶湯へTi、Zrを添加して調製した。なお、本実施例に係る金型鋳造の冷却速度は、一般的なダイカスト鋳造と同程度(約200~300℃/s)である。 Each sample was produced as follows. The molten metal (720 ° C.) prepared for each alloy composition was poured into a wedge-shaped mold (manufactured by S55C) and solidified. At this time, the molten metal containing Ti and Zr was prepared by adding Ti and Zr to the molten metal heated to 760 ° C. The cooling rate of the mold casting according to this embodiment is about the same as that of general die casting (about 200 to 300 ° C./s).

(2)観察
各試料から切り出した供試材をバーカー液を用いた電解エッチングによりマクロ腐食させた。この処理後の各試料に係る鋳造組織を光学顕微鏡により観察した。得られたマクロ組織の一例を図1に対比して示した。
(2) Observation The test material cut out from each sample was macrocorroded by electrolytic etching using Barker's solution. The cast structure of each sample after this treatment was observed with an optical microscope. An example of the obtained macrostructure is shown in comparison with FIG.

各試料に係る結晶粒サイズを、それぞれの鋳造組織に基づいて、既述した方法により特定した。各試料の結晶粒サイズを比較した結果を表1にまとめて示した。結晶粒サイズの比較は、基準試料(Ti:0.14%、Zr:0%)の結晶粒サイズをベースにして、それよりも微細なとき:○、粗大なとき:×、同程度のとき:△とした。 The crystal grain size of each sample was specified by the method described above based on each cast structure. The results of comparing the crystal grain sizes of each sample are summarized in Table 1. The comparison of crystal grain size is based on the crystal grain size of the reference sample (Ti: 0.14%, Zr: 0%), when it is finer than that: ○, when it is coarse: ×, when it is about the same. : △.

(3)評価
図1および表1から明らかなように、所定量のTiとZrを複合添加することにより、鋳造組織が顕著に微細化することがわかった。逆に、TiやZrを含まない場合は勿論、それら一方のみを含む場合でも、鋳造組織を十分に微細化できないこともわかった。
(3) Evaluation As is clear from FIGS. 1 and 1, it was found that the cast structure was remarkably miniaturized by the combined addition of a predetermined amount of Ti and Zr. On the contrary, it was also found that the cast structure cannot be sufficiently miniaturized not only when Ti and Zr are not contained but also when only one of them is contained.

例えば、Ti・Zrなしの場合は結晶粒サイズが0.4~0.6mm程度であり、Zrのみの場合も同程度な結晶粒サイズとなった。Tiのみの場合は結晶粒サイズが0.15超~0.2mmまで微細化するが、TiとZrが複合(合計量:0.26%)している場合は、結晶粒サイズが0.15mm以下さらには0.1mm以下にまで顕著に微細化した。 For example, in the case of no Ti / Zr, the crystal grain size was about 0.4 to 0.6 mm, and in the case of only Zr, the crystal grain size was about the same. When only Ti is used, the crystal grain size is refined to more than 0.15 to 0.2 mm, but when Ti and Zr are combined (total amount: 0.26%), the crystal grain size is 0.15 mm. Below, it was remarkably miniaturized to 0.1 mm or less.

このような鋳造組織の微細化は、TiとZrが初晶(α-Al)の生成核となるために生じると推定される。しかし、微細化剤の相違(TiとZrの相違)や複合化により、結晶粒サイズが大幅に相違する理由(メカニズム)は現状定かではなく、本発明のAl合金に特異な現象ともいえる。 It is presumed that such miniaturization of the cast structure occurs because Ti and Zr become nucleation of primary crystals (α-Al). However, the reason (mechanism) that the crystal grain size is significantly different due to the difference in the micronizing agent (difference between Ti and Zr) and the compounding is not clear at present, and can be said to be a phenomenon peculiar to the Al alloy of the present invention.

なお、Ti:0.23%かつZr:0.20%とした試料の鋳造組織中には粗大な晶出物は観察されなかったが、TiまたはZrの一方でも0.3%超となった試料では、粗大な晶出物が観察されることも確認している。 No coarse crystallization was observed in the cast structure of the sample with Ti: 0.23% and Zr: 0.20%, but it was more than 0.3% in either Ti or Zr. It has also been confirmed that coarse crystallization is observed in the sample.

[第2実施例/Feの影響]
(1)製造
Al-4.5%Mg-1.0%Mn-0.5%Fe-0.15%Ti-0.15%Zrと、Al-4.5%Mg-1.0%Mn-0.7%Fe-0.15%Ti-0.15%Zrとからなる試料をダイカスト鋳造により製造した。
[2nd Example / Effect of Fe]
(1) Manufacture Al-4.5% Mg-1.0% Mn-0.5% Fe-0.15% Ti-0.15% Zr and Al-4.5% Mg-1.0% Mn A sample consisting of −0.7% Fe −0.15% Ti −0.15% Zr was produced by die casting.

ダイカスト鋳造は、縦型ダイカスト機を用いて行った。各組成に調製した溶湯をプランジャ(φ40mm)で金型のキャビティへ加圧注入後(注入工程)、凝固させた(凝固工程)。鋳造条件は、鋳造圧力:65MPa、射出(プランジャ)速度:低速0.2m/s、高速1.0m/s、射出(溶解)温度:液相線温度+100℃とした。また、金型温度は室温とし、冷却速度は100℃/s程度であった。こうして、200mm×40mm×t3~5mmの板状のダイカスト鋳物(単に「鋳物」という。)を得た。この鋳物から切り出した試料について組織観察を行った。 Die casting was performed using a vertical die casting machine. The molten metal prepared for each composition was pressure-injected into the cavity of the mold with a plunger (φ40 mm) (injection step) and then solidified (coagulation step). The casting conditions were casting pressure: 65 MPa, injection (plunger) speed: low speed 0.2 m / s, high speed 1.0 m / s, injection (melting) temperature: liquidus temperature + 100 ° C. The mold temperature was room temperature, and the cooling rate was about 100 ° C./s. In this way, a plate-shaped die-cast casting (simply referred to as "casting") having a size of 200 mm × 40 mm × t3 to 5 mm was obtained. The structure of the sample cut out from this casting was observed.

(2)観察
各試料に係る鋳造組織を光学顕微鏡により観察した。こうして得られた各試料に係るミクロ組織を図2に対比して示した。
(2) Observation The cast structure of each sample was observed with an optical microscope. The microstructure of each sample thus obtained is shown in comparison with FIG.

(3)評価
図2から明らかなように、Fe量が0.7%である鋳造組織には、粗大なAl-Mn化合物やAl-Fe共晶の晶出が観察された。一方、Fe量が0.5%である鋳造組織では、そのような粗大な晶出物は観察されなかった。
(3) Evaluation As is clear from FIG. 2, crystallization of coarse Al—Mn compounds and Al—Fe eutectic crystals was observed in the cast structure having an Fe content of 0.7%. On the other hand, in the cast structure having an Fe amount of 0.5%, no such coarse crystallized material was observed.

(4)考察
Al-4.5%Mg-1.0%Mn-z%Fe-0.15%Ti-0.15%Zrについて、Fe量(z)を0.3%、0.5%および0.7%としたときの晶出過程を、シャイル(Scheil)の式により、Thermo Calcを用いて解析した結果を図3に示した。図3に示すグラフは、横軸:固相率、縦軸:温度である。
(4) Consideration For Al-4.5% Mg-1.0% Mn-z% Fe-0.15% Ti-0.15% Zr, the Fe amount (z) is 0.3% and 0.5%. FIG. 3 shows the results of analysis of the crystallization process at 0.7% and using Thermo Calc according to Scheil's equation. In the graph shown in FIG. 3, the horizontal axis is the solid phase ratio and the vertical axis is the temperature.

図3から明らかなように、Fe量が0.7%のとき、α-AlよりもAlMn相の晶出開始温度が高くなることがわかる。このためAlMn相は、α-Alよりも先に晶出して、粗大化し易くなる。 As is clear from FIG. 3, when the Fe amount is 0.7%, the crystallization start temperature of the Al 6 Mn phase is higher than that of α-Al. Therefore, the Al 6 Mn phase crystallizes before α-Al and tends to be coarsened.

一方、Fe量が0.5%さらに0.3%のとき、AlMn相の晶出開始温度はα-Alの晶出開始温度に近づき、AlMn相はα-Alとほぼ同時期に晶出するようになる。このため、AlMn相は、α-Al粒に規制されて、その粗大化が抑止される。なお、Fe量がそのような範囲内にあるとき、Al-Fe共晶量も減少するため、その共晶相の粗大化も併せて抑止されることもわかる。 On the other hand, when the Fe amount is 0.5% or 0.3%, the crystallization start temperature of the Al 6 Mn phase approaches the crystallization start temperature of α-Al, and the Al 6 Mn phase is at about the same time as α-Al. Will crystallize in. Therefore, the Al 6 Mn phase is restricted to α-Al particles, and its coarsening is suppressed. It can also be seen that when the Fe amount is within such a range, the Al—Fe eutectic amount also decreases, so that the coarsening of the eutectic phase is also suppressed.

こうして、Fe量が0.7%未満、0.6%以下さらには0.5%以下であるAl合金では、Al-Mn化合物相やAl-Fe共晶相が微細に分散した鋳造組織が得られたと考えられる。 In this way, in the Al alloy having an Fe amount of less than 0.7%, 0.6% or less, and further 0.5% or less, a cast structure in which the Al—Mn compound phase and the Al—Fe eutectic phase are finely dispersed can be obtained. It is thought that it was done.

[第3実施例]
以下に示す3種の合金組成からなるダイカスト鋳物を、第2実施例の場合と同様に製作した。各鋳物から切り出した供試材(試料)を用いて、0.2%耐力と伸びを測定した。その結果を図4にまとめて示した。
(実施例)
Al-4.5%Mg-1.0%Mn-0.5%Fe-0.15%Ti-0.15%Zr
(比較例A)
Al-3.5%Mg-1.2%Mn-0.1%Fe
(比較例B)
Al-4.5%Mg-0.3%Mn-0.75%Fe-0.15%Ti
[Third Example]
A die-cast casting having the following three alloy compositions was produced in the same manner as in the case of the second embodiment. 0.2% proof stress and elongation were measured using the test material (sample) cut out from each casting. The results are summarized in FIG.
(Example)
Al-4.5% Mg-1.0% Mn-0.5% Fe-0.15% Ti-0.15% Zr
(Comparative Example A)
Al-3.5% Mg-1.2% Mn-0.1% Fe
(Comparative Example B)
Al-4.5% Mg-0.3% Mn-0.75% Fe-0.15% Ti

図4から明らかなように、所定量のTi、ZrおよびFeを含むAl合金を用いた場合、0.2%耐力が140MPa以上さらには150MPa以上で、伸びが12%以上さらには13%以上となる、高強度で高延性な鋳物が得られることがわかった。 As is clear from FIG. 4, when an Al alloy containing a predetermined amount of Ti, Zr and Fe is used, the 0.2% proof stress is 140 MPa or more, further 150 MPa or more, and the elongation is 12% or more, further 13% or more. It was found that a high-strength and high-ductility casting can be obtained.

以上から、所定量のTiとZrの共存が鋳造組織(特にα-Al)の全体的な微細化に寄与すると共に、所定量のFeが晶出する化合物の微細化に寄与することにより、本発明のAl合金からなるダイカスト鋳物は、高強度および高延性を発揮することが確認された。 From the above, the coexistence of a predetermined amount of Ti and Zr contributes to the overall miniaturization of the cast structure (particularly α-Al), and at the same time, contributes to the miniaturization of the compound in which a predetermined amount of Fe is crystallized. It was confirmed that the die-cast casting made of the Al alloy of the present invention exhibits high strength and high ductility.

Figure 0007096690000001
Figure 0007096690000001

Claims (4)

全体を100質量%(単に「%」という。)として、下記の組成を満たすダイカスト鋳造に用いられるアルミニウム合金。
Mg:3~6%、
Mn:0.7~1.5%、
Fe:0.~0.6%、
Ti:0.1~0.3%、
Zr:0.1~0.3%、
残部:Alおよび不純物
An aluminum alloy used for die casting that satisfies the following composition with the whole being 100% by mass (simply referred to as "%").
Mg: 3-6%,
Mn: 0.7-1.5%,
Fe: 0. 3 to 0.6%,
Ti: 0.1-0.3%,
Zr: 0.1-0.3%,
Remaining: Al and impurities
請求項1に記載のアルミニウム合金からなり、結晶粒サイズが0.15mm以下である鋳造組織を有するアルミニウム合金鋳物。 An aluminum alloy casting comprising the aluminum alloy according to claim 1 and having a cast structure having a crystal grain size of 0.15 mm or less. 前記鋳造組織は、Mn化合物相とAl-Fe共晶相がα-Al結晶粒の周囲に晶出してなる請求項2に記載のアルミニウム合金鋳物。 The aluminum alloy casting according to claim 2, wherein the cast structure is a Mn compound phase and an Al—Fe eutectic phase crystallized around α—Al crystal grains. 伸びが12%以上で耐力が140MPa以上である請求項2または3に記載のアルミニウム合金鋳物。 The aluminum alloy casting according to claim 2 or 3, wherein the elongation is 12% or more and the proof stress is 140 MPa or more.
JP2018063536A 2018-03-29 2018-03-29 Aluminum alloys for die casting and aluminum alloy castings Active JP7096690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018063536A JP7096690B2 (en) 2018-03-29 2018-03-29 Aluminum alloys for die casting and aluminum alloy castings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018063536A JP7096690B2 (en) 2018-03-29 2018-03-29 Aluminum alloys for die casting and aluminum alloy castings

Publications (2)

Publication Number Publication Date
JP2019173111A JP2019173111A (en) 2019-10-10
JP7096690B2 true JP7096690B2 (en) 2022-07-06

Family

ID=68169570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018063536A Active JP7096690B2 (en) 2018-03-29 2018-03-29 Aluminum alloys for die casting and aluminum alloy castings

Country Status (1)

Country Link
JP (1) JP7096690B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022072574A (en) 2020-10-30 2022-05-17 昭和電工株式会社 Aluminum alloy for automobile wheel and automobile wheel
CN112708810B (en) * 2020-12-17 2021-10-22 华南理工大学 Extrusion casting regenerated aluminum-magnesium alloy with high Fe content and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342664A (en) 2002-05-30 2003-12-03 Honda Motor Co Ltd Aluminum/magnesium alloy for casting
JP2004001010A (en) 2002-05-30 2004-01-08 Honda Motor Co Ltd Thin-walled die castings having high toughness
JP2004269971A (en) 2003-03-10 2004-09-30 Toyota Central Res & Dev Lab Inc Aluminum alloy for casting, casting made of aluminum alloy and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342664A (en) 2002-05-30 2003-12-03 Honda Motor Co Ltd Aluminum/magnesium alloy for casting
JP2004001010A (en) 2002-05-30 2004-01-08 Honda Motor Co Ltd Thin-walled die castings having high toughness
JP2004269971A (en) 2003-03-10 2004-09-30 Toyota Central Res & Dev Lab Inc Aluminum alloy for casting, casting made of aluminum alloy and its production method

Also Published As

Publication number Publication date
JP2019173111A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
CA2574962C (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
JP4970709B2 (en) Casting alloy
CN111032897A (en) Method of forming cast aluminum alloy
US9771635B2 (en) Cast aluminum alloy for structural components
US20100047113A1 (en) al-si-mg-zn-cu alloy for aerospace and automotive castings
CN109072356B (en) Die casting alloy
JP4765400B2 (en) Aluminum alloy for semi-solid casting, aluminum alloy casting and manufacturing method thereof
JP6495246B2 (en) Aluminum alloy and die casting method
KR20170138916A (en) Aluminum alloy for die casting, and die-cast aluminum alloy using same
JP2005264301A (en) Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
WO2010007484A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
JP6229130B2 (en) Cast aluminum alloy and casting using the same
CA3125339A1 (en) Foundry alloys for high-pressure vacuum die casting
JP3808264B2 (en) Aluminum alloy casting processed plastically, manufacturing method of aluminum alloy casting, and fastening method using plastic deformation
JP7096690B2 (en) Aluminum alloys for die casting and aluminum alloy castings
JP2003213354A (en) Aluminum alloy for diecasting, method of producing diecast product and diecast product
WO2016145644A1 (en) Alloy composition
JP7152977B2 (en) aluminum alloy
JPH0790459A (en) Production of wear resistant aluminum alloy for extrusion and wear resistant aluminum alloy material
US10086429B2 (en) Chilled-zone microstructures for cast parts made with lightweight metal alloys
JP2004162140A (en) Al-Mg ALLOY FOR DIE CASTING AND METHOD FOR MANUFACTURING DIE-CAST PRODUCT MADE FROM Al-Mg ALLOY
JPH09296245A (en) Aluminum alloy for casting
JP7438134B2 (en) Al-Mg-Si-Mn-Fe casting alloy
JP5862406B2 (en) Aluminum alloy member and manufacturing method thereof
JP3509163B2 (en) Manufacturing method of magnesium alloy member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220624

R150 Certificate of patent or registration of utility model

Ref document number: 7096690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150